Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.314
Filtrar
1.
Food Chem ; 462: 140936, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39232273

RESUMO

Aromatic amino acid oxidation products (AAAOPs) are newly discovered risk substances of thermal processes. Due to its significant polarity and trace level in food matrices, there are no efficient pre-treatment methods available to enrich AAAOPs. Herein, we proposed a magnetic cationic covalent organic framework (Fe3O4@EB-iCOF) as an adsorbent for dispersive magnetic solid-phase extraction (DMSPE). Benefiting from the unique charged characteristics of Fe3O4@EB-iCOF, AAAOPs can be enriched through electrostatic interaction and π-π interactions. Under the optimal DMSPE conditions, the combined HPLC-MS/MS method demonstrated good linearity (R2 ≥ 0.990) and a low detection limit (0.11-7.5 µg·kg-1) for AAAOPs. In addition, the method was applied to real sample and obtained satisfactory recoveries (86.8 % âˆ¼ 109.9 %). Especially, we applied this method to the detection of AAAOPs in meat samples and conducted a preliminarily study on its formation rules, which provides a reliable basis for assessing potential dietary risks.


Assuntos
Aminoácidos Aromáticos , Oxirredução , Extração em Fase Sólida , Extração em Fase Sólida/métodos , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/análise , Aminoácidos Aromáticos/isolamento & purificação , Espectrometria de Massas em Tandem , Estruturas Metalorgânicas/química , Temperatura Alta , Contaminação de Alimentos/análise , Cromatografia Líquida de Alta Pressão , Animais , Adsorção , Carne/análise , Alimento Processado
2.
Ecotoxicol Environ Saf ; 284: 116991, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39236657

RESUMO

Myricaria laxiflora is an endangered shrub plant with remarkable tolerance to waterlogging stress, however, little attention has been paid to understanding the underlying mechanisms. Here, physiological and transcriptomic approaches were applied to uncover the physiological and molecular reconfigurations in the stem of M. laxiflora in response to waterlogging stress. The accumulation of the contents of H2O2 and malonaldehyde (MDA) alongside increased activities of enzymes for scavenging the reactive oxygen species (ROS) in the stem of M. laxiflora were observed under waterlogging stress. The principal component analysis (PCA) of transcriptomes from five different timepoints uncovered PC1 counted for 17.3 % of total variations and separated the treated and non-treated samples. A total of 8714 genes in the stem of M. laxiflora were identified as differentially expressed genes (DEGs) under waterlogging stress, which could be assigned into two different subgroups with distinct gene expression patterns and biological functions. The DEGs involved in glycolysis were generally upregulated, whereas opposite results were observed for nitrogen uptake and the assimilation pathway. The contents of abscisic acid (ABA) and jasmonic acid (JA) were sharply decreased alongside the decreased mRNA levels of the genes involved in corresponding synthesis pathways upon waterlogging stress. A network centered by eight key transcription factors has been constructed, which uncovered the inhibited cell division processes in the stem of M. laxiflora upon waterlogging stress. Taken together, the obtained results showed that glycolysis, nitrogen metabolism and meristem activities played an important role in the stem of M. laxiflora in response to waterlogging stress.

3.
Neural Netw ; 180: 106684, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39243506

RESUMO

Image clustering aims to divide a set of unlabeled images into multiple clusters. Recently, clustering methods based on contrastive learning have attracted much attention due to their ability to learn discriminative feature representations. Nevertheless, existing clustering algorithms face challenges in capturing global information and preserving semantic continuity. Additionally, these methods often exhibit relatively singular feature distributions, limiting the full potential of contrastive learning in clustering. These problems can have a negative impact on the performance of image clustering. To address the above problems, we propose a deep clustering framework termed Efficient Contrastive Clustering via Pseudo-Siamese Vision Transformer and Multi-view Augmentation (ECCT). The core idea is to introduce Vision Transformer (ViT) to provide the global view, and improve it with Hilbert Patch Embedding (HPE) module to construct a new ViT branch. Finally, we fuse the features extracted from the two ViT branches to obtain both global view and semantic coherence. In addition, we employ multi-view random aggressive augmentation to broaden the feature distribution, enabling the model to learn more comprehensive and richer contrastive features. Our results on five datasets demonstrate that ECCT outperforms previous clustering methods. In particular, the ARI metric of ECCT on the STL-10 (ImageNet-Dogs) dataset is 0.852 (0.424), which is 10.3% (4.8%) higher than the best baseline.

4.
J Adv Res ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236975

RESUMO

INTRODUCTION: Mechanical stresses incurred during post-harvest fruit storage and transportation profoundly impact decay and losses. Currently, the monitoring of mechanical forces is primarily focused on vibrational forces experienced by containers and vehicles and impact forces affecting containers. However, the detection of compressive forces both among interior fruit and between fruit and packaging surfaces remains deficient. Hence, conformable materials capable of sensing compressive stresses are necessary. OBJECTIVES: In the present study, a triple-network-reinforced PSA/LiCl/CCN@AgNP conductive hydrogel was synthesized for compression force detection on fruit surfaces based on changes in intrinsic impedance under mechanical loading. METHODS: The conductive hydrogel was characterized in terms of its adhesion, mechanics, frost resistance, water retention, conductivity, mechanical force-sensing properties, and feasibility for monitoring mechanical forces. Then, a portable complex impedance recorder was developed to interface with the conductive hydrogel and its mechanical force sensing ability was evaluated. RESULTS: Beyond its inherent conductivity, the hydrogel exhibited notable pressure sensitivity within the strain range of 1 % to 80 %. The conductive hydrogel also demonstrated a commendable adhesion property, favorable tensile property (580 % elongation at break), substantial compressive strength and durability, and a long-term water retention capability. After exposure to -20 °C for 96 h, the hydrogel maintained its mechanical strength, affirming its anti-freezing property. In addition, a portable complex impedance recorder with sustained signal measurement stability was developed to quantitatively acquire the hydrogel resistance changes in response to compression forces. Finally, the effectiveness of the conductive hydrogel for sensing compression force on the surface of apple fruits was validated. CONCLUSION: The conductive hydrogel holds promise for applications in smart packaging, wherein it can detect crucial mechanical stress on fruit, convert it into electrical signals, and further transmit these signals to the cloud, thereby enabling the real-time sensing of mechanical forces experienced by fruits and enhancing post-harvest fruit loss management.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39266250

RESUMO

Excessive reactive oxygen species (ROS) is a hallmark of both the onset and progression of inflammatory bowel disease (IBD), where a continuous cycle of ROS and inflammation drives the progression of diseases. The design of oral antioxidant nanoenzymes for scavenging ROS has emerged as a promising strategy to intervene in IBD. However, the practical application of these nanoenzymes is limited due to their single catalytical property and significantly impacted by substantial leakage in the upper gastrointestinal tract. This study introduces a novel oral delivery system, SP@CS-SeNPs, combining natural microalgae Spirulina platensis (SP), which possesses superoxide dismutase (SOD)-like activity, with chitosan-functionalized selenium nanoparticles (CS-SeNPs) that exhibit catalase-like activity. The SP@CS-SeNPs system leverages the dual catalytic capabilities of these components to initiate a cascade reaction that first converts superoxide anion radicals (O2•-) into hydrogen peroxide (H2O2), and then catalyzes the decomposition of H2O2 into water and oxygen. This system not only utilizes the resistance of the microalgae carrier to gastric acid and its efficient capture by intestinal villi, thereby enhancing intestinal distribution and retention but also demonstrates significant anti-inflammatory effects and effective repair of the damaged intestinal barrier in a colitis mice model. These results demonstrate that this oral delivery system successfully combines the features of microalgae and nanozymes, exhibits excellent biocompatibility, and offers a novel approach for antioxidant nanozyme intervention in IBD.

6.
Int J Biol Macromol ; 279(Pt 3): 135389, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245121

RESUMO

Anthocyanins (ATH), which are plant pigments with potential health benefits, possess antioxidant and natural indicator properties. However, their inherent instability poses a hurdle for practical applications in the food industry. In the present study, we addressed this challenge by encapsulating ATHs in nisin/gelatin (GA)/pullulan (PUL) bioaerogels through freeze-drying. The results showed that the ATH + nisin@GA/PUL bioaerogels exhibited antibacterial activity against S. aureus and E. coli, and pH-responsiveness to the increase in biogenic amines during the spoilage of shrimp, indicating their potential as a freshness indicator. The bioaerogels also displayed sustained antioxidant effects after two months of storage at room temperature. In summary, the ATH + nisin@GA/PUL bioaerogel serves as a stable matrix for preserving the antioxidant activity of ATHs, and facilitates the indication of freshness in perishable foods. This innovative encapsulation technique represents an advancement in the utilization of ATHs in food packaging.

7.
J Adv Res ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233002

RESUMO

INTRODUCTION: Lignin is a principal constituent of the secondary cell wall, which plays a role in both plant growth and defensing against stress, such as low temperature and pest infestation. Additionally, it also accumulates in fleshy fruits and negatively affects fruit quality. Red-fleshed loquat is temperature sensitive and exhibits cold-induced lignification. A number of technologies have been developed, for example, Low Temperature Conditioning (LTC) treatment, which has been applied in order to relieve the symptom of cold injury. OBJECTIVES: The present study seeks to elucidate the regulatory mechanism underlying cold-induced lignification in loquat fruit. METHODS: The target genes were isolated through the analysis of transcriptome. The gene function was analyzed by transient transgenic method in tobacco leaves and loquat fruit, respectively, as well as stable overexpression in liverwort. The regulatory mechanism study was achieved by in vitro protein-protein interaction assays, dual-luciferase assay, and EMSA. RESULTS: In the present study, the Xylem NAC Domain transcription factor EjXND1 was identified as a repressor of loquat fruit lignification. It was demonstrated that EjXND1 could interact with the characterized lignin activator EjHB1, resulting in a diminution of the activation of EjHB1 on EjPRX12 promoter. Furthermore, two highly methylated regions were identified in the promoter of EjXDN1. One of these regions exhibited a negative correlation between methylation level and EjXND1 expression. Additionally, it was shown that hypermethylation of this region weaken the binding affinity of EjXND1 activators to its promoter. CONCLUSION: The EjXND1 plays a role in modified Low Temperature Conditioning (mLTC) treatment that alleviates cold-induced lignification in red-fleshed loquat fruit by targeting the EjHB1-EjPRX12 module and EjXND1 is regulated by the dynamic of DNA methylation level in the promoter.

8.
Front Microbiol ; 15: 1435360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234540

RESUMO

The Heilongjiang River is one of the largest rivers in the cool temperate zone and has an abundant fish source. To date, the microbiota community in water samples and fish guts from the Heilongjiang River is still unclear. In the present study, water samples and fish guts were collected from four locations of the Heilongjiang River during both the dry season and the wet season to analyze the spatio-temporal dynamics of microbiota communities in the water environment and fish guts through 16s ribosome RNA sequencing. The water qualities showed seasonal changes in which the pH value, dissolved oxygen, and total dissolved solids were generally higher during the dry season, and the water temperature was higher during the wet season. RDA indicated that higher pH values, dissolved oxygen, and total dissolved solids promoted the formation of microbiota communities in the water samples of the dry season, while higher water temperature positively regulated the formation of microbiota communities in the water samples of the wet season. LEFSe identified five biomarkers with the most abundant difference at the genus level, of which TM7a was upregulated in the water samples of the dry season, and SM1A02, Rheinheimera, Gemmatimonas, and Vogesella were upregulated in the water samples of the wet season. Pearson analysis revealed that higher pH values and dissolved oxygen positively regulated the formation of TM7a and negatively regulated the formation of SM1A02, Rheinheimera, Gemmatimonas, and Vogesella (p < 0.05), while higher water temperature had the opposite regulatory roles in the formation of these biomarkers. The relative abundance of microbiota diversity in fish guts varies greatly between different fish species, even if the fishes were collected from the same water source, indicating that dietary habits and fish species may be key factors, affecting the formation and construction of microbiome community in fish gut. P. glenii, P. lagowskii, G. cynocephalus, and L. waleckii were the main fish resources, which were collected and identified from at least six sample points. RDA indicated that the microbiota in the water environment regulated the formation of microbiota community in the guts of G. cynocephalus and L. waleckii and had limited regulated effects on P. glenii and P. lagowskii. The present study identified the regulatory effects of water qualities on the formation of microbiota communities in the water samples and fish guts, providing valuable evidence for the protection of fish resources in the Heilongjiang River.

9.
J Colloid Interface Sci ; 678(Pt B): 313-324, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245021

RESUMO

The water pollution caused by the abuse of antibiotics has significant harmful effects on the environment and human health. The photo-Fenton process is currently the most effective method for removing antibiotics from water, but it encounters challenges such as inadequate response to visible light, low yield and utilization of photogenerated electrons, and slow electron transport. In this study, spin state regulation was introduced into the photo-Fenton process, and the spin state of Co3+ was regulated through Ce displacement doping. The intermediate-spin state Ce-LaCoO3 could degrade 91.6 % of tetracycline within 120 min in the photo-Fenton system, which is 15.2 % higher than that of low-spin state LaCoO3. The improved degradation effect is attributed to the reasons that Ce-LaCoO3 in the intermediate-spin state have lower band gap, better charge transfer ability, and stronger adsorption capacity of H2O2, which can accelerate the redox cycle of Co2+/Co3+ and promote the generation of ·OH. This study presents a unique strategy for synthesizing efficient photo-Fenton materials to treat antibiotic wastewater effectively.

10.
Gerontology ; : 1-14, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245032

RESUMO

INTRODUCTION: The effects of exposure to particulate matter and frailty, as well as its exposure-response relationship, have not been effectively explored. This study aimed to explore the association between long-term exposure to particulate matter and frailty state and each dimension in Chinese middle-aged and older adults, in addition to the exposure-response relationship. METHODS: The data were obtained from the National Urban Air Quality Real-Time Dissemination Platform and China Health and Retirement Longitudinal Study (CHARLS). Frailty was measured by a frailty index containing 39 indicators. Annual averages of seven pollutants were calculated from hourly monitoring data. We used multilevel regression modeling to explore the association between long-term exposure to particulate matter and frailty. Meanwhile, we explored the exposure-response relationship based on a multilevel generalized summation model. We performed a sensitivity analysis using a multi-pollution model and a quantile-based g-computation (QGC) model. RESULTS: A total of 15,611 participants were included in the analysis. We find that long-term exposure to PM2.5 was associated with an increased risk of pre-frailty and frailty (all p < 0.05). PMc and PM10 exhibited similar associations. The exposure-response relationship between PM2.5 showed a linear relationship, whereas the exposure-response relationship between PM10, PMc showed a nonlinear relationship. Elevated PM2.5 concentrations showed significant positive associations with the number of chronic disease score, IADL score, and functional limitation status score (all p < 0.05). PM10 and PMc showed similar positive correlations. These results remained robust after sensitivity analyses using a multi-pollution model and QGC model. CONCLUSION: Chronic exposure to particulate matter was significantly associated with increased risk of frailty. The exposure-response relationship between PM2.5 concentration and frailty showed a linear relationship, and the exposure-response relationship between PM10 and PMc showed a nonlinear relationship. Exposure to a mixture of pollutants carried a higher risk of frailty than exposure to a single pollutant.

11.
Cell Biochem Biophys ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235509

RESUMO

The purpose of this study is to identify the therapeutic effect of electroacupuncture (EA) on cerebral ischemia-reperfusion (I/R) injury, and to clarify the regulatory mechanism related to telomerase reverse transcriptase (TERT)-mediated telomerase activity. A Middle cerebral artery occlusion/reperfusion (MCAO/R) animal model was constructed and rats were treated by EA invention at the Baihui (GV20) and Fengchi (GB20) acupoints. Neurological deficits were assessed via rotarod test and Morris water maze test. 2,3,5-Triphenyltertrazolium chloride (TTC) staining was performed to evaluate infarct volume. Histological changes were observed under H&E staining and Nissl staining. TERT expression was examined using qRT-PCR and western blot. Telomerase activity was assessed with TRAP method. Neuron apoptosis and senescence were assessed by TUNEL and immunofluorescence assays. Inflammatory cytokines and oxidative stress-indicators were examined using commercial kits. EA intervention at both GV20 and GB20 acupoints reduced infarct volumes (2.48 ± 1.89 vs. 29.56 ± 2.55), elevated the telomerase activity (0.84 ± 0.08 vs. 0.34 ± 0.09), and upregulated the levels of total TERT protein (0.61 ± 0.09 vs. 0.21 ± 0.05) and mitochondrial TERT (Mito-TERT; 0.54 ± 0.03 vs. 0.27 ± 0.03) in hippocampus tissues of MCAO/R rats. EA intervention attenuated motor dysfunction (112.00 ± 6.69 vs. 30.02 ± 2.60) and improved spatial learning (23.87 ± 1.90 vs. 16.23 ± 1.45) and memory ability (8.38 ± 1.06 vs. 4.13 ± 1.13) of rats with cerebral I/R injury. In addition, EA intervention significantly attenuated histopathological changes of injured neurons, mitigated neuron apoptosis (32.27 ± 5.52 vs. 65.83 ± 4.31) and senescence in MCAO/R rats, as well as inhibited excessive production of inflammatory cytokines and attenuated oxidative stress. However, the above therapeutic efficiency of EA intervention in MCAO/R rats was partly eliminated by TERT knockdown. EA intervention at GB20 and GV20 acupoints exerted a protective role in cerebral I/R injury partly through restoring TERT function, implying the clinical potential of EA treatment in the treatment of ischemic stroke.

12.
Sci Total Environ ; 953: 176169, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260500

RESUMO

Whether earthworm mucus affects Cd transport behavior in soil-plant systems remains uncertain. Consequently, this study thoroughly assessed the impacts of earthworm mucus on plant growth and physiological responses, plant Cd accumulation, translocation, and distribution, as well as soil characteristics and Cd fractionation in a soil-plant (tomato seedling) system. Results demonstrated that the earthworm inoculation considerably enhanced plant Cd uptake and decreased plant Cd translocation, the effects of which were appreciably less significant than those of the earthworm mucus. This suggested that earthworm mucus may play a crucial role in the way earthworms influence plant Cd uptake and translocation. Moreover, the artificial mucus, which contained identical inorganic nitrogen contents to those in earthworm mucus, had no significant effect on plant Cd accumulation or translocation, implying that components other than inorganic nitrogen in the earthworm mucus may have contributed significantly to the overall effects of the mucus. Compared with the control, the earthworm mucus most substantially increased the root Cd content, the Cd accumulation amount of root and whole plant, and root Cd BCF by 93.7 %, 221.3 %, 72.2 %, and 93.7 %, respectively, while notably reducing the Cd TF by 48.2 %, which may be ascribed to the earthworm mucus's significant impacts on tomato seedling growth and physiological indicators, its considerable influences on the subcellular components and chemical species of root Cd, and its substantial effects on the soil characteristics and soil Cd fractionation, as revealed by correlation analysis. Redundancy analysis further suggested that the most prominent impacts of earthworm mucus may have been due to its considerable reduction of soil pH, improvement of soil DOC content, and enhancement of the exchangeable Cd fraction in soil. This work may help better understand how earthworm mucus influences the transport behavior of metals in soil-plant systems.

13.
Heliyon ; 10(17): e36377, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263166

RESUMO

Patient-derived organoids (PDOs) have been proposed as a novel in vitro tumor model that can be applied to tumor research and drug screening. However, current tumor organoid models lack components of the tumor microenvironment, particularly tumor-associated macrophages(TAMs).We collected peripheral blood and tumor samples from 6 patients with extrahepatic cholangiocarcinoma(eCCA). Monocytes were induced into TAMs by cytokine and conditioned medium, and then co-cultured with tumor organoids. Our comprehensive analysis and comparison of histopathology and genomics results confirmed that this co-culture model can better capture intra- and inter-tumor heterogeneity retain the specific mutations of the original tumor. Drug sensitivity data in vitro revealed that gemcitabine and cisplatin are effective drugs for cholangiocarcinoma, but TAMs in the tumor microenvironment promote organoids growth and chemotherapy resistance. In conclusion, our organoid model of cholangiocarcinoma co-cultured with TAMs can not only shorten the model construction cycle, but also preserve the heterogeneity of original tumors to improve the accuracy of drug screening, and can also be applied to the researches of TAMs and tumors.

14.
Front Neurosci ; 18: 1326572, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268033

RESUMO

The benefits of femtosecond laser-assisted in situ keratomileusis (FS-LASIK) for correcting vision, particularly in terms of spherical equivalent (SE) and visual acuity (VA), have gained broad recognition. Nevertheless, it has remained uncertain whether FS-LASIK has a positive impact on contrast sensitivity (CS). In this study, we measured CS on seven participants by the quick contrast sensitivity function (qCSF) and compared CS before and after the surgery at two time points (1 day and 7 days after) by the repeated measures analysis of variance (ANOVA). Then, we clarified the underlying mechanisms using the perceptual template model (PTM). Furthermore, we investigated the relationship among SE, VA, and CS employing the Pearson correlation test. We found that (1) CS exhibited significant improvements on postoperative day 1, with further enhancements observed up to postoperative day 7, (2) CS improvements were dependent on spatial frequency (SF) and external noise, (3) CS improvements were attributed to the reduction of internal noise and the enhancement of the perceptual template, (4) VA and SE demonstrated significant improvement post-surgery, and (5) no significant correlations were observed among SE, VA, and CS, possibly due to limitations in sample size and lighting conditions. These findings contribute to our comprehension of FS-LASIK and provide a great indicator for assessing the outcomes of visual surgery.

15.
Cell Biol Toxicol ; 40(1): 76, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276283

RESUMO

tRNAs are codon decoders that convert the transcriptome into the proteome. The field of tRNA research is excited by the increasing discovery of specific tRNA modifications that are installed at specific, evolutionarily conserved positions by a set of specialized tRNA-modifying enzymes and the biogenesis of tRNA-derived regulatory fragments (tsRNAs) which exhibit copious activities through multiple mechanisms. Dysregulation of tRNA modification usually has pathological consequences, a phenomenon referred to as "tRNA modopathy". Current evidence suggests that certain tRNA-modifying enzymes and tsRNAs may serve as promising diagnostic biomarkers and therapeutic targets, particularly for chemoresistant cancers. In this review, we discuss the latest discoveries that elucidate the molecular mechanisms underlying the functions of clinically relevant tRNA modifications and tsRNAs, with a focus on malignancies. We also discuss the therapeutic potential of tRNA/tsRNA-based therapies, aiming to provide insights for the development of innovative therapeutic strategies. Further efforts to unravel the complexities inherent in tRNA biology hold the promise of yielding better biomarkers for the diagnosis and prognosis of diseases, thereby advancing the development of precision medicine for health improvement.


Assuntos
Neoplasias , RNA de Transferência , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/genética , Neoplasias/genética , Neoplasias/metabolismo , Processamento Pós-Transcricional do RNA/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Animais
16.
Opt Lett ; 49(18): 5324-5327, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39270296

RESUMO

Solar-blind ultraviolet (UV) photodetectors are in great demand for both military and civilian applications. Here, we have successfully demonstrated the synthesis of the Sn-doped Ga2O3 films with controllable bandgaps to construct PdSe2/Ga2O3 van der Waals (vdW) heterojunctions achieving highly sensitive full solar-blind UV spectrum detection. The assembled device demonstrates a full solar-blind UV spectral self-powered response, with a large responsivity of 123.5 mA/W, a high specific detectivity of 1.63 × 1013 Jones, and a rapid response time of 0.15/2.3 ms. Importantly, an outstanding solar-blind UV imaging application based on an integrated PdSe2/Ga2O3 device array has been demonstrated. Our work paves a feasible path toward achieving highly sensitive solar-blind UV detecting and imaging based on wide-bandgap Ga2O3 films.

17.
Angew Chem Int Ed Engl ; : e202417362, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278829

RESUMO

Imide functionalization has been widely proved to be an effective approach to enrich optoelectronic properties of polycyclic aromatic hydrocarbons (PAHs). However, appending multiple imide groups onto linear acenes is still a synthetic challenge. Herein, we demonstrate that by taking advantage of a "breaking and mending" strategy, a linear pentacene tetraimides (PeTI) was synthesized through a three-step sequence started from the naphthalene diimides (NDI). Compared with the parent pentacene, PeTI shows a deeper-lying lowest unoccupied molecular orbital (LUMO) energy level, narrower bandgap and better stability. The redox behavior of PeTI was firstly evaluated by generating a stable radical anion specie with the assistance of cobaltocene (CoCp2), and the structure of the electron transfer (ET) complex was confirmed by the X-ray crystallography. Moreover, due to the presence of multiple redox-active sites, we are able to show that the state-of-the-art energy storage performance of the dealkylated PeTI (designated as PeTCTI) in organic potassium ion batteries (OPIBs) as an anode. Our results shed light on the application of multiple imides functionalized linear acenes, and the reported synthetic strategy provides an effective way to get access to longer nanoribbon imides with fascinating electronic properties.

18.
Front Psychol ; 15: 1358776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39300996

RESUMO

Introduction: This research explores the intricate interplay among teacher-student relationships, perceived autonomy support, peer relationships, and their collective impact on the psychological well-being of 387 university students enrolled in French language courses across diverse academic institutions in China. Methods: Employing Confirmatory Factor Analysis (CFA) and Structural Equation Modeling (SEM), this study aims to establish the validity and robustness of the proposed model. Data collection involved online surveys utilizing Likert scales and standardized measures to assess variables concerning educational relationships and psychological well-being. Results: The findings reveal significant associations between teacher-student relationships, autonomy support, positive peer relationships, and psychological well-being. Importantly, analyses demonstrate the influential role of positive peer relationships in mediating the effects of teacher-student relationships and autonomy support on students' psychological well-being. Discussion: These outcomes emphasize the crucial significance of educational relationships in shaping students' psychological well-being within academic settings. The findings contribute to understanding the nuanced dynamics of educational interactions and their profound implications for student well-being. This highlights the necessity of cultivating positive educational environments for enhanced student mental health.

19.
Front Oncol ; 14: 1442965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301551

RESUMO

Introduction: Despite rapid advances in molecular biology, personalized molecular therapy remains a clinical challenge for endometrial cancer due to its complex and heterogeneous tumor microenvironment.Based on clinical findings, AIB1 is a marker molecule for poor prognosis in endometrial cancer and may serve as a potential therapeutic target. Moreover, it is well known that aerobic glycolysis plays an important role in tumour energy metabolism. It has been previously reported in various hormone-related tumour studies that AIB1 affects glycolysis and promotes tumour development. However, the link between AIB1 and aerobic glycolysis in estrogen-dependent endometrial cancer remains unclear. Methods: We used two endometrial cancer cell lines to validate the high expression of target genes and the effect on the proliferative and invasive capacity of the tumours and verified the pattern of interactions and epigenetic modifications by CHIP and CO-IP techniques. Finally, the conclusions were validated on homozygous mice. Results: In this study, we investigated the transcriptional co-activation functions of AIB1, including its acetylation by PCAF, binding to the c-myc transcription factor, and recruitment of glycolysis-related gene promoters. Discussion: Our findings provide new clues that perturbation of normal homeostatic levels of AIB1 is linked with endometrial cancer. These findings suggest that targeting AIB1-mediated regulation of aerobic glycolysis may offer a novel therapeutic approach for endometrial cancer with high AIB1 expression, opening new avenues for personalized diagnostics and treatment strategies in this disease.

20.
Stem Cells Dev ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302052

RESUMO

Periodontal ligament mesenchymal stem cells (PDLSCs) are a promising cell resource for stem cell-based regenerative medicine in dentistry, but they inevitably acquire a senescent phenotype after prolonged in vitro expansion. The key regulators of PDLSCs during replicative senescence are remain unclear. Here, we sought to elucidate the role of metabolomic changes in determining cellular senescence of PDLSCs. PDLSCs were cultured to passages 4, 10 and 20. The senescent phenotypes of PDLSCs were detected, and metabolomics analysis was performed. We found that PDLSCs manifested senescence phenotype during passaging. Metabolomics analysis showed that the metabolism of replicative senescence in PDLSCs varied significantly. The AMPK signaling pathway was closely related to AMP levels. The AMP:ATP ratio increased in senescent PDLSCs; however, the levels of p-AMPK, FOXO1 and FOXO3a decreased with senescence. We treated PDLSCs with an activator of the AMPK pathway (AICAR), and observed that the phosphorylated AMPK level at P20 PDLSCs was partially restored. These data delineate that the metabolic process of PDLSCs is active in the early stage of senescence, and attenuated in the later stages of senescence; however, the sensitivity of AMPK phosphorylation sites is impaired, causing senescent PDLSCs to fail to respond to changes in energy metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...