Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
2.
Eur J Pharm Biopharm ; : 114333, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768766

RESUMO

Developing co-amorphous systems is an attractive strategy to improve the dissolution rate of poorly water-soluble drugs. Various co-formers have been investigated. However, previous studies revealed that it is a challenge to develop satisfied acidic co-formers, e.g., acidic amino acids showed much poorer co-former properties than neutral and basic amino acids. Only a few acidic co-formers have been reported, such as aspartic acid, glutamic acid, and some other organic acids. Thus, this study aims to explore the possibility of adenosine monophosphate and adenosine diphosphate used as acidic co-formers. Mebendazole, celecoxib and tadalafil were used as the model drugs. The drug-co-former co-amorphous systems were prepared via ball milling and confirmed using XRPD. The dissolution study suggested that the solubility and dissolution rate of the drug-co-formers systems were increased significantly compared to the corresponding crystalline and amorphous drugs. The stability study revealed that using the two nucleotides as co-formers enhanced the physical stability of pure amorphous drugs. Molecular interactions were observed in MEB-co-former and TAD-co-former systems and positively affected the pharmaceutical performance of the investigated co-amorphous systems. In conclusion, the two nucleotides could be promising potential acidic co-formers for co-amorphous systems.

3.
Chemosphere ; 354: 141689, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492677

RESUMO

Quantitative studies of nanoplastics (NPs) abundance on agricultural crops are crucial for understanding the environmental impact and potential health risks of NPs. However, the actual extent of NP contamination in different crops remains unclear, and therefore insufficient quantitative data are available for adequate exposure assessments. Herein, a method with nitric acid digestion, multiple organic extraction combined with pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) quantification was used to determine the chemical composition and mass concentration of NPs in different crops (cowpea, flowering cabbage, rutabagas, and chieh-qua). Recoveries of 74.2-109.3% were obtained for different NPs in standard products (N = 6, RSD <9.6%). The limit of detection (LOD) and the limit of quantitation (LOQ) were 0.02-0.5 µg and 0.06-1.5 µg, respectively. The detection method for NPs exhibited good external calibration curves and linearity with 0.99. The results showed that poly (vinylchloride) (PVC), poly (ethylene terephthalate) (PET), polyethylene (PE), and polyadiohexylenediamine (PA66) NPs could be detected in crop samples, although the accumulation levels associated with the various crops varied significantly. PVC (N.D.-954.3 mg kg-1, dry weight (DW)) and PE (101.3-462.9 mg kg-1, DW) NPs were the dominant components in the samples of all four crop species, while high levels of PET (414.3-1430.1 mg kg-1, DW) NPs were detected in cowpea samples. Furthermore, there were notable differences in the accumulation levels of various edible crop parts, such as stems (60.2%) > leaves (39.8%) in flowering cabbage samples and peas (58.8%) > pods (41.2%) in cowpea samples. This study revealed the actual extent of NP contamination in different types of crops and provided crucial reference data for future research.


Assuntos
Microplásticos , Pirólise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Limite de Detecção , Produtos Agrícolas
4.
Circulation ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357802

RESUMO

BACKGROUND: S-Nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in cardiovascular disease. Aortic aneurysm and dissection are high-risk cardiovascular diseases without an effective cure. The aim of this study was to determine the role of SNO of Septin2 in macrophages in aortic aneurysm and dissection. METHODS: Biotin-switch assay combined with liquid chromatography-tandem mass spectrometry was performed to identify the S-nitrosylated proteins in aortic tissue from both patients undergoing surgery for aortic dissection and Apoe-/- mice infused with angiotensin II. Angiotensin II-induced aortic aneurysm model and ß-aminopropionitrile-induced aortic aneurysm and dissection model were used to determine the role of SNO of Septin2 (SNO-Septin2) in aortic aneurysm and dissection development. RNA-sequencing analysis was performed to recapitulate possible changes in the transcriptome profile of SNO-Septin2 in macrophages in aortic aneurysm and dissection. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation were used to uncover the TIAM1-RAC1 (Ras-related C3 botulinum toxin substrate 1) axis as the downstream target of SNO-Septin2. Both R-Ketorolac and NSC23766 treatments were used to inhibit the TIAM1-RAC1 axis. RESULTS: Septin2 was identified S-nitrosylated at cysteine 111 (Cys111) in both aortic tissue from patients undergoing surgery for aortic dissection and Apoe-/- mice infused with Angiotensin II. SNO-Septin2 was demonstrated driving the development of aortic aneurysm and dissection. By RNA-sequencing, SNO-Septin2 in macrophages was demonstrated to exacerbate vascular inflammation and extracellular matrix degradation in aortic aneurysm. Next, TIAM1 (T lymphoma invasion and metastasis-inducing protein 1) was identified as a SNO-Septin2 target protein. Mechanistically, compared with unmodified Septin2, SNO-Septin2 reduced its interaction with TIAM1 and activated the TIAM1-RAC1 axis and consequent nuclear factor-κB signaling pathway, resulting in stronger inflammation and extracellular matrix degradation mediated by macrophages. Consistently, both R-Ketorolac and NSC23766 treatments protected against aortic aneurysm and dissection by inhibiting the TIAM1-RAC1 axis. CONCLUSIONS: SNO-Septin2 drives aortic aneurysm and dissection through coupling the TIAM1-RAC1 axis in macrophages and activating the nuclear factor-κB signaling pathway-dependent inflammation and extracellular matrix degradation. Pharmacological blockade of RAC1 by R-Ketorolac or NSC23766 may therefore represent a potential treatment against aortic aneurysm and dissection.

5.
J Neuroinflammation ; 21(1): 29, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246987

RESUMO

Demyelination and failure of remyelination in the central nervous system (CNS) characterize a number of neurological disorders. Spontaneous remyelination in demyelinating diseases is limited, as oligodendrocyte precursor cells (OPCs), which are often present in demyelinated lesions in abundance, mostly fail to differentiate into oligodendrocytes, the myelinating cells in the CNS. In addition to OPCs, the lesions are assembled numbers of activated resident microglia/infiltrated macrophages; however, the mechanisms and potential role of interactions between the microglia/macrophages and OPCs are poorly understood. Here, we generated a transcriptional profile of exosomes from activated microglia, and found that miR-615-5p was elevated. miR-615-5p bound to 3'UTR of myelin regulator factor (MYRF), a crucial myelination transcription factor expressed in oligodendrocyte lineage cells. Mechanistically, exosomes from activated microglia transferred miR-615-5p to OPCs, which directly bound to MYRF and inhibited OPC maturation. Furthermore, an effect of AAV expressing miR-615-5p sponge in microglia was tested in experimental autoimmune encephalomyelitis (EAE) and cuprizone (CPZ)-induced demyelination model, the classical mouse models of multiple sclerosis. miR-615-5p sponge effectively alleviated disease progression and promoted remyelination. This study identifies miR-615-5p/MYRF as a new target for the therapy of demyelinating diseases.


Assuntos
Encefalomielite Autoimune Experimental , Exossomos , MicroRNAs , Bainha de Mielina , Animais , Camundongos , Exossomos/metabolismo , Microglia/metabolismo , MicroRNAs/genética
6.
J Environ Sci (China) ; 139: 267-280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105054

RESUMO

The coexistence of cadmium (Cd(II)) and arsenate (As(V)) pollution has long been an environmental problem. Biochar, a porous carbonaceous material with tunable functionality, has been used for the remediation of contaminated soils. However, it is still challenging for the dynamic quantification and mechanistic understanding of the simultaneous sequestration of multi-metals in biochar-engineered environment, especially in the presence of anions. In this study, ferrihydrite was coprecipitated with biochar to investigate how ferrihydrite-biochar composite affects the fate of heavy metals, especially in the coexistence of Cd(II) and As(V). In the solution system containing both Cd(II) and As(V), the maximum adsorption capacities of ferrihydrite-biochar composite for Cd(II) and As(V) reached 82.03 µmol/g and 531.53 µmol/g, respectively, much higher than those of the pure biochar (26.90 µmol/g for Cd(II), and 40.24 µmol/g for As(V)) and ferrihydrite (42.26 µmol/g for Cd(II), and 248.25 µmol/g for As(V)). Cd(II) adsorption increased in the presence of As(V), possibly due to the changes in composite surface charge in the presence of As(V), and the increased dispersion of ferrihydrite by biochar. Further microscopic and mechanistic results showed that Cd(II) complexed with both biochar and ferrihydrite, while As(V) was mainly complexed by ferrihydrite in the Cd(II) and As(V) coexistence system. Ferrihydrite posed vital importance for the co-adsorption of Cd(II) and As(V). The different distribution patterns revealed by this study help to a deeper understanding of the behaviors of cations and anions in the natural environment.


Assuntos
Cádmio , Poluentes Químicos da Água , Cádmio/análise , Adsorção , Poluentes Químicos da Água/análise , Carvão Vegetal
7.
Biomaterials ; 303: 122386, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977008

RESUMO

Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment which promotes the formation of the immunosuppressive tumor microenvironment (ITME) through multiple mechanisms, severely counteracting the therapeutic efficacy of immunotherapy. In this study, a novel biomimetic ferroptosis inducer (D@FMN-M) capable of ITME regulation for enhanced cancer ferroptosis immunotherapy is reported. Upon tumor accumulation of D@FMN-M, the intratumoral mild acidity triggers the biodegradation of Fe-enriched nanocarriers and the concurrent co-releases of dihydroartemisinin (DHA) and Fe3+. The released Fe3+ is reduced to Fe2+ by consuming intratumoral glutathione (GSH), which promotes abundant free radical generation via triggering Fenton and Fe2+-DHA reactions, thus inducing ferroptosis of both cancer cells and M2-type TAMs. Resultantly, the anticancer immune response is strongly activated by the massive tumor-associated antigens released by ferroptositic cancer cells. Also importantly, the ferroptosis-sensitive M2-type TAMs will be either damaged or gradually domesticated to ferroptosis-resistant M1 TAMs under the ferroptosis stress, favoring the normalization of ITME and finally amplifying cancer ferroptosis immunotherapeutic efficacy. This work provides a novel strategy for ferroptosis immunotherapy of solid tumors featuring TAMs infiltration and immunosuppression by inducing dual ferroptosis of tumor cells and M2-type TAMs.


Assuntos
Ferroptose , Neoplasias , Humanos , Biomimética , Imunoterapia , Macrófagos , Neoplasias/terapia , Glutationa , Imunossupressores , Microambiente Tumoral , Linhagem Celular Tumoral
9.
Nano Lett ; 23(10): 4683-4692, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36912868

RESUMO

The oral delivery of probiotics is commonly adopted for intestinal disease treatments in clinical settings; however, the probiotics suffer from a strong acidic attack in the gastric area and the low-efficiency intestinal colonization of naked probiotics. Coating living probiotics with synthetic materials has proven effective in enabling the adaption of bacteria to gastrointestinal environments, which, unfortunately, may shield the probiotics from initiating therapeutic responses. In this study, we report a copolymer-modified two-dimensional H-silicene nanomaterial (termed SiH@TPGS-PEI) that can facilitate probiotics to adapt to diverse gastrointestinal microenvironments on-demand. Briefly, SiH@TPGS-PEI electrostatically coated on the surface of probiotic bacteria helps to resist erosive destruction in the acidic stomach and spontaneously degrades by reacting with water to generate hydrogen, an anti-inflammatory gas in response to the neutral/weakly alkaline intestinal environment, thus exposing the probiotic bacteria for colitis amelioration. This strategy may shed new light on the development of intelligent self-adaptive materials.


Assuntos
Colite , Probióticos , Humanos , Intestinos , Bactérias , Probióticos/metabolismo , Probióticos/uso terapêutico
10.
J Am Chem Soc ; 145(10): 5803-5815, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848658

RESUMO

The antioxidant system, signed with reduced glutathione (GSH) overexpression, is the key weapon for tumor to resist the attack by reactive oxygen species (ROS). Counteracting the ROS depletion by GSH is an effective strategy to guarantee the antitumor efficacy of nanocatalytic therapy. However, simply reducing the concentration of GSH does not sufficiently improve tumor response to nanocatalytic therapy intervention. Herein, a well-dispersed MnOOH nanocatalyst is developed to catalyze GSH autoxidation and peroxidase-like reaction concurrently and respectively to promote GSH depletion and H2O2 decomposition to produce abundant ROS such as hydroxyl radical (·OH), thereby generating a highly effective superadditive catalytic therapeutic efficacy. Such a therapeutic strategy that transforms endogenous "antioxidant" into "oxidant" may open a new avenue for the development of antitumor nanocatalytic medicine. Moreover, the released Mn2+ can activate and sensitize the cGAS-STING pathway to the damaged intratumoral DNA double-strands induced by the produced ROS to further promote macrophage maturation and M1-polarization, which will boost the innate immunotherapeutic efficacy. Resultantly, the developed simple MnOOH nanocatalytic medicine capable of simultaneously catalyzing GSH depletion and ROS generation, and mediating innate immune activation, holds great potential in the treatment of malignant tumors.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Glutationa/metabolismo , Antioxidantes , Neoplasias/tratamento farmacológico , Imunoterapia , Catálise , Linhagem Celular Tumoral
11.
Elife ; 122023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752600

RESUMO

The ability to simultaneously modulate a set of genes for lineage-specific development has made miRNA an ideal master regulator for organogenesis. However, most miRNA deletions do not exhibit obvious phenotypic defects possibly due to functional redundancy. miRNAs are known to regulate skeletal lineages as the loss of their maturation enzyme Dicer impairs bone remodeling processes. Therefore, it is important to identify specific miRNA essential for bone homeostasis. We report the loss of MIR27a causing severe osteoporosis in mice. MIR27a affects osteoclast-mediated bone resorption but not osteoblast-mediated bone formation during skeletal remodeling. Gene profiling and bioinformatics further identify the specific targets of MIR27a in osteoclast cells. MIR27a exerts its effects on osteoclast differentiation through modulation of Squstm1/p62 whose mutations have been linked to Paget's disease of bone. Our findings reveal a new MIR27a-p62 axis necessary and sufficient to mediate osteoclast differentiation and highlight a therapeutic implication for osteoporosis.


Assuntos
Reabsorção Óssea , MicroRNAs , Animais , Camundongos , Osteoclastos , Diferenciação Celular/genética , Reabsorção Óssea/genética , Remodelação Óssea
12.
Chemosphere ; 318: 137875, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36646182

RESUMO

To alleviate worldwide food safety issues caused by metal contamination, an easily available material is urgently needed for extensive application. In this study, calcium magnesium phosphate fertiliser (Pcm) was applied to a Cd/Cu co-contaminated paddy field in comparison with limestone and organic fertiliser. The results showed that only Pcm is effective in simultaneously reducing Cd uptake by 56.7% and Cu uptake by 36.2% in Oryza saliva L. (rice). The rice yield, reduced mainly by Cu, also increased by 30.1% with respect to the enhancement of soil pH, cation exchange capacity and availability of phosphorus, as well as the reduction in availabilities of Cd and Cu. Additionally, Pcm dramatically shaped the bacterial community structure, with Proteobacteria and Firmicutes predominant in the soils. The beneficial genera Exiguobacterium, Citrobacter, and Acinetobacter, which are vital for phosphate dissolution and Cd/Cu immobilisation, were also enriched. The results demonstrated that the application of Pcm at 0.4% (w:w) was able to enhance both crop quantity and quality in Cd/Cu co-contaminated paddy fields by reducing Cu/Cd availability, promoting rice yield, and reshaping bacterial community structures.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Oryza/química , Fósforo , Fertilizantes , Saliva/química , Poluentes do Solo/análise , Solo/química
13.
Adv Mater ; 35(25): e2208256, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36634150

RESUMO

Emerging piezocatalysts have demonstrated their remarkable application potential in diverse medical fields. In addition to their ultrahigh catalytic activities, their inherent and unique charge-carrier-releasing properties can be used to initiate various redox catalytic reactions, displaying bright prospects for future medical applications. Triggered by mechanical energy, piezocatalytic materials can release electrons/holes, catalyze redox reactions of substrates, or intervene in biological processes to promote the production of effector molecules for medical purposes, such as decontamination, sterilization, and therapy. Such a medical application of piezocatalysis is termed as piezocatalytic medicine (PCM) herein. To pioneer novel medical technologies, especially therapeutic modalities, this review provides an overview of the state-of-the-art research progress in piezocatalytic medicine. First, the principle of piezocatalysis and the preparation methodologies of piezoelectric materials are introduced. Then, a comprehensive summary of the medical applications of piezocatalytic materials in tumor treatment, antisepsis, organic degradation, tissue repair and regeneration, and biosensing is provided. Finally, the main challenges and future perspectives in piezocatalytic medicine are discussed and proposed, expecting to fuel the development of this emerging scientific discipline.


Assuntos
Elétrons , Esterilização , Catálise , Cicatrização
14.
mBio ; 13(6): e0204422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36383022

RESUMO

Promyelocytic leukemia protein (PML) bodies are implicated in one of the key pathways in the establishment of antiviral status in response to interferon (IFN), yet the molecular mechanisms bridging the cross talk remain elusive. Herein, we report that a major constitutive component of the PML body, Sp100A, is ubiquitously located in the cytosol of various cell types and is an immediate responder to multiple extracellular stimuli, including virus infection, IFN, epidermal growth factor (EGF), glial cell-derived nerve factor (GDNF), etc., signaling through the phosphatidylinositol 3-kinase (PI3K) pathway. IFN-ß induces phosphorylation of Sp100A on Ser188, which fortifies the binding of Sp100A to pyruvate kinase 2 (PKM2) and facilitates its nuclear importation through the extracellular signal-regulated kinase 1/2 (ERK1/2)-PKM2-PIN1-importin axes. Blocking PI3K pathway signaling or interference with the ERK1/2-PKM2-PIN1-importin axes independently hampers nuclear translocation of Sp100A in response to IFN, reflecting a dual-regulation mechanism governing this event. In the nucleus, Sp100A is enriched in the promoter regions of essential antiviral interferon-stimulated genes (ISGs), such as those coding for IFI16, OAS2, and RIG-I, and activates their transcription. Importantly, nuclear importation of Sp100A, but not accumulation of a mutant Sp100A that failed to respond to IFN, during infection potently enhanced transcription of these antiviral ISGs and restricted virus propagation. These findings depict a novel IFN response mechanism by PML bodies in the cytosol and shed light on the complex sensing-regulatory network of PML bodies. IMPORTANCE PML bodies sit at the center stage of various important biological processes; however, the signal transduction networks of these macromolecular protein complexes remain enigmatic. The present study illustrates, in detail and for the first time, the course of signal receiving, processing, and implementation by PML bodies in response to IFN and virus infection. It shows that PML body constitutive component Sp100A was phosphorylated on Ser188 by IFN signaling through the PI3K pathway in the cytosol, cotranslocated into the nucleus with PKM2, enriched on the promoter regions of essential antiviral ISGs such as those coding for IFI16, RIG-I, OAS2, etc., and mediating their transcriptional activation.


Assuntos
Antivirais , Interferons , Corpos Nucleares da Leucemia Promielocítica , Citosol , Fosfatidilinositol 3-Quinases , Proteína da Leucemia Promielocítica , Carioferinas
15.
Nanomicro Lett ; 14(1): 220, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367591

RESUMO

The low immunogenicity of tumors remains one of the major limitations of cancer immunotherapy. Herein, we report a bacterial metabolism-initiated and photothermal-enhanced nanocatalytic therapy strategy to completely eradicate primary tumor by triggering highly effective antitumor immune responses. Briefly, a microbiotic nanomedicine, designated as Cu2O@ΔSt, has been constructed by conjugating PEGylated Cu2O nanoparticles on the surface of an engineered Salmonella typhimurium strain (ΔSt). Owing to the natural hypoxia tropism of ΔSt, Cu2O@ΔSt could selectively colonize hypoxic solid tumors, thus minimizing the adverse effects of the bacteria on normal tissues. Upon bacterial metabolism within the tumor, Cu2O@ΔSt generates H2S gas and other acidic substances in the tumor microenvironment (TME), which will in situ trigger the sulfidation of Cu2O to form CuS facilitating tumor-specific photothermal therapy (PTT) under local NIR laser irradiation on the one hand. Meanwhile, the dissolved Cu+ ions from Cu2O into the acidified TME enables the nanocatalytic tumor therapy by catalyzing the Fenton-like reaction of decomposing endogenous H2O2 into cytotoxic hydroxyl radicals (·OH) on the other hand. Such a bacterial metabolism-triggered PTT-enhanced nanocatalytic treatment could effectively destroy tumor cells and induce a massive release of tumor antigens and damage-associated molecular patterns, thereby sensitizing tumors to checkpoint blockade (ICB) therapy. The combined nanocatalytic and ICB therapy results in the much-inhibited growth of distant and metastatic tumors, and more importantly, induces a powerful immunological memory effect after the primary tumor ablation.

16.
J Am Chem Soc ; 144(41): 19038-19050, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36215038

RESUMO

A rationally designed immunostimulant (CC@SiO2-PLG) with a photoactivatable immunotherapeutic function for synergetic tumor therapy is reported. This CC@SiO2-PLG nanoplatform comprises catalase and a photosensitizer (Ce6) co-encapsulated in a silica capsule, to which an immunostimulant is conjugated through a reactive oxygen species-cleavable linker. After accumulating in tumor tissue, CC@SiO2-PLG generates O2 to relieve tumor hypoxia and promotes the production of singlet oxygen (1O2) upon laser irradiation, resulting in not only tumor destruction but also the release of tumor-associated antigens (TAAs). Simultaneously, the linker breakage by the photoproduced 1O2 leads to the remote-controlled release of conjugated indoleamine 2,3-dioxygenase (IDO) inhibitor from CC@SiO2-PLG and consequent immunosuppressive tumor microenvironment reversion. The released TAAs in conjunction with the inhibition of the IDO-mediated tryptophan/kynurenine metabolic pathway induced a boosted antitumor immune response to the CC@SiO2-PLG-mediated phototherapy. Therefore, the growth of primary/distant tumors and lung metastases in a mouse xenograft model was greatly inhibited, which was not achievable by phototherapy alone.


Assuntos
Neoplasias , Fármacos Fotossensibilizantes , Humanos , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Cinurenina/metabolismo , Triptofano/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Catalase , Nanomedicina , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício , Linhagem Celular Tumoral , Oxigênio Singlete , Preparações de Ação Retardada , Adjuvantes Imunológicos , Neoplasias/tratamento farmacológico
17.
Cancer Lett ; 545: 215827, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842018

RESUMO

The endothelium is the critical barrier that controls transendothelial communications. Blood vessels in cancer tissue are poorly developed and highly permeable. However, it is poorly understood how circulating cancer cells released through these "leaky" vessels break the intact vasculature of remote organs to metastasize. We investigated the roles of cancer cell-derived extracellular vesicles (CEVs) in regulating cancer metastasis by analyzing samples from gastric cancer patients, performing in vitro experiments, and studying mouse models. We made several novel observations. First, the rate of metastasis was closely associated with plasma levels of CEVs in patients with gastric cancer. Second, cultured endothelial cells endocytosed CEVs, resulting in cytoskeletal rearrangement, low expression of the junction proteins cadherin and CD31, and forming large intercellular gaps to allow the transendothelial migration of cancer cells. The dynamin inhibitor Dynasore prevented these CEV-induced changes of endothelial cells by blocking CEVs endocytosis. Third, CEVs disrupted the endothelial barrier of cancer-bearing mice to promote cancer metastasis. Finally, lactadherin promoted the clearance of circulating CEVs to reduce metastasis. These results demonstrate the essential role of CEVs in promoting the metastasis of gastric cancer.


Assuntos
Vesículas Extracelulares , Neoplasias Gástricas , Animais , Caderinas/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Vesículas Extracelulares/metabolismo , Camundongos , Neoplasias Gástricas/patologia
18.
Cancers (Basel) ; 14(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35205605

RESUMO

Breast cancer is the most common invasive cancer in women, with most deaths attributed to metastases. Neoadjuvant chemotherapy (NACT) may be prescribed prior to surgical removal of the tumor for subsets of breast cancer patients but can have diverse undesired and off-target effects, including the increased appearance of the 'tumor microenvironment of metastasis', image-based multicellular signatures that are prognostic of breast tumor metastasis. To assess whether NACT can induce changes in two other image-based prognostic/predictive signatures derived from tumor collagen, we quantified second-harmonic generation (SHG) directionality and fiber alignment in formalin-fixed, paraffin-embedded sections of core needle biopsies and primary tumor excisions from 22 human epidermal growth factor receptor 2-overexpressing (HER2+) and 22 triple-negative breast cancers. In both subtypes, we found that SHG directionality (i.e., the forward-to-backward scattering ratio, or F/B) is increased by NACT in the bulk of the tumor, but not the adjacent tumor-stroma interface. Overall collagen fiber alignment is increased by NACT in triple-negative but not HER2+ breast tumors. These results suggest that NACT impacts the collagenous extracellular matrix in a complex and subtype-specific manner, with some prognostic features being unchanged while others are altered in a manner suggestive of a more metastatic phenotype.

19.
J Nanobiotechnology ; 20(1): 4, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983555

RESUMO

Chemotherapy remains one of the most prevailing regimens hitherto in the fight against cancer, but its development has been being suffering from various fatal side effects associated with the non-specific toxicity of common chemical drugs. Advances in biomedical application of nanomedicine have been providing alternative but promising approaches for cancer therapy, by leveraging its excellent intrinsic physicochemical properties to address these critical concerns. In particular, nanomedicine-enabled chemotherapy has been established as a safer and promising therapeutic modality, especially the recently proposed nanocatalytic medicine featuring the capabilities to generate toxic substances by initiating diverse catalytic reactions within the tumor without directly relying on highly toxic but non-selective chemotherapeutic agents. Of special note, under exogenous/endogenous stimulations, nanomedicine can serve as a versatile platform that allows additional therapeutic modalities (photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), etc.) to be seamlessly integrated with chemotherapy for efficacious synergistic treatments of tumors. Here, we comprehensively review and summarize the representative studies of multimodal synergistic cancer treatments derived from nanomedicine and nanocatalytic medicine-enabled chemotherapy in recent years, and their underlying mechanisms are also presented in detail. A number of existing challenges and further perspectives for nanomedicine-synergized chemotherapy for malignant solid tumor treatments are also highlighted for understanding this booming research area as comprehensively as possible.


Assuntos
Antineoplásicos/uso terapêutico , Terapia Combinada , Nanomedicina , Neoplasias/terapia , Animais , Humanos , Camundongos , Neoplasias/patologia , Neoplasias/fisiopatologia
20.
Nanoscale ; 14(6): 2393-2410, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35088795

RESUMO

Targeted and effective drug delivery to central nervous system (CNS) lesions is a major challenge in the treatment of multiple sclerosis (MS). Extracellular vesicles (EVs) have great promise as a drug delivery nanosystem given their unique characteristics, including a strong cargo-loading capacity, low immunogenicity, high biocompatibility, inherent stability, high delivery efficiency, ease of manipulation, and blood-brain barrier (BBB) penetration. Clinical applications are, however, limited by their insufficient targeting capability and "dilution effects" upon systemic administration. Neural stem cells (NSCs) provide an abundant source of EVs because of their remarkable capacity for self-renewal. Here, we developed a novel therapeutic strategy for local delivery and treatment using EVPs, which are derived from NSCs with the expression of the CNS lesion targeting ligand-PDGFRα. Furthermore, we used EVPs as a targeting carrier for encapsulating Bryostatin-1 (Bryo-1), a natural compound with remarkable anti-inflammation ability. Our data showed that Bryo-1 delivered by EVPs was more stable and concentrated in the CNS than native Bryo-1. Systemic injection of a low dosage (1 × 108 particles) of EVPs + Bryo-1, versus only EVPs or Bryo-1 administration, significantly ameliorated clinical disease development, decreased the infiltration of pro-inflammatory cells, blocked myelin loss and astrogliosis, protected BBB integrity, and altered microglia pro-inflammatory phenotype in the CNS of EAE mice. Taken as a whole, our study showed that engineered EVs have a CNS targeting capacity, and it provides potentially powerful therapeutic effects for the treatment of various neuroinflammatory diseases.


Assuntos
Vesículas Extracelulares , Esclerose Múltipla , Animais , Briostatinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Doenças Neuroinflamatórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA