RESUMO
Vascular endothelial senescence is a major risk factor for diabetic vascular complications. Abnormal mitochondrial fission by dynamically related protein 1 (DRP1) accelerates vascular endothelial cell senescence. Homoplantaginin (Hom) is a flavonoid in Salvia plebeia R. Br. with protecting mitochondrial and repairing vascular properties. However, the relevant mechanism of Hom against diabetic vascular endothelial cell senescence remains unclear. Here, we used db/db mice and high glucose (HG)-treated human umbilical vein endothelial cells (HUVECs) to assess the anti-vascular endothelial cell senescence of Hom. We found that Hom inhibited senescence-associated ß-galactosidase activity, decreased the levels of senescence markers, and senescence-associated secretory phenotype factors. Additionally, Hom inhibited the expression of cGAS-STING pathway and downstream inflammatory factors. STING inhibitor H-151 delayed endothelial senescence, whereas STING overexpression attenuated the anti-endothelial senescence effect of Hom. Furthermore, we observed that Hom reduced mitochondrial fragmentation and inhibited abnormal mitochondrial fission using transmission electron microscopy. Importantly, Hom has a stronger effect on mitochondrial fission protein than mitochondrial fusion protein, especially downregulated the expression of DRP1. DRP1 inhibitor Mdivi-1 suppressed cGAS-STING pathway and vascular endothelial senescence, yet DRP1 agonist FCCP attenuated the effect of Hom. Surprisingly, Hom blunted abnormal mitochondrial fission mediated by DRP1 mitochondrial localization, suppressed interaction of DRP1 with VDAC1 and prevented VDAC1 oligomerization, which was necessary for mtDNA escape and subsequent cGAS-STING pathway activation. These results revealed a previously unrecognized mechanism that Hom alleviated vascular endothelial senescence by inhibited mtDNA-cGAS-STING signaling pathway via blunting DRP1-mitochondrial fission-VDAC1 axis.
Assuntos
Senescência Celular , DNA Mitocondrial , Dinaminas , Glucose , Células Endoteliais da Veia Umbilical Humana , Proteínas de Membrana , Dinâmica Mitocondrial , Nucleotidiltransferases , Transdução de Sinais , Canal de Ânion 1 Dependente de Voltagem , Animais , Senescência Celular/efeitos dos fármacos , Dinaminas/metabolismo , Dinaminas/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Camundongos , Humanos , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Masculino , Camundongos Endogâmicos C57BLRESUMO
The most prevalent chronic liver disease, known as metabolic dysfunction-associated steatotic liver disease (MASLD), is characterized by an excessive accumulation of lipids and oxidative damage. Clinopodium gracile, a natural herbal medicine widely used by Chinese folk, has antioxidative, anti-inflammatory, and lipid metabolism-regulating effects. Here, we explored the effect of C. gracile extract (CGE) on MASLD using palmitic acid (PA)-induced hepatocytes and high-fat diet (HFD)-fed mice. In vitro, CGE could promote fatty acid oxidation and inhibit fatty acid synthesis and uptake to reduce lipid accumulation by regulating PPARα activation. Moreover, CGE could inhibit reactive oxygen species production and maintain mitochondrial homeostasis in PA-induced HepG2 cells. In vivo, animal study results indicated that CGE could effectively reduce lipid metabolism disorder, inhibit oxidative stress, and upregulate PPARα protein in the liver of HFD-fed mice. Molecular docking results also showed that active compounds isolated from CGE had low binding energy and highly stable binding with PPARα. In summary, these findings reveal that CGE may be a potential therapeutic candidate for MASLD and act by upregulating PPARα to reduce lipid accumulation and suppress mitochondrial oxidative damage.
RESUMO
ADORA3 is mainly expressed in intestinal tract, and has the potential to promote the expression of mucin 2 (MUC2), the function-related factor of goblet cells, under asthma conditions. This study aims to confirm the induction and mechanisms of ADORA3 activation on goblet cells in ulcerative colitis (UC). A significant decrease in ADORA3 expression was found in mucosal biopsies from UC patients and in the colons of colitis mice. This reduction correlated negatively with disease severity and positively with goblet cell number. ADORA3 activation mitigated dextran sulfate sodium (DSS)-induced colitis and facilitated ATOH1-mediated goblet cell differentiation in both in vivo and in vitro. Metabolomics analysis unveiled that ADORA3 activation bolstered ketogenesis, leading to elevated levels of the metabolite BHB. Subsequently, BHB heightened the activity of HDAC1/2, augmenting histone acetylation at the H3K9ac site within the promoter region of the ATOH1 gene. Furthermore, the reason for ADORA3 activation to enhance ketogenesis was attributed to controlling the competitive binding among ß-arrestin2, SHP1 and PPARγ. This results in the non-ligand-dependent activation of PPARγ, thereby promoting the transcription of HMGCS2. The exact mechanisms by which ADORA3 promoted goblet cell differentiation and alleviated UC were elucidated using MRS1191 and shHMGCS2 plasmid. Collectively, ADORA3 activation promoted goblet cell differentiation and alleviated UC by enhancing ketogenesis via the "BHB-HDAC1/2-H3K9ac" pathway.
Assuntos
Diferenciação Celular , Colite Ulcerativa , Células Caliciformes , Hidroximetilglutaril-CoA Sintase , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ácido Butírico/farmacologia , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Colo/patologia , Colo/metabolismo , Sulfato de Dextrana , Células Caliciformes/patologia , Células Caliciformes/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , PPAR gama/genéticaRESUMO
Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.
Assuntos
Arabidopsis , Sinalização do Cálcio , Cálcio , Germinação , Concentração Osmolar , Pólen , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Germinação/genética , Mutação , Pólen/genética , Pólen/metabolismo , Água/metabolismo , Células HEK293 , Humanos , DesidrataçãoRESUMO
OBJECTIVES: The activation of store-operated calcium entry (SOCE) channel and endoplasmic reticulum stress (ERS) induced by high glucose (HG) is recognized as a major cause of vascular endothelial dysfunction. This study aims to investigate the protective effect of homoplantaginin (Hom) on HG-induced endothelial dysfunction. METHODS: HG-induced vascular endothelial dysfunction model in human umbilical vein endothelial cells (HUVECs) and rat-isolated thoracic aortas were established to observe the protective effect of Hom, further evaluated the mechanism of SOCE channel and ERS in the pathogenesis. KEY FINDINGS: Hom increased the levels of nitric oxide (NO) and phospho-endothelial nitric oxide synthase (p-eNOS) in HUVECs and isolated rat thoracic aortas in a dose-dependent manner, restored acetylcholine-mediated endothelium-dependent vasodilation. Network pharmacology showed that the pathogenesis of diabetic vascular complications may involve calcium (Ca2+) signal pathway. Hom reduced Ca2+ concentration via blocking SOCE channel in HUVECs, and resisted ERS activation by down-regulating ERS-related proteins expression. Importantly, SKF96365 (SOCE inhibitor) intervention experiment showed that Hom inhibited ERS activation by blocking the SOCE channel, further increased the levels of NO and p-eNOS. CONCLUSION: Hom could alleviate HG-induced vascular endothelial dysfunction by inhibiting SOCE channel and ERS. This provided a potential pharmacological intervention strategy for the treatment of vascular endothelial dysfunction.
Assuntos
Cálcio , Glucose , Humanos , Ratos , Animais , Cálcio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Glucose/farmacologia , Estresse do Retículo EndoplasmáticoRESUMO
Plant cell walls are embedded in a pectin matrix which is physically linked with the wall-associated kinases (WAKs), a subfamily of receptor-like kinases that participate in the cell wall integrity (CWI) sensing. Since cell walls are also the main binding sites for boron (B) and aluminum (Al), WAK may be potentially associated with the regulation of plant responses to Al toxicity and B deficiency. Using pea as a model species, we have identified a total of 28 WAK genes in the genome and named them according to its chromosomal location. All the PsWAKs were phylogenetically grouped into three clades. Phylogenetic relationship and synteny analysis showed that the PsWAKs in pea and Glycine max or Medicago truncatula shared a relatively conserved evolutionary history. Protein domain, motif, and transmembrane analysis indicated that all PsWAK proteins were predicted to be localized to the plasma membrane, and most PsWAKs shared a similar structure to their homologs. The RNA-seq data showed that the expression pattern of WAK genes in response to B deficiency was similar to that of Al toxicity, with most of PsWAKs being up-regulated. The qRT-PCR results further confirmed that PsWAK5, PsWAK9 and PsWAK14 were more specific for both B-deficiency and Al toxicity, and the expression levels of PsWAK5, PsWAK9 and PsWAK14 were significantly higher in the Al-sensitive cultivar Hyogo than in the Al-resistant cultivar Alaska under Al toxicity. This study provided an important basis for the functional and evolutionary analysis of PsWAKs and linked them to responses to cell wall damage induced by B-deficiency and Al toxicity, suggesting that PsWAKs may play a key role in the perception of cell wall integrity under Al toxicity or B-deficiency, as well as in the regulation of Al tolerance in pea.
Assuntos
Alumínio , Pisum sativum , Pisum sativum/genética , Pisum sativum/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Filogenia , Proteínas Quinases/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Pinus massoniana is an important industrial crop tree species commonly used for timber and wood pulp for papermaking, rosin, and turpentine. This study investigated the effects of exogenous calcium (Ca) on P. massoniana seedling growth, development, and various biological processes and revealed the underlying molecular mechanisms. The results showed that Ca deficiency led to severe inhibition of seedling growth and development, whereas adequate exogenous Ca markedly improved growth and development. Many physiological processes were regulated by exogenous Ca. The underlying mechanisms involved diverse Ca-influenced biological processes and metabolic pathways. Calcium deficiency inhibited or impaired these pathways and processes, whereas sufficient exogenous Ca improved and benefited these cellular events by regulating several related enzymes and proteins. High levels of exogenous Ca facilitated photosynthesis and material metabolism. Adequate exogenous Ca supply relieved oxidative stress that occurred at low Ca levels. Enhanced cell wall formation, consolidation, and cell division also played a role in exogenous Ca-improved P. massoniana seedling growth and development. Calcium ion homeostasis and Ca signal transduction-related gene expression were also activated at high exogenous Ca levels. Our study facilitates the elucidation of the potential regulatory role of Ca in P. massoniana physiology and biology and is of guiding significance in Pinaceae plant forestry.
Assuntos
Fenômenos Biológicos , Pinus , Cálcio/metabolismo , Pinus/genética , Pinus/metabolismo , Proteômica/métodos , Plântula/metabolismo , Crescimento e DesenvolvimentoRESUMO
Vascular endothelial cell (VEC) injury is a key factor in the development of diabetic vascular complications. Homoplantaginin (Hom), one of the main flavonoids from Salvia plebeia R. Br. has been reported to protect VEC. However, its effects and mechanisms against diabetic vascular endothelium remain unclear. Here, the effect of Hom on VEC was assessed using high glucose (HG)-treated human umbilical vein endothelial cells and db/db mice. In vitro, Hom significantly inhibited apoptosis and promoted autophagosome formation and lysosomal function such as lysosomal membrane permeability and the expression of LAMP1 and cathepsin B. The antiapoptosis effect of Hom was reversed by autophagy inhibitor chloroquine phosphate or bafilomycin A1. Furthermore, Hom promoted gene expression and nuclear translocation of transcription factor EB (TFEB). TFEB gene knockdown attenuated the effect of Hom on upregulating lysosomal function and autophagy. Moreover, Hom activated adenosine monophosphate-dependent protein kinase (AMPK) and inhibited the phosphorylation of mTOR, p70S6K, and TFEB. These effects were attenuated by AMPK inhibitor Compound C. Molecular docking showed a good interaction between Hom and AMPK protein. Animal studies indicated that Hom effectively upregulated the protein expression of p-AMPK and TFEB, enhanced autophagy, reduced apoptosis, and alleviated vascular injury. These findings revealed that Hom ameliorated HG-mediated VEC apoptosis by enhancing autophagy via the AMPK/mTORC1/TFEB pathway.
Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Camundongos , Animais , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glucose/efeitos adversos , Apoptose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/farmacologiaRESUMO
The supply of boron (B) alleviates the toxic effects of aluminum (Al) on root growth; however, the mechanistic basis of this process remains elusive. This study filled this knowledge gap, demonstrating that boron modifies auxin distribution and transport in Al-exposed Arabidopsis roots. In B-deprived roots, treatment with Al induced an increase in auxin content in the root apical meristem zone (MZ) and transition zone (TZ), whereas in the elongation zone (EZ) the auxin content was decreased beyond the level required for adequate growth. These distribution patterns are explained by the fact that basipetal auxin transport from the TZ to the EZ was disrupted by Al-inhibited PIN-FORMED 2 (PIN2) endocytosis. Experiments involving the modulation of protein biosynthesis by cycloheximide (CHX) and transcriptional regulation by cordycepin (COR) demonstrated that the Al-induced increase of PIN2 membrane proteins was dependent upon the inhibition of PIN2 endocytosis, rather than on the transcriptional regulation of the PIN2 gene. Experiments reporting on the profiling of Al3+ and PIN2 proteins revealed that the inhibition of endocytosis of PIN2 proteins was the result of Al-induced limitation of the fluidity of the plasma membrane. The supply of B mediated the turnover of PIN2 endosomes conjugated with indole-3-acetic acid (IAA), and thus restored the Al-induced inhibition of IAA transport through the TZ to the EZ. Overall, the reported results demonstrate that boron supply mediates PIN2 endosome-based auxin transport to alleviate Al toxicity in plant roots.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Boro/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismoRESUMO
Vascular endothelial cell injury induced by high glucose (HG) plays an important role in the occurrence and development of diabetic vascular complications. Yellow tea has a protective effect on vascular endothelial cells. However, the molecular mechanisms underlying this effect are unclear. In this study, the effects of the n-butanol fraction of Huoshan large-leaf yellow tea extract (HLYTBE) on vascular endothelial injury were investigated using human umbilical vein endothelial cells (HUVECs) and diabetic mice. In HUVECs, HLYTBE significantly reduced the production of reactive oxygen species, increased the activity of anti-oxidases (superoxide dismutase and glutathione peroxidase), enhanced the production of reduced glutathione, and decreased the level of oxidized glutathione, thereby improving cell viability. HLYTBE also promoted autophagosome formation, increased the LC3-II/LC3-I ratio, increased the expressions of Beclin1 and Atg 5, and decreased the expression of p62. HLYTBE up-regulated p-AMPK and down regulated p-mTOR, and these effects were reversed by compound C, an AMPK inhibitor. HLYTBE reduced apoptosis and cytochrome C expression, and these effects were attenuated by the autophagy inhibitor 3-methyladenine. In vivo studies showed that HLYTBE improved the impaired pyruvate tolerance, glucose tolerance, and insulin resistance; reduced the concentrations of blood glucose, glycated serum protein, lipids, and 8-isomeric prostaglandin 2α; increased the anti-oxidase activity in serum; and alleviated pathological damage in the thoracic aorta of diabetic mice induced by high sucrose-high fat diet along with streptozotocin. The results suggest that HLYTBE protects the vascular endothelium by up-regulating autophagy via the AMPK/mTOR pathway and inhibiting oxidative stress.
Assuntos
Autofagia/efeitos dos fármacos , Endotélio Vascular , Glucose/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Chá , Animais , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Camundongos , Preparações de Plantas/química , Preparações de Plantas/farmacologia , Regulação para Cima/efeitos dos fármacosRESUMO
Programmed cell death is a tightly regulated genetically controlled process that leads to cell suicide and eliminates cells that are either no longer needed or damaged/harmful. Nucleotide-binding leucine-rich repeat proteins have recently emerged as a novel class of Ca2+-permeable channels that operate in plant immune responses. This viewpoint argues that the unique structure of this channel, its permeability to other cations, and specificity of its operation make it an ideal candidate to mediate cell signaling and adaptive responses not only to pathogens but also to a broad range of abiotic stress factors.
Assuntos
Proteínas de Repetições Ricas em Leucina , Plantas , Adaptação Fisiológica , Nucleotídeos/metabolismo , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Transdução de SinaisRESUMO
Nonalcoholic fatty liver disease is the most prevalent liver disease characterized by excessive lipid accumulation in hepatocytes. Endoplasmic reticulum (ER) stress and autophagy play an important role in lipid accumulation. In this study, scutellarin (Scu) was examined in palmitic acid-treated HepG2 cells and C57/BL6 mice fed a high-fat diet (HFD). Scu reduced intracellular lipid content and inhibited sterol regulatory element binding protein-1c (SREBP-1c)-mediated lipid synthesis and fatty acid translocase-mediated lipid uptake in HepG2 cells. Additionally, Scu restored impaired autophagy and inhibited excessive activation of ER stress in vivo and in vitro. Moreover, Scu upregulated forkhead box O transcription factor 1-mediated autophagy by inhibiting inositol-requiring enzyme 1α (IRE1α)/X-box-binding protein 1 (XBP1) branch activation, while XBP1s overexpression exacerbated the lipid accumulation and impaired autophagy in HepG2 cells and also weakened the positive effects of Scu. Furthermore, Scu attenuated ER stress by activating autophagy, ultimately downregulating SREBP-1c-mediated lipid synthesis, and autophagy inhibitors offset these beneficial effects. Scu inhibited the crosstalk between autophagy and ER stress and downregulated saturated fatty acid-induced lipid accumulation in hepatocytes. These findings demonstrate that Scu ameliorates hepatic lipid accumulation by enhancing autophagy and suppressing ER stress via the IRE1α/XBP1 pathway.
Assuntos
Endorribonucleases , Hepatopatia Gordurosa não Alcoólica , Animais , Apigenina , Autofagia , Ácidos Graxos , Glucuronatos , Inositol , Metabolismo dos Lipídeos , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Proteínas Serina-Treonina Quinases , Proteína 1 de Ligação a X-Box/genéticaRESUMO
OBJECTIVE: To analyze the influence of Bushen Tiaochong cycle therapy on Th1/Th2 deviation, sex hormone level, and pregnancy outcome of alloimmune recurrent spontaneous abortion (RSA). METHODS: From August 2018 to April 2020, 130 patients with alloimmune RSA who met the inclusion criteria were randomly divided into the control group (n = 65) and the study group (n = 65). The former received lymphocyte immunotherapy (LIT), and the latter received Bushen Tiaochong cycle therapy on the basis of LIT. The treatment ended at 12 w of pregnancy. The total score of traditional Chinese medicine (TCM) syndromes, Th1 cytokine (IL-2), Th2 cytokine (IL-10), and related hormones (chorionic gonadotropin (hCG) and progesterone (P)) were compared between the two groups before and after treatment. The positive rate of blocking antibody (BA), pregnancy success rate, and preterm birth rate were counted. RESULT: After treatment, the total score of TCM syndromes, IL-2 level, and Th1/Th2 ratio in the two groups decreased significantly, while the levels of IL-10, hCG, and P increased significantly, and the study group improved significantly compared with the control group (P < 0.05). The positive rate of BA and pregnancy success rate in the study group were higher than those in the control group (P < 0.05). There was no significant difference in the preterm birth rate between the two groups (P > 0.05). CONCLUSION: On the basis of routine western medicine treatment, a combined application of Bushen Tiaochong cycle therapy can significantly improve the Th1/Th2 deviation, serum sex hormone level, and pregnancy outcome in patients with alloimmune RSA.
RESUMO
The flagellin epitope flg22, a pathogen-associated molecular pattern (PAMP), binds to the receptor-like kinase FLAGELLIN SENSING2 (FLS2), and triggers Ca2+ influx across the plasma membrane (PM). The flg22-induced increases in cytosolic Ca2+ concentration ([Ca2+ ]i ) (FICA) play a crucial role in plant innate immunity. It's well established that the receptor FLS2 and reactive oxygen species (ROS) burst undergo sensitivity adaptation after flg22 stimulation, referred to as desensitization and resensitization, to prevent over responses to pathogens. However, whether FICA also mount adaptation mechanisms to ensure appropriate and efficient responses against pathogens remains poorly understood. Here, we analysed systematically [Ca2+ ]i increases upon two successive flg22 treatments, recorded and characterized rapid desensitization but slow resensitization of FICA in Arabidopsis thaliana. Pharmacological analyses showed that the rapid desensitization might be synergistically regulated by ligand-induced FLS2 endocytosis as well as the PM depolarization. The resensitization of FICA might require de novo FLS2 protein synthesis. FICA resensitization appeared significantly slower than FLS2 protein recovery, suggesting additional regulatory mechanisms of other components, such as flg22-related Ca2+ permeable channels. Taken together, we have carefully defined the FICA sensitivity adaptation, which will facilitate further molecular and genetic dissection of the Ca2+ -mediated adaptive mechanisms in PAMP-triggered immunity.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cálcio/metabolismo , Endocitose/genética , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ligantes , Proteínas Quinases/metabolismoRESUMO
Plant nucleotide-binding leucine-rich repeat receptors (NLRs) regulate immunity and cell death. In Arabidopsis, a subfamily of "helper" NLRs is required by many "sensor" NLRs. Active NRG1.1 oligomerized, was enriched in plasma membrane puncta, and conferred cytoplasmic calcium ion (Ca2+) influx in plant and human cells. NRG1.1-dependent Ca2+ influx and cell death were sensitive to Ca2+ channel blockers and were suppressed by mutations affecting oligomerization or plasma membrane enrichment. Ca2+ influx and cell death mediated by NRG1.1 and ACTIVATED DISEASE RESISTANCE 1 (ADR1), another helper NLR, required conserved negatively charged N-terminal residues. Whole-cell voltage-clamp recordings demonstrated that Arabidopsis helper NLRs form Ca2+-permeable cation channels to directly regulate cytoplasmic Ca2+ levels and consequent cell death. Thus, helper NLRs transduce cell death signals directly.
Assuntos
Proteínas de Arabidopsis/química , Canais de Cálcio/química , Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas NLR/química , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Morte Celular , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas NLR/metabolismo , Técnicas de Patch-Clamp , Domínios Proteicos , Estrutura Secundária de ProteínaRESUMO
Sclerosing cholangitis, characterized by biliary inflammation, fibrosis, and stricturing, remains one of the most challenging conditions of clinical hepatology. Geniposide (GE) has anti-inflammatory, hepatoprotective, and cholagogic effects. Whether GE provides inhibition on the development of sclerosing cholangitis is unknown. Here, we investigated the role of GE in a mouse model in which mice were fed with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 4 weeks to induce sclerosing cholangitis. The results demonstrated that the increased hepatic gene expressions of pro-inflammatory (IL-6, VCAM-1, MCP-1, and F4/80) and profibrogenic markers (Col1α1, Col1α2, TGF-ß, and α-SMA) in DDC feeding mice were reversed after treatment with GE. GE also suppressed expressions of CK19 and Ki67 in DDC-fed mice, suggesting that GE could ameliorate DDC-induced hepatocytes and cholangiocytes proliferation. In addition, GE significantly increased bile acids (BAs) secretion in bile, which correlated with induced expressions of hepatic FXR, BAs secretion transporters (BSEP, MRP2, MDR1, and MDR2), and reduced CYP7A1 mRNA expression. Furthermore, higher expressions of ileal FXR-FGF15 signaling and reduced ASBT were also observed after GE treatment. Taken together, these data showed that GE could modulate inflammation, fibrosis, and BAs homeostasis in DDC-fed mice, which lead to efficiently delay the progression of sclerosing cholangitis.
Assuntos
Colangite Esclerosante , Iridoides , Animais , Colangite Esclerosante/induzido quimicamente , Colangite Esclerosante/tratamento farmacológico , Modelos Animais de Doenças , Iridoides/farmacologia , Fígado/efeitos dos fármacos , Camundongos , Camundongos KnockoutRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Scutellarin (Scu) is one of the main active ingredients of Erigeron breviscapus (Vant.) Hand.-Mazz which has been used to treat cardiovascular disease including vascular dysfunction caused by diabetes. Scu also has a protective effect on vascular endothelial cells against hyperglycemia. However, molecular mechanisms underlying this effect are not clear. AIM OF THE STUDY: This aim of this study was to investigate the effect of Scu on human umbilical vein endothelial cells (HUVECs) injury induced by high glucose (HG), especially the regulation of PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. MATERIALS AND METHODS: HUVECs were exposed to HG to induce vascular endothelial cells injury in vitro. Cell viability was assessed by MTT assay. The extent of cell apoptosis was measured by Hoechst staining and flow cytometry. Mitophagy was assayed by fluorescent immunostaining, transmission electron microscope and immunoblot. Besides, virtual docking was conducted to validate the interaction of PINK1 protein and Scu. RESULTS: We found that Scu significantly increased cell viability in HG-treated HUVECs. Scu reduces the expression of Bcl-2, Bax and cytochrome C (Cyt.c) to inhibit apoptosis through a mitochondria-dependent pathway. Meanwhile, Scu improved the overload of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and SOD2 protein expression, and reversed the collapse of mitochondrial membrane potential. Besides, Scu increased autophagic flux, improved the expression of microtubule-associated protein 1 light chain 3 â ¡ (LC3 II), Beclin 1 and autophagy-related gene 5 (Atg 5) and decreased the expression of Sequestosome1/P62 in HG-treated HUVECs. Furthermore, Scu improved the expressions of PINK1, Parkin, and Mitofusin2, which revealed the enhancement of mitophagy. Moreover, the beneficial effects of Scu on HG-induced low expression of Parkin, overproduction of ROS, and over expressions of P62, Cyt.c and Cleaved caspase-3 were weakened by PINK1 gene knockdown. Molecular docking suggested good interaction of Scu and PINK1 protein. CONCLUSION: These results suggest that Scu may protect vascular endothelial cells against hyperglycemia-induced injury by up-regulating mitophagy via PINK1/Parkin signal pathway.
Assuntos
Apigenina/farmacologia , Glucuronatos/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mitofagia/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Apigenina/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/metabolismo , Inativação Gênica , Glucose/toxicidade , Glucuronatos/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/complicações , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitofagia/genética , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases/química , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
Discovered as a b-ZIP transcription repressor 30 years ago, E4 promoter-binding protein 4 (E4BP4) has been shown to play critical roles in immunity, circadian rhythms, and cancer progression. Recent research has highlighted E4BP4 as a novel regulator of metabolisms in various tissues. In this review, we focus on the function and mechanisms of hepatic E4BP4 in regulating lipid and glucose homeostasis, bile metabolism, as well as xenobiotic metabolism. Finally, E4BP4-specific targets will be discussed for the prevention and treatment of metabolic disorders.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Metabolismo Energético , Fígado/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Núcleo Celular/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Metabolismo dos LipídeosRESUMO
Standard chemotherapy is commonly used in clinical practice for the treatment of non-small cell lung cancer (NSCLC). However, its therapeutic efficacy remains low. Combination therapy for cancer treatment has attracted attention in recent years. The present study aimed to investigate the antitumor effect of the combination treatment with gemcitabine and sorafenib on NSCLC in vitro and in vivo, and to determine its underlying molecular mechanisms. The anti-NSCLC effects of combination therapy were analyzed by flow cytometry analysis, MTT, western blotting, reverse transcription-quantitative PCR, wound healing and Transwell invasion assays. A549 cells subjected to combination treatment with gemcitabine and sorafenib demonstrated a more irregular cellular morphology and lower cell viability compared with the monotherapy groups. Combination of gemcitabine and sorafenib significantly induced cell cycle arrest and apoptosis in A549 cells. Additionally, combination therapy was demonstrated to restrain the migration and invasion of tumor cells by suppressing epithelial-to-mesenchymal transition (EMT) of A549 cells. In vivo analyses confirmed that co-treatment with gemcitabine and sorafenib decreased NSCLC tumor growth and tumor weight in nude mice. Taken together, the results of the present study suggested that combination treatment with gemcitabine and sorafenib exerted a synergistic inhibitory effect on NSCLC in vitro and in vivo via the EMT process.
RESUMO
BACKGROUND: Breviscapine (BRE) has significant efficacy in cardiovascular disease, but the poor water solubility of breviscapine affects its oral absorption and limits its clinical application. In this study, supercritical carbon dioxide (SCF-CO2) technology was used to improve the solubility and bioavailability of BRE loaded into mesoporous silica nanoparticles (MSNs). METHODS: The solubility of BRE in SCF-CO2 was measured under various conditions to investigate the feasibility of preparing drug-loaded MSNs by using ultrasound-assisted solution-enhanced dispersion by supercritical fluids (USEDS). The preparation process of drug-loaded MSNs was optimized using the central composite design (CCD), and the optimized preparation was comprehensively characterized. Furthermore, the drug-loaded MSNs prepared by the conventional method were compared. Finally, the dissolution and bioavailability of the preparations were evaluated by in vitro release and pharmacokinetics study. RESULTS: The solubility of BRE in SCF-CO2 was extremely low which was suitable to prepare BRE-loaded MSNs by USEDS technology. The particle size of the preparation was 177.24 nm, the drug loading was 8.63%, and the specific surface area was 456.3m2/g. As compared to the conventional preparation method of solution impregnation-evaporation (SIV), the formulation prepared by USEDS technology has smaller particle size, higher drug loading, less residual solvent and better stability. The results of the in vitro release study showed that drug-loaded MSNs could significantly improve drug dissolution. The results of pharmacokinetics showed that the bioavailability of drug-loaded MSNs was increased 1.96 times compared to that of the BRE powder. CONCLUSION: Drug-loaded MSNs can significantly improve the solubility and bioavailability of BRE, indicating a good application prospect for MSNs in improving the oral absorption of drugs. In addition, as a solid dispersion preparation technology, USEDS technology has incomparable advantages.