Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(7): 1646-1657, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38695172

RESUMO

BACKGROUND: Trem2 (triggering receptor on myeloid cells 2), a surface lipid receptor, is expressed on foamy macrophages within atherosclerotic lesions and regulates cell survival, proliferation, and anti-inflammatory responses. Studies examining the role of Trem2 in atherosclerosis have shown that deletion of Trem2 leads to impaired foamy macrophage lipid uptake, proliferation, survival, and cholesterol efflux. Thus, we tested the hypothesis that administration of a Trem2 agonist antibody (AL002a) to atherogenic mice would enhance macrophage survival and decrease necrotic core formation to improve plaque stability. METHODS: To model a therapeutic intervention approach, atherosclerosis-prone mice (Ldlr [low-density lipoprotein receptor]-/-) were fed a high-fat diet for 8 weeks, then transitioned to treatment with AL002a or isotype control for an additional 8 weeks while continuing on a high-fat diet. RESULTS: AL002a-treated mice had increased lesion size in both the aortic root and whole mount aorta, which correlated with an expansion of plaque macrophage area. This expansion was due to increased macrophage survival and proliferation in plaques. Importantly, plaques from AL002a-treated mice showed improved features of plaque stability, including smaller necrotic cores, increased fibrous caps, and greater collagen deposition. Single-cell RNA sequencing of whole aorta suspensions from isotype- and AL002a-treated atherosclerotic mice revealed that Trem2 agonism dramatically altered foamy macrophage transcriptome. This included upregulation of oxidative phosphorylation and increased expression of collagen genes. In vitro studies validated that Trem2 agonism with AL002a promoted foamy macrophage oxidized low-density lipoprotein uptake, survival, and cholesterol efflux. CONCLUSIONS: Trem2 agonism expands atherosclerotic plaque macrophages by promoting cell survival and proliferation but improves features of plaque stability by rewiring foamy macrophage function to enhance cholesterol efflux and collagen deposition.


Assuntos
Aterosclerose , Modelos Animais de Doenças , Células Espumosas , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica , Receptores Imunológicos , Animais , Receptores Imunológicos/agonistas , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Células Espumosas/metabolismo , Células Espumosas/patologia , Células Espumosas/efeitos dos fármacos , Masculino , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de LDL/deficiência , Proliferação de Células/efeitos dos fármacos , Dieta Hiperlipídica , Sobrevivência Celular/efeitos dos fármacos , Necrose , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/prevenção & controle
2.
Proc Natl Acad Sci U S A ; 116(14): 7113-7122, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30782829

RESUMO

Homeostatic synaptic plasticity is a stabilizing mechanism engaged by neural circuits in response to prolonged perturbation of network activity. The non-Hebbian nature of homeostatic synaptic plasticity is thought to contribute to network stability by preventing "runaway" Hebbian plasticity at individual synapses. However, whether blocking homeostatic synaptic plasticity indeed induces runaway Hebbian plasticity in an intact neural circuit has not been explored. Furthermore, how compromised homeostatic synaptic plasticity impacts animal learning remains unclear. Here, we show in mice that the experience of an enriched environment (EE) engaged homeostatic synaptic plasticity in hippocampal circuits, thereby reducing excitatory synaptic transmission. This process required RARα, a nuclear retinoic acid receptor that doubles as a cytoplasmic retinoic acid-induced postsynaptic regulator of protein synthesis. Blocking RARα-dependent homeostatic synaptic plasticity during an EE experience by ablating RARα signaling induced runaway Hebbian plasticity, as evidenced by greatly enhanced long-term potentiation (LTP). As a consequence, RARα deletion in hippocampal circuits during an EE experience resulted in enhanced spatial learning but suppressed learning flexibility. In the absence of RARα, moreover, EE experience superactivated mammalian target of rapamycin (mTOR) signaling, causing a shift in protein translation that enhanced the expression levels of AMPA-type glutamate receptors. Treatment of mice with the mTOR inhibitor rapamycin during an EE experience not only restored normal AMPA-receptor expression levels but also reversed the increases in runaway Hebbian plasticity and learning after hippocampal RARα deletion. Thus, our findings reveal an RARα- and mTOR-dependent mechanism by which homeostatic plasticity controls Hebbian plasticity and learning.


Assuntos
Hipocampo/metabolismo , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Tretinoína/farmacologia , Animais , Homeostase/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
3.
Nature ; 548(7668): 420-425, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28813412

RESUMO

Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE-complexin-synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for the primed pre-fusion state. Ca2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. The tripartite SNARE-complexin-synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Exocitose , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas SNARE/metabolismo , Transmissão Sináptica , Sinaptotagmina I/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Cristalografia por Raios X , Feminino , Masculino , Camundongos , Modelos Moleculares , Mutação , Neurotransmissores/metabolismo , Proteínas SNARE/química , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/química
4.
Nature ; 544(7650): 316-321, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28355182

RESUMO

Strengthening of synaptic connections by NMDA (N-methyl-d-aspartate) receptor-dependent long-term potentiation (LTP) shapes neural circuits and mediates learning and memory. During the induction of NMDA-receptor-dependent LTP, Ca2+ influx stimulates recruitment of synaptic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors, thereby strengthening synapses. How Ca2+ induces the recruitment of AMPA receptors remains unclear. Here we show that, in the pyramidal neurons of the hippocampal CA1 region in mice, blocking postsynaptic expression of both synaptotagmin-1 (Syt1) and synaptotagmin-7 (Syt7), but not of either alone, abolished LTP. LTP was restored by expression of wild-type Syt7 but not of a Ca2+-binding-deficient mutant Syt7. Blocking postsynaptic expression of Syt1 and Syt7 did not impair basal synaptic transmission, reduce levels of synaptic or extrasynaptic AMPA receptors, or alter other AMPA receptor trafficking events. Moreover, expression of dominant-negative mutant Syt1 which inhibits Ca2+-dependent presynaptic vesicle exocytosis, also blocked Ca2+-dependent postsynaptic AMPA receptor exocytosis, thereby abolishing LTP. Our results suggest that postsynaptic Syt1 and Syt7 act as redundant Ca2+-sensors for Ca2+-dependent exocytosis of AMPA receptors during LTP, and thereby delineate a simple mechanism for the recruitment of AMPA receptors that mediates LTP.


Assuntos
Exocitose , Potenciação de Longa Duração/fisiologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinaptotagminas/metabolismo , Animais , Região CA1 Hipocampal/citologia , Cálcio/metabolismo , Feminino , Masculino , Camundongos , Mutação , Transporte Proteico , Células Piramidais/metabolismo , Transmissão Sináptica , Sinaptotagminas/genética
5.
PLoS Biol ; 13(10): e1002267, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26437117

RESUMO

In forebrain neurons, Ca(2+) triggers exocytosis of readily releasable vesicles by binding to synaptotagmin-1 and -7, thereby inducing fast and slow vesicle exocytosis, respectively. Loss-of-function of synaptotagmin-1 or -7 selectively impairs the fast and slow phase of release, respectively, but does not change the size of the readily-releasable pool (RRP) of vesicles as measured by stimulation of release with hypertonic sucrose, or alter the rate of vesicle priming into the RRP. Here we show, however, that simultaneous loss-of-function of both synaptotagmin-1 and -7 dramatically decreased the capacity of the RRP, again without altering the rate of vesicle priming into the RRP. Either synaptotagmin-1 or -7 was sufficient to rescue the RRP size in neurons lacking both synaptotagmin-1 and -7. Although maintenance of RRP size was Ca(2+)-independent, mutations in Ca(2+)-binding sequences of synaptotagmin-1 or synaptotagmin-7--which are contained in flexible top-loop sequences of their C2 domains--blocked the ability of these synaptotagmins to maintain the RRP size. Both synaptotagmins bound to SNARE complexes; SNARE complex binding was reduced by the top-loop mutations that impaired RRP maintenance. Thus, synaptotagmin-1 and -7 perform redundant functions in maintaining the capacity of the RRP in addition to nonredundant functions in the Ca(2+) triggering of different phases of release.


Assuntos
Sinalização do Cálcio , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagminas/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Células HEK293 , Hipocampo/citologia , Hipocampo/ultraestrutura , Humanos , Potenciais Pós-Sinápticos Inibidores , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/ultraestrutura , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas SNARE/metabolismo , Vesículas Sinápticas/ultraestrutura , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sinaptotagminas/antagonistas & inibidores , Sinaptotagminas/química , Sinaptotagminas/genética
6.
Cell ; 162(3): 593-606, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26213384

RESUMO

α- and ß-neurexins are presynaptic cell-adhesion molecules implicated in autism and schizophrenia. We find that, although ß-neurexins are expressed at much lower levels than α-neurexins, conditional knockout of ß-neurexins with continued expression of α-neurexins dramatically decreased neurotransmitter release at excitatory synapses in cultured cortical neurons. The ß-neurexin knockout phenotype was attenuated by CB1-receptor inhibition, which blocks presynaptic endocannabinoid signaling, or by 2-arachidonoylglycerol synthesis inhibition, which impairs postsynaptic endocannabinoid release. In synapses formed by CA1-region pyramidal neurons onto burst-firing subiculum neurons, presynaptic in vivo knockout of ß-neurexins aggravated endocannabinoid-mediated inhibition of synaptic transmission and blocked LTP; presynaptic CB1-receptor antagonists or postsynaptic 2-arachidonoylglycerol synthesis inhibition again reversed this block. Moreover, conditional knockout of ß-neurexins in CA1-region neurons impaired contextual fear memories. Thus, our data suggest that presynaptic ß-neurexins control synaptic strength in excitatory synapses by regulating postsynaptic 2-arachidonoylglycerol synthesis, revealing an unexpected role for ß-neurexins in the endocannabinoid-dependent regulation of neural circuits.


Assuntos
Endocanabinoides/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Vias Neurais/metabolismo , Sinapses/metabolismo , Animais , Ácidos Araquidônicos/biossíntese , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio , Endocanabinoides/biossíntese , Glicerídeos/biossíntese , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética , Neurônios/metabolismo , Neurotransmissores/metabolismo , Transdução de Sinais
7.
Neuron ; 80(4): 947-59, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24267651

RESUMO

In forebrain neurons, knockout of synaptotagmin-1 blocks fast Ca(2+)-triggered synchronous neurotransmitter release but enables manifestation of slow Ca(2+)-triggered asynchronous release. Here, we show using single-cell PCR that individual hippocampal neurons abundantly coexpress two Ca(2+)-binding synaptotagmin isoforms, synaptotagmin-1 and synaptotagmin-7. In synaptotagmin-1-deficient synapses of excitatory and inhibitory neurons, loss of function of synaptotagmin-7 suppressed asynchronous release. This phenotype was rescued by wild-type but not mutant synaptotagmin-7 lacking functional Ca(2+)-binding sites. Even in synaptotagmin-1-containing neurons, synaptotagmin-7 ablation partly impaired asynchronous release induced by extended high-frequency stimulus trains. Synaptotagmins bind Ca(2+) via two C2 domains, the C2A and C2B domains. Surprisingly, synaptotagmin-7 function selectively required its C2A domain Ca(2+)-binding sites, whereas synaptotagmin-1 function required its C2B domain Ca(2+)-binding sites. Our data show that nearly all Ca(2+)-triggered release at a synapse is due to synaptotagmins, with synaptotagmin-7 mediating a slower form of Ca(2+)-triggered release that is normally occluded by faster synaptotagmin-1-induced release but becomes manifest upon synaptotagmin-1 deletion.


Assuntos
Neurotransmissores/metabolismo , Sinaptotagmina I/fisiologia , Sinaptotagminas/fisiologia , Animais , Cálcio/fisiologia , Células Cultivadas , Dependovirus/genética , Imunofluorescência , Hipocampo/citologia , Hipocampo/fisiologia , Lentivirus/genética , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Técnicas de Patch-Clamp , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Detecção de Cálcio/fisiologia , Sinapses/metabolismo , Sinaptotagmina I/genética , Sinaptotagminas/genética
8.
J Neurosci ; 33(23): 9769-80, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23739973

RESUMO

Synaptotagmin-12 (Syt12) is an abundant synaptic vesicle protein that--different from other synaptic vesicle-associated synaptotagmins--does not bind Ca(2+). Syt12 is phosphorylated by cAMP-dependent protein kinase-A at serine-97 in an activity-dependent manner, suggesting a function for Syt12 in cAMP-dependent synaptic plasticity. To test this hypothesis, we here generated (1) Syt12 knock-out mice and (2) Syt12 knockin mice carrying a single amino-acid substitution [the serine-97-to-alanine- (S97A)-substitution]. Both Syt12 knock-out mice and Syt12 S97A-knockin mice were viable and fertile, and exhibited no measurable change in basal synaptic strength or short-term plasticity as analyzed in cultured cortical neurons or in acute hippocampal slices. However, both Syt12 knock-out and Syt12 S97A-knockin mice displayed a major impairment in cAMP-dependent mossy-fiber long-term potentiation (LTP) in the CA3 region of the hippocampus. This impairment was observed using different experimental configurations for inducing and monitoring mossy-fiber LTP. Moreover, although the Syt12 knock-out had no effect on the short-term potentiation of synaptic transmission induced by the adenylate-cyclase activator forskolin in cultured cortical neurons and in the CA1 region of the hippocampus, both the Syt12 knock-out and the Syt12 S97A-knockin impaired the long-term increase in mossy-fiber synaptic transmission induced by forskolin. Thus, Syt12 is essential for cAMP-dependent presynaptic LTP at mossy-fiber synapses, and a single amino-acid substitution that blocks the cAMP-dependent phosphorylation of Syt12 is sufficient to impair the function of Syt12 in mossy-fiber LTP, suggesting that cAMP-dependent phosphorylation of Syt12 on serine-97 contributes to the induction of mossy-fiber LTP.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Potenciação de Longa Duração/fisiologia , Fibras Musgosas Hipocampais/metabolismo , Sinaptotagminas/metabolismo , Animais , Células Cultivadas , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/fisiologia
9.
Proc Natl Acad Sci U S A ; 108(22): 9095-100, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21576493

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is necessary for the function of various ion channels. The potassium channel, I(Ks), is important for cardiac repolarization and requires PIP(2) to activate. Here we show that the auxiliary subunit of I(Ks), KCNE1, increases PIP(2) sensitivity 100-fold over channels formed by the pore-forming KCNQ1 subunits alone, which effectively amplifies current because native PIP(2) levels in the membrane are insufficient to activate all KCNQ1 channels. A juxtamembranous site in the KCNE1 C terminus is a key structural determinant of PIP(2) sensitivity. Long QT syndrome associated mutations of this site lower PIP(2) affinity, resulting in reduced current. Application of exogenous PIP(2) to these mutants restores wild-type channel activity. These results reveal a vital role of PIP(2) for KCNE1 modulation of I(Ks) channels that may represent a common mechanism of auxiliary subunit modulation of many ion channels.


Assuntos
Canal de Potássio KCNQ1/metabolismo , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Íons , Lipídeos/química , Síndrome do QT Longo/genética , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Canais de Potássio/química , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Xenopus laevis
10.
Biophys J ; 99(11): 3599-608, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21112284

RESUMO

The KCNE1 auxiliary subunit coassembles with the Kv7.1 channel and modulates its properties to generate the cardiac I(Ks) current. Recent biophysical evidence suggests that KCNE1 interacts with the voltage-sensing domain (VSD) of Kv7.1. To investigate the mechanism of how KCNE1 affects the VSD to alter the voltage dependence of channel activation, we perturbed the VSD of Kv7.1 by mutagenesis and chemical modification in the absence and presence of KCNE1. Mutagenesis of S4 in Kv7.1 indicates that basic residues in the N-terminal half (S4-N) and C-terminal half (S4-C) of S4 are important for stabilizing the resting and activated states of the channel, respectively. KCNE1 disrupts electrostatic interactions involving S4-C, specifically with the lower conserved glutamate in S2 (Glu(170) or E2). Likewise, Trp scanning of S4 shows that mutations to a cluster of residues in S4-C eliminate current in the presence of KCNE1. In addition, KCNE1 affects S4-N by enhancing MTS accessibility to the top of the VSD. Consistent with the structure of Kv channels and previous studies on the KCNE1-Kv7.1 interaction, these results suggest that KCNE1 alters the interactions of S4 residues with the surrounding protein environment, possibly by changing the protein packing around S4, thereby affecting the voltage dependence of Kv7.1.


Assuntos
Ativação do Canal Iônico , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos/metabolismo , Animais , Espaço Extracelular/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática , Xenopus laevis
11.
J Gen Physiol ; 135(6): 595-606, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20479111

RESUMO

The voltage-sensing domain of voltage-gated channels is comprised of four transmembrane helices (S1-S4), with conserved positively charged residues in S4 moving across the membrane in response to changes in transmembrane voltage. Although it has been shown that positive charges in S4 interact with negative countercharges in S2 and S3 to facilitate protein maturation, how these electrostatic interactions participate in channel gating remains unclear. We studied a mutation in Kv7.1 (also known as KCNQ1 or KvLQT1) channels associated with long QT syndrome (E1K in S2) and found that reversal of the charge at E1 eliminates macroscopic current without inhibiting protein trafficking to the membrane. Pairing E1R with individual charge reversal mutations of arginines in S4 (R1-R4) can restore current, demonstrating that R1-R4 interact with E1. After mutating E1 to cysteine, we probed E1C with charged methanethiosulfonate (MTS) reagents. MTS reagents could not modify E1C in the absence of KCNE1. With KCNE1, (2-sulfonatoethyl) MTS (MTSES)(-) could modify E1C, but [2-(trimethylammonium)ethyl] MTS (MTSET)(+) could not, confirming the presence of a positively charged environment around E1C that allows approach by MTSES(-) but repels MTSET(+). We could change the local electrostatic environment of E1C by making charge reversal and/or neutralization mutations of R1 and R4, such that MTSET(+) modified these constructs depending on activation states of the voltage sensor. Our results confirm the interaction between E1 and the fourth arginine in S4 (R4) predicted from open-state crystal structures of Kv channels and reveal an E1-R1 interaction in the resting state. Thus, E1 engages in electrostatic interactions with arginines in S4 sequentially during the gating movement of S4. These electrostatic interactions contribute energetically to voltage-dependent gating and are important in setting the limits for S4 movement.


Assuntos
Ativação do Canal Iônico , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/metabolismo , Sequência de Aminoácidos , Animais , Arginina , Membrana Celular/metabolismo , Cisteína , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/efeitos dos fármacos , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/genética , Potenciais da Membrana , Mesilatos/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Reagentes de Sulfidrila/farmacologia , Propriedades de Superfície , Fatores de Tempo , Xenopus
12.
Proc Natl Acad Sci U S A ; 106(27): 11102-6, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19549851

RESUMO

Ion-channel function is determined by its gating movement. Yet, molecular dynamics and electrophysiological simulations were never combined to link molecular structure to function. We performed multiscale molecular dynamics and continuum electrostatics calculations to simulate a cardiac K(+) channel (I(Ks)) gating and its alteration by mutations that cause arrhythmias and sudden death. An all-atom model of the I(Ks) alpha-subunit KCNQ1, based on the recent Kv1.2 structure, is used to calculate electrostatic energies during gating. Simulations are compared with experiments where varying degrees of positive charge-added via point mutation-progressively reduce current. Whole-cell simulations show that mutations cause action potential and ECG QT interval prolongation, consistent with clinical phenotypes. This framework allows integration of multiscale observations to study the molecular basis of excitation and its alteration by disease.


Assuntos
Potenciais de Ação/fisiologia , Coração/fisiologia , Canal de Potássio KCNQ1/metabolismo , Modelos Moleculares , Eletricidade Estática , Sequência de Aminoácidos , Eletrocardiografia , Canal de Potássio KCNQ1/química , Cinética , Modelos Cardiovasculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...