Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.625
Filtrar
1.
Opt Lett ; 49(16): 4705-4708, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146139

RESUMO

Weakly coupled mode-division-multiplexing (MDM) systems based on intensity modulation and direct detection (IM-DD) are a good candidate for further improving the capacity of short-reach optical interconnections. However, restrained by the modal crosstalk of the transmission link and the reception of degenerate mode groups (DMGs) utilizing bandwidth-limited multimode photodetectors (PDs), high-speed MDM IM-DD has encountered a capacity bottleneck. In this Letter, we investigate a high-speed weakly coupled MDM IM-DD transmission system utilizing a degenerate mode diversity receiver scheme adopting high-bandwidth single-mode PDs over a multiple-ring-core (MRC) few-mode fiber (FMF) and a low-crosstalk mode multiplexer/demultiplexer (MUX/DMUX). An MDM IM-DD transmission with four DMGs and eight wavelengths is experimentally demonstrated with 112-GBaud four-level pulse-amplitude modulation (PAM4) and probabilistically shaped PAM8 per lane over 200-m weakly coupled MRC-FMF. To the best of our knowledge, this is the first experimental demonstration of the MDM IM-DD transmission system with up to 112-GBaud baud rate and beyond 6.4-Tb/s net rate. Meanwhile, the experimental results show that the proposed MDM IM-DD transmission link has a superior performance only adopting a low-complexity feedforward equalizer, making it a promising candidate for high-speed optical interconnections.

2.
J Adv Res ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147198

RESUMO

INTRODUCTION: Gut microbes and their metabolites play crucial roles in the pathogenesis of diabetic kidney disease (DKD). However, which one and how specific gut-derived metabolites affect the progression of DKD remain largely unknown. OBJECTIVES: This study aimed to investigate the potential roles of indole-3-propionic acid (IPA), a microbial metabolite of tryptophan, in DKD. METHODS: Metagenomic sequencing was performed to analyze the microbiome structure in DKD. Metabolomics screening and validation were conducted to identify characteristic metabolites associated with DKD. The protective effect of IPA on DKD glomerular endothelial cells (GECs) was assessed through in vitro and in vivo experiments. Further validation via western blot, immunoprecipitation, gene knockout, and site-directed mutation elucidated the mechanism of IPA on mitochondrial injury. RESULTS: Alterations in gut microbial community structure and dysregulated tryptophan metabolism were evident in DKD mice. Serum IPA levels were significantly reduced in DKD patients and correlated with fasting blood glucose, HbA1c, urine albumin-to-creatinine ratio (UACR), and estimated glomerular filtration rate (eGFR). IPA supplementation ameliorated albuminuria, bolstered the integrity of the glomerular filtration barrier, and mitigated mitochondrial impairments in GECs. Mechanistically, IPA hindered SIRT1 phosphorylation-mediated ubiquitin-proteasome degradation, restoring SIRT1's role in promoting PGC-1α deacetylation and nuclear translocation, thereby upregulating genes associated with mitochondrial biosynthesis and antioxidant defense. CONCLUSION: Our findings underscore the potential of the microbial metabolite IPA to attenuate DKD progression, offering novel insights and potential therapeutic strategies for its management.

3.
Ecotoxicol Environ Saf ; 284: 116894, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154500

RESUMO

BACKGROUND: Ambient air pollution might serve as a prognostic factor for ovarian cancer (OC) survival, yet the relationships between plant-based diet indices (PDIs) and OC survival remain unclear. We aimed to investigate the associations of comprehensive air pollution and PDIs with OC survival and explored the effects of air pollution-diet interactions. METHODS: The present study encompassed 658 patients diagnosed with OC. The overall plant-based diet index (PDI), the healthful PDI (hPDI), and the unhealthful PDI (uPDI) were evaluated by a self-reported validated food frequency questionnaire. In addition, an air pollution score (APS) was formulated by summing the concentrations of particulate matter with a diameter of 2.5 microns or less, ozone, and nitrogen dioxide. Cox proportional hazard models were applied to calculate hazard ratios (HRs) and 95 % confidence intervals (CIs). The potential interactions of APS with PDIs in relation to overall survival (OS) were assessed on both multiplicative and additive scales. RESULTS: Throughout a median follow-up of 37.60 (interquartile: 24.77-50.70) months, 123 deaths were confirmed. Comparing to the lowest tertiles, highest uPDI was associated with lower OS of OC (HR = 2.06, 95 % CI = 1.30, 3.28; P-trend < 0.01), whereas no significant associations were found between either overall PDI or hPDI and OC survival. Higher APS (HR for per interquartile range = 1.27, 95 % CI = 1.01, 1.60) was significantly associated with worse OC survival, and the association was exacerbated by adherence to uPDI. Notably, an additive interaction was identified between combined air pollution and uPDI (P < 0.005 for high APS and high uPDI). We also found that adherence to overall PDI aggravated associations of air pollution with OC survival (P-interaction = 0.006). CONCLUSIONS: Joint exposure to various ambient air pollutants was significantly associated with lower survival among patients with OC, particularly for those who predominantly consumed unhealthy plant-based foods.

4.
J Ethnopharmacol ; : 118697, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154669

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia divinorum (Epling and Játiva) is a psychoactive plant traditionally used by the Latinos for various medicinal purposes. Salvinorin A (Sal A), the main bioactive constituent of S. divinorum, is a natural highly selective kappa opioid receptor (KOR) agonist. Considering the anti-inflammatory effect of S. divinorum and endogenous hippocampal dynorphin/ kappa opioid receptor (KOR) system playing an anticonvulsant function, we hypothesis that Sal A can be a potential candidate to treat epilepsy. Here, we identified whether Sal A ameliorated epileptic seizures and neuronal damages in animal model and in vitro model and investigated its underlying mechanisms. MATERIALS AND METHODS: Mice epilepsy model was induced by pilocarpine following seizures assessed by Racine classification. Hippocampus tissues were obtained for genetic, protein, and histological investigation. Furthermore, lipopolysaccharide (LPS)-activated BV2 microglial cells were utilized to validate the anti-inflammatory and microglia polarization regulation effects of Sal A. RESULTS: Sal A treatment significantly prolonged the latency to status epileptics (SE) and shortened the duration of SE in the pilocarpine-induced model. It also alleviated neuronal damages via activation of the AMPK/JNK/p-38 MAPK pathway and inhibition of apoptosis-related protein in hippocampus tissues. Furthermore, Sal A dose-dependently reduced microglia-mediated expression of pro-inflammatory cytokines and increased anti-inflammatory factors levels in SE mice and LPS-activated BV2 microglial cells by regulating microglia polarization. In addition, the effect of Sal A in vitro was totally blocked by KOR antagonist nor-BNI. CONCLUSION: Sal A treatment protects against epileptic seizures and neuronal damages in pilocarpine-induced models by suppressing the inflammation response through regulating microglial M1/M2 polarization. This study might serve as a theoretical basis for clinical applications of Sal A and its analogs and provide a new insight into the development of anti-seizure drugs.

5.
Proc Natl Acad Sci U S A ; 121(34): e2410504121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39150782

RESUMO

Clean production of hydrogen peroxide (H2O2) with water, oxygen, and renewable energy is considered an important green synthesis route, offering a valuable substitute for the traditional anthraquinone method. Currently, renewable energy-driven production of H2O2 mostly relies on soluble additives, such as electrolytes and sacrificial agents, inevitably compromising the purity and sustainability of H2O2. Herein, we develop a solution plasma catalysis technique that eliminates the need for soluble additives, enabling eco-friendly production of concentrated H2O2 directly from water and O2. Screening over 40 catalysts demonstrates the superior catalytic performance of carbon nitride interacting with discharge plasma in water. High-throughput density functional theory calculations for 68 models, along with machine learning using 29 descriptors, identify cyano carbon nitride (CCN) as the most efficient catalyst. Solution plasma catalysis with the CCN achieves concentrated H2O2 of 20 mmol L-1, two orders of magnitude higher than photocatalysis by the same catalyst. Plasma diagnostics, isotope labeling, and COMSOL simulations collectively validate that the interplay of solution plasma and the CCN accounts for the significantly increased production of singlet oxygen and H2O2 thereafter. Our findings offer an efficient and sustainable pathway for H2O2 production, promising wide-ranging applications across the chemical industry, public health, and environmental remediation.

6.
Inorg Chem ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150967

RESUMO

The limited optical penetration depth and hypoxic tumor microenvironment (TME) are key factors that hinder the practical applications of conventional photodynamic therapy (PDT). To fundamentally address these issues, self-luminescent photosensitizers (PSs) can achieve efficient PDT. Herein, a self-chemiluminescence (CL)-triggered Ir complex PS, namely, IrL2, with low-O2-dependence type I photochemical processes is reported for efficient PDT. The rational design achieves efficient chemiluminescence resonance energy transfer (CRET) from covalently bonded luminol units to the Ir complex in IrL2 under the catalysis of H2O2 and hemoglobin (Hb) to generate O2•- and 1O2. Liposome IrL2H nanoparticles (NPs) are constructed by loading IrL2 and Hb. The intracellular H2O2 and loaded Hb catalyze the luminol part of IrL2H, and the Ir2 part is then excited to produce types I and II reactive oxygen species (ROS) through CRET, inducing cell death, even under hypoxic conditions, and promoting cell apoptosis. IrL2H is used for tumor imaging and inhibits tumor growth in 4T1-bearing mouse models through intratumoral injection without external light sources. This work provides new designs for transition metal complex PSs that conquer the limitations of external light sources and the hypoxic TME in PDT.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39115992

RESUMO

Implicit neural representations (INRs) have emerged as a powerful tool for compressing large-scale volume data. This opens up new possibilities for in situ visualization. However, the efficient application of INRs to distributed data remains an underexplored area. In this work, we develop a distributed volumetric neural representation and optimize it for in situ visualization. Our technique eliminates data exchanges between processes, achieving state-of-the-art compression speed, quality and ratios. Our technique also enables the implementation of an efficient strategy for caching large-scale simulation data in high temporal frequencies, further facilitating the use of reactive in situ visualization in a wider range of scientific problems. We integrate this system with the Ascent infrastructure and evaluate its performance and usability using real-world simulations.

8.
Angew Chem Int Ed Engl ; : e202408359, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106109

RESUMO

Direct aromatization of cyclohexanones to synthesize substituted phenols represents a significant challenge in modern synthetic chemistry. Herein, we describe a novel ene-reductase (TsER) catalytic system that converts substituted cyclohexanones into the corresponding phenols. This process involves the successive dehydrogenation of two saturated carbon-carbon bonds within the six-membered ring of cyclohexanones and utilizes molecular oxygen to drive the reaction cycle. It demonstrates a versatile and efficient approach for the synthesis of substituted phenols, providing a valuable complement to existing chemical methodologies.

9.
J Appl Microbiol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108092

RESUMO

AIMS: To identify efficient, broad-spectrum, and non-toxic preservatives for natural agricultural products, eight essential oils were screened for high inhibitory and antioxidant activities against spoilage microbes. METHODS AND RESULTS: The zone of inhibition test and minimum inhibitory concentration (MIC) assay were performed to assess the antimicrobial activity of eight essential oils against B. subtilis, S. aureus, Penicillium, Saccharomyces, and E. coli. Among the eight essential oils, garlic and rose essential oils exhibited the best inhibitory effects, their MICs against the spoilage microbes were 40-640 µL/L and 10-320 µL/L, respectively. In addition, the antioxidant activities of eight essential oils were compared using the DPPH and ABTS radical-scavenging assays and the reducing power assay. eight essential oils had antioxidant capacity, among which rosemary, thyme, rose, and tea tree essential oils performed best. Moreover, the combination of thyme and rose exerted stronger antioxidant activity. Therefore, the concentrations of rose and garlic, and thyme essential oils were optimized using response surface methodology to obtain the optimal composite ratios, which were 1254 µL/L, 640 µL/L, and 1228 µL/L for rose, garlic, and thyme, respectively. The DPPH free radical-scavenging rate detected using this formulation was 50.2%, basically consistent with the prediction. Zone of inhibition diameters with the compound essential oil, against five spoilage microbes, were all greater than 45 mm. CONCLUSIONS: The essential oil combination had high antimicrobial, against agricultural product spoilage microbes, and antioxidant activities.

10.
Foods ; 13(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39123642

RESUMO

Rice wine is primarily crafted from grains through saccharification and liquification with the help of Qu. Qu plays an important role in the formation of the flavor quality of rice wine. Hongqu and Xiaoqu represent two prevalent varieties of Qu that are typically utilized in the brewing process of rice wine and play a crucial role in its production. In this study, GC, GC-MS, HPLC, and metagenomic sequencing techniques were used to contrast the microbial flora, biogenic amines, and aroma characteristics developed during the fermentation of rice wines, with Hongqu and Xiaoqu being used as initiating agents for the brewing process. The results show that the content of higher alcohols (including n-propanol, isobutanol, 3-methyl-1-butanol, and phenethyl alcohol) in rice wine brewed with Xiaoqu (XQW) was significantly higher than that in rice wine brewed with Hongqu (HQW). Contrarily, the concentration of biogenic amines in HQW surpassed that of XQW by a notable margin, but tyramine was significantly enriched in XQW and not detected in HQW. In addition, a multivariate statistical analysis revealed distinct disparities in the constitution of volatile components between HQW and XQW. Hexanoic acid, ethyl acetate, isoamyl acetate, ethyl caproate, ethyl decanoate, 2-methoxy-4-vinylphenol, etc., were identified as the characteristic aroma-active compounds in HQW and XQW. A microbiome analysis based on metagenomic sequencing showed that HQW and XQW had different dominant microorganisms in the brewing process. Burkholderia, Klebsiella, Leuconostoc, Monascus, and Aspergillus were identified as the primary microbial genera in the HQW fermentation period, while Pediococcus, Enterobacter, Rhizopus, Ascoidea, and Wickerhamomyces were the main microbial genera in the XQW brewing process. A bioinformatics analysis revealed that the concentrations of microbial genes involved in biogenic amines and esters biosynthesis were significantly higher in HQW than those in XQW, while the content of genes relevant to glycolysis, higher alcohol biosynthesis, and fatty acid metabolism was significantly higher in XQW than in HQW, which are the possible reasons for the difference in flavor quality between the two kinds of rice wine from the perspective of microbial functional genes.

11.
Angew Chem Int Ed Engl ; : e202412862, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140466

RESUMO

In the field of biocatalysis, discovering novel reactivity from known enzymes has been a longstanding challenge. Fatty acid photo-decarboxylase from Chlorella variabilis (CvFAP) has drawn considerable attention as a promising photoenzyme with potential green chemistry applications; however, its non-natural reactivity has rarely been exploited to date. Herein we report a non-natural reductive dehalogenation (deacetoxylation) reactivity of CvFAP inspired by its natural oxidative decarboxylation process, enabling the  stereoselective synthesis of a series of chiral α-substituted tetralones with high yields (up to 99%) and e.r. values (up to 99:1). Mechanistic studies demonstrated that the native photoenzyme catalyzed the reductive dehalogenation via a novel mechanism involving oxidized state (FADox) / semiquinone state (FADsq) redox pair and an electron transfer (ET)/proton transfer (PT) process of radical termination, distinct from the previous reports. To our knowledge, this study represents a new example of CvFAP promiscuity, and thus expands the reactivity repertoire of CvFAP and highlights the versatility of CvFAP in asymmetric synthesis.

12.
Acad Radiol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39127524

RESUMO

RATIONALE AND OBJECTIVES: We aimed at developing and validating a nomogram and machine learning (ML) models based on radiomics score (Radscore), morphology, and PHASES to predict intracranial aneurysm (IA) rupture. MATERIALS AND METHODS: We collected 440 patients with IAs in our hospital from 2015 to 2023, totaling 475 IAs (214 ruptured and 261 unruptured). A 7:3 random split was utilized to allocate participants into training and testing sets. To optimize the selection of radiomics features extracted from digital subtraction angiography, we employed t-tests and LASSO regression. Subsequently, we built single-factor and multifactor logistic regression (LR) models, alongside a nomogram. Furthermore, we employed four ML algorithms. After a comprehensive evaluation, including area under the curve (AUC), calibration curves, decision curve analysis (DCA), and other metrics, the best model was determined. RESULTS: The AUCs for LR models P (PHASES), M (Morphology), and R (Radscore) in the testing set were 0.859, 0.755, and 0.803, respectively, while those for multifactor models R+M (Radscore and Morphology), R+P (Radscore and PHASES), and R+M+P (Radscore, Morphology, and PHASES) were 0.818, 0.899, and 0.887, respectively. The AUCs of random forest, extreme gradient boosting, gradient boosting machine, and light gradient boosting machine were 0.880, 0.888, 0.891, and 0.892 in testing set, respectively. In the training set, the LR model showed significant differences in AUCs compared with the four ML models (all p < 0.05). However, in the testing set, no statistically significant differences were found between them (all p > 0.05). Both ML models and the nomogram exhibit excellent performance in DCA and calibration curves. CONCLUSION: Nomogram and ML models based on Radscore, morphology, and PHASES show high precision in predicting aneurysm rupture.

13.
Infect Immun ; : e0005124, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133018

RESUMO

Enzootic pneumonia caused by Mycoplasma hyopneumoniae (M. hyopneumoniae) has inflicted substantial economic losses on the global pig industry. The progression of M. hyopneumoniae induced-pneumonia is associated with lung immune cell infiltration and extensive proinflammatory cytokine secretion. Our previous study established that M. hyopneumoniae disrupts the host unfolded protein response (UPR), a process vital for the survival and immune function of macrophages. In this study, we demonstrated that M. hyopneumoniae targets the UPR- and caspase-12-mediated endoplasmic reticulum (ER)-associated classical intrinsic apoptotic pathway to interfere with host cell apoptosis signaling, thereby preserving the survival of host tracheal epithelial cells (PTECs) and alveolar macrophages (PAMs) during the early stages of infection. Even in the presence of apoptosis inducers, host cells infected with M. hyopneumoniae exhibited an anti-apoptotic potential. Further analyses revealed that M. hyopneumoniae suppresses the three UPR branches and their induced apoptosis. Interestingly, while UPR activation typically drives host macrophages toward an M2 polarization phenotype, M. hyopneumoniae specifically obstructs this process to maintain a proinflammatory phenotype in the host macrophages. Overall, our findings propose that M. hyopneumoniae inhibits the host UPR to sustain macrophage survival and a proinflammatory phenotype, which may be implicated in its pathogenesis in inducing host pneumonia.

14.
J Int Med Res ; 52(8): 3000605241260366, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39088655

RESUMO

Documented cases of ipsilateral ptosis caused by midbrain infarction remain rare. Herein, we present a patient with isolated ipsilateral ptosis that was initially considered to be a consequence of myasthenia gravis but was subsequently attributed to ventral midbrain infarction. We also discuss the possible underlying mechanisms; ipsilateral ptosis in our patient was attributed to selective damage of the levator palpebral muscle branch of the oculomotor nerve. The patient was started on aspirin (200 mg once daily) and atorvastatin (40 mg once daily). Improvement in ptosis occurred from day 5 of admission, and the patient was subsequently discharged. Ptosis disappeared 1 month after onset. This report describes an extremely rare case of ventral midbrain infarction presenting with isolated ipsilateral ptosis. Careful examination, including magnetic resonance imaging, is essential in such patients, especially in those with multiple cerebrovascular risk factors.


Assuntos
Blefaroptose , Imageamento por Ressonância Magnética , Mesencéfalo , Humanos , Blefaroptose/etiologia , Mesencéfalo/diagnóstico por imagem , Mesencéfalo/patologia , Masculino , Aspirina/uso terapêutico , Atorvastatina/uso terapêutico , Feminino , Idoso , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/complicações , Pessoa de Meia-Idade
15.
Sci Total Environ ; 948: 174956, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39053523

RESUMO

Biochar exhibits numerous advantages in enhancing the soil environment despite a few limitations due to its lower surface energy. Nanomodified biochar combines the advantages of biochar and nanoscale materials. However, its effects on water infiltration and N leaching in a clayey soil remain unclear. Therefore, this study prepared rice straw nano-biochar by a ball milling method, and investigated its physicochemical properties and effects of bulk biochar and nano-biochar at various addition rates (0 %, 0.5 %, 1 %, 2 %, 3 %, and 5 %) on wetting peak migration, cumulative infiltration, water absorption and retention, and N leaching. The results showed that, compared with bulk biochar, nano-biochar presented a more abundant pore structure with an increase in specific surface area of approximately 1.5 times, accompanied by a 20 % increase in acid functional groups. Compared with those for clayey soil without biochar addition, the wetting front migration time was increased by 10.2 %-123.9 % and 17.0 %-257.9 %, and the cumulative infiltration volume at 60 min was decreased by 26.0 %-48.4 % and 14.1 %-62.4 % for bulk biochar and nano-biochar, respectively. The parameter S of Philip model and the parameter a of Kostiakov model for nano-biochar were lower than those for bulk biochar, whereas the parameter b of Kostiakov model was greater, indicating that nano-biochar decreased initial soil infiltration rate and increased attenuation degree of the infiltration rate. Nano-biochar increased water absorption by 8.03 % and subsequently enhanced water retention capacity relative to bulk biochar. In addition, bulk biochar and nano-biochar reduced NH4+-N leaching by 3.0 %-13.1 % and 5.7 %-39.2 %, respectively, and NO3--N leaching by 2.7 %-3.6 % and 9.0 %-43.3 %, respectively, by decreasing N concentration and leachate volume relative to those with no biochar addition. This study provides new knowledge for nano-biochar application in a clayey soil.


Assuntos
Carvão Vegetal , Argila , Nitrogênio , Oryza , Solo , Carvão Vegetal/química , Solo/química , Nitrogênio/análise , Argila/química , Poluentes do Solo/análise , Água/química
16.
Inorg Chem ; 63(32): 15134-15143, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39074382

RESUMO

Gossypol (Gsp) and antibiotics present in water bodies become organic pollutants that are harmful to human health and the ecological environment. Accurate and effective detection of these pollutants has far-reaching significance in many fields. A new three-dimensional metal-organic framework (MOF), {[Eu3(L)2(HCOO-)(H2O)3]·2H2O·2DMF}n (Eu-MOF), was synthesized from 3,5-bis(2,4-dicarboxylphenyl)nitrobenzene (H4L) ligand and Eu3+ via the solvothermal method in this paper. The Eu-MOF demonstrates strong red fluorescence and can remain stable in different pH solutions. The MOF fluorescence probe could detect organic pollutants through the "shut-off" effect, with a fast response speed and a low detection limit [Gsp, nitrofurantoin (NFT), and nitrofurazone (NFZ) for 0.43, 0.38, and 0.41 µM, respectively]. During the testing process, Eu-MOF exhibited good selectivity and recoverability. Furthermore, the mechanism of fluorescence quenching was investigated, and the recoveries were also good in real samples. This paper introduced a deep learning model to recognize the fluorescence images, a portable intelligent logic detector designed for real-time detection of Gsp by logic gate strategy, and an anticounterfeiting mark prepared based on inkjet printing. Importantly, this work provides a new way of thinking for the detection of organic pollutants in water with high sensitivity and practicality by combining the fluorescence probe with machine learning and logical judgment.


Assuntos
Antibacterianos , Európio , Corantes Fluorescentes , Gossipol , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Európio/química , Antibacterianos/análise , Antibacterianos/química , Gossipol/análise , Gossipol/química , Poluentes Químicos da Água/análise , Nitrofuranos/análise , Espectrometria de Fluorescência , Estrutura Molecular , Limite de Detecção
17.
Sci Rep ; 14(1): 17728, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085442

RESUMO

Heart failure (HF) is a significant global public health concern with a high readmission rate, posing a serious threat to the health of the elderly population. While several studies have used machine learning (ML) to develop all-cause readmission risk prediction models for elderly patients with HF, few have integrated ML-selected features with those chosen by human experts to assess HF patients readmission. A retrospective analysis of 8396 elderly HF patients hospitalized at the Affiliated Hospital of North Sichuan Medical College from January 1, 2018 to December 31, 2021 was conducted. Variables selected by XGBoost, LASSO regression, and random forest constituted the machine group, while the human expert group comprised variables chosen by two experienced cardiovascular professors. The variables selected by both groups were combined to form a human-machine collaboration group. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). The SHapley Additive exPlanations (SHAP) method was used to elucidate the importance of each predictive feature, explain the impact of individual features on the model, and provide visual representation. A total of 73 features were included for model development. The human-machine collaboration model, utilizing CatBoost, achieved an AUC of 0.83617, an F1-score of 0.73521, and a Brier score of 0.16536 on the validation set. This model demonstrated superior predictive performance compared to those created solely by human experts or machine. The SHAP plot was then used to visually display the feature analysis of the human-machine collaboration model, revealing HGB, NT-proBNP, smoking history, NYHA classification, and LVEF as the 5 most important features. This study indicate that the human-machine collaboration model outperforms those relying solely on human expert selection or machine algorithm at predicting all-cause readmission in elderly HF patients. The application of the SHAP method enhanced the interpretability of the model outcomes, aiding clinicians in accurately pinpointing risk factors associated with HF readmission. This advancement enables the formulation of tailored treatment strategies, offering a more personalized approach to patient care.


Assuntos
Insuficiência Cardíaca , Aprendizado de Máquina , Readmissão do Paciente , Humanos , Insuficiência Cardíaca/epidemiologia , Readmissão do Paciente/estatística & dados numéricos , Idoso , Feminino , Masculino , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Fatores de Risco , Medição de Risco/métodos , Curva ROC
18.
J Craniofac Surg ; 35(5): 1507-1508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39042072

RESUMO

Cerebrospinal fluid (CSF) rhinorrhea is one of the most common complications after trans-sphenoidal surgery. At present, transcranial or endoscopic surgery for CSF leakage requires general anesthesia to remove autologous fat or fascia to repair the leak, which is traumatic and costly. The authors present a case of a 25-year-old male patient with pituitary adenoma who experienced CSF rhinorrhea 10 days after undergoing endoscopic resection of the tumor. The authors innovatively sequential filled the leak with a gelatin sponge soaked in povidone-iodine solution and iodinated gauze under outpatient nasal endoscopy. The follow-up of 6 months showed no recurrence of CSF leakage. CSF leakage is the most common complication of trans-sphenoidal surgery. The authors suggest that for small cerebrospinal fluid leaks in the early stage after trans-sphenoidal surgery, the leakage should be first filled with gelatin sponge and iodoform gauze sequentially under outpatient nasal endoscopy, which may achieve a complete cure.


Assuntos
Rinorreia de Líquido Cefalorraquidiano , Endoscopia , Neoplasias Hipofisárias , Humanos , Masculino , Rinorreia de Líquido Cefalorraquidiano/cirurgia , Adulto , Neoplasias Hipofisárias/cirurgia , Endoscopia/métodos , Adenoma/cirurgia , Povidona-Iodo/uso terapêutico , Complicações Pós-Operatórias , Esponja de Gelatina Absorvível/uso terapêutico
19.
Artigo em Inglês | MEDLINE | ID: mdl-39072603

RESUMO

BACKGROUND: Endoscopic submucosal dissection (ESD) is a minimally invasive surgical procedure used for en bloc removal of colorectal tumors. Although colorectal ESD is ideally conducted under conscious sedation, it is often performed under general anesthesia because of its complexity and lengthy duration. Currently, there is limited research on colorectal ESD performed under conscious sedation. The purpose of this study was to evaluate the effectiveness, safety, and economic cost of colorectal ESD under conscious sedation compared to general anesthesia. MATERIALS AND METHODS: Retrospective analysis of 301 patients who underwent ESD treatment for colorectal tumors at the Endoscopy Center of Peking University Cancer Hospital from January 2018 to November 2020. Patients were divided into the sedation group (group S, n=88) and the general anesthesia group (group A, n=213) based on the anesthetic method. To balance the confounding factors between the 2 groups, 75 matched pairs were obtained after using propensity score matching (PSM). Intraoperative and postoperative parameters were then compared between the matched groups. RESULTS: After PSM, there was no statistically significant difference between group S and group A in terms of the surgical time, en bloc resection rate, and complete resection rate. There was also no statistically significant difference in the occurrence rates of bleeding, perforation, and post-ESD electrocoagulation syndrome (PEECS) between the 2 groups. However, the length of hospital stay was significantly shorter in group S (1.23±0.89d) than in group A (5.92±3.05d) (P<0.05). The hospitalization costs were also significantly lower in group S (16482.34±13154.32 yuan) compared with group A (34743.74±13779.40 yuan) (P<0.05). CONCLUSIONS: Compared to general anesthesia, performing ESD for colorectal tumors under conscious sedation has equivalent effectiveness and safety while shortening the hospital stay and reducing the economic costs.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39072851

RESUMO

Heparinases, including heparinases I-III (HepI, HepII, and HepIII, respectively), are important tools for producing low-molecular-weight heparin, an improved anticoagulant. The poor thermostability of heparinases significantly hinders their industrial and laboratory applications. To improve the thermostability of heparinases, we applied a rigid linker (EAAAK)5 (R) and a flexible linker (GGGGS)5 (F) to fuse maltose-binding protein (MBP) and HepI, HepII, and HepIII from Pedobacter heparinus, replacing the original linker from the plasmid pMAL-c2X. Compared with their parental fusion protein, MBP-fused HepIs, HepIIs, and HepIIIs with linkers (EAAAK)5 or (GGGGS)5 all displayed enhanced thermostability (half-lives at 30°C: 242%-464%). MBP-fused HepIs and HepIIs exhibited higher specific activity (127%-324%), whereas MBP-fused HepIIIs displayed activity similar to that of their parental fusion protein. Kinetics analysis revealed that MBP-fused HepIIs showed a significantly decreased affinity toward heparin with increased Km values (397%-480%) after the linker replacement, whereas the substrate affinity did not change significantly for MBP-fused HepIs and HepIIIs. Furthermore, it preliminarily appeared that the depolymerization mechanism of these fusion proteins may not change after linker replacement. These findings suggest the superior enzymatic properties of MBP-fused heparinases with suitable linker designs and their potential for the bioproduction of low-molecular-weight heparin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...