Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nature ; 584(7822): 608-613, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848220

RESUMO

Glandular epithelia, including the mammary and prostate glands, are composed of basal cells (BCs) and luminal cells (LCs)1,2. Many glandular epithelia develop from multipotent basal stem cells (BSCs) that are replaced in adult life by distinct pools of unipotent stem cells1,3-8. However, adult unipotent BSCs can reactivate multipotency under regenerative conditions and upon oncogene expression3,9-13. This suggests that an active mechanism restricts BSC multipotency under normal physiological conditions, although the nature of this mechanism is unknown. Here we show that the ablation of LCs reactivates the multipotency of BSCs from multiple epithelia both in vivo in mice and in vitro in organoids. Bulk and single-cell RNA sequencing revealed that, after LC ablation, BSCs activate a hybrid basal and luminal cell differentiation program before giving rise to LCs-reminiscent of the genetic program that regulates multipotency during embryonic development7. By predicting ligand-receptor pairs from single-cell data14, we find that TNF-which is secreted by LCs-restricts BC multipotency under normal physiological conditions. By contrast, the Notch, Wnt and EGFR pathways were activated in BSCs and their progeny after LC ablation; blocking these pathways, or stimulating the TNF pathway, inhibited regeneration-induced BC multipotency. Our study demonstrates that heterotypic communication between LCs and BCs is essential to maintain lineage fidelity in glandular epithelial stem cells.


Assuntos
Comunicação Celular , Células Epiteliais/citologia , Células-Tronco Multipotentes/citologia , Animais , Linhagem da Célula , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Feminino , Homeostase , Humanos , Masculino , Glândulas Mamárias Animais/citologia , Camundongos , Células-Tronco Multipotentes/metabolismo , Organoides/citologia , Próstata/citologia , RNA Mensageiro/genética , RNA-Seq , Receptores Notch/metabolismo , Glândulas Salivares/citologia , Análise de Célula Única , Pele/citologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Wnt/metabolismo
2.
Nat Cell Biol ; 20(9): 1099, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30018320

RESUMO

In the version of this Article originally published, ref. 52 was incorrectly only attributed to its corresponding author, Fre, S., and an older title was used. The correct citation should have been: Lilja, A. M. et al. Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland. Nat. Cell Biol. https://doi.org/10.1038/s41556-018-0108-1 (2018)'. This has now been amended in all online versions of the Article.

3.
Nat Cell Biol ; 20(6): 666-676, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29784918

RESUMO

The mammary gland is composed of basal cells and luminal cells. It is generally believed that the mammary gland arises from embryonic multipotent progenitors, but it remains unclear when lineage restriction occurs and what mechanisms are responsible for the switch from multipotency to unipotency during its morphogenesis. Here, we perform multicolour lineage tracing and assess the fate of single progenitors, and demonstrate the existence of a developmental switch from multipotency to unipotency during embryonic mammary gland development. Molecular profiling and single cell RNA-seq revealed that embryonic multipotent progenitors express a unique hybrid basal and luminal signature and the factors associated with the different lineages. Sustained p63 expression in embryonic multipotent progenitors promotes unipotent basal cell fate and was sufficient to reprogram adult luminal cells into basal cells by promoting an intermediate hybrid multipotent-like state. Altogether, this study identifies the timing and the mechanisms mediating early lineage segregation of multipotent progenitors during mammary gland development.


Assuntos
Linhagem da Célula , Células Epiteliais/fisiologia , Glândulas Mamárias Animais/fisiologia , Células-Tronco Embrionárias Murinas/fisiologia , Células-Tronco Multipotentes/fisiologia , Animais , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Transgênicos , Morfogênese , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Multipotentes/metabolismo , Fenótipo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Análise de Sequência de RNA/métodos , Transdução de Sinais , Análise de Célula Única/métodos , Fatores de Tempo , Transativadores/genética , Transativadores/metabolismo , Transcriptoma
4.
Genes Dev ; 30(11): 1261-77, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27284162

RESUMO

Lineage tracing has become the method of choice to study the fate and dynamics of stem cells (SCs) during development, homeostasis, and regeneration. However, transgenic and knock-in Cre drivers used to perform lineage tracing experiments are often dynamically, temporally, and heterogeneously expressed, leading to the initial labeling of different cell types and thereby complicating their interpretation. Here, we developed two methods: the first one based on statistical analysis of multicolor lineage tracing, allowing the definition of multipotency potential to be achieved with high confidence, and the second one based on lineage tracing at saturation to assess the fate of all SCs within a given lineage and the "flux" of cells between different lineages. Our analysis clearly shows that, whereas the prostate develops from multipotent SCs, only unipotent SCs mediate mammary gland (MG) development and adult tissue remodeling. These methods offer a rigorous framework to assess the lineage relationship and SC fate in different organs and tissues.


Assuntos
Linhagem da Célula , Técnicas Citológicas/métodos , Glândulas Mamárias Animais/citologia , Células-Tronco Multipotentes/citologia , Próstata/citologia , Animais , Células Cultivadas , Técnicas Citológicas/normas , Interpretação Estatística de Dados , Feminino , Masculino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Células-Tronco Multipotentes/fisiologia , Próstata/crescimento & desenvolvimento , Células-Tronco/citologia , Células-Tronco/fisiologia
5.
Nature ; 525(7567): 119-23, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26266985

RESUMO

Breast cancer is the most frequent cancer in women and consists of heterogeneous types of tumours that are classified into different histological and molecular subtypes. PIK3CA and P53 (also known as TP53) are the two most frequently mutated genes and are associated with different types of human breast cancers. The cellular origin and the mechanisms leading to PIK3CA-induced tumour heterogeneity remain unknown. Here we used a genetic approach in mice to define the cellular origin of Pik3ca-derived tumours and the impact of mutations in this gene on tumour heterogeneity. Surprisingly, oncogenic Pik3ca(H1047R) mutant expression at physiological levels in basal cells using keratin (K)5-CreER(T2) mice induced the formation of luminal oestrogen receptor (ER)-positive/progesterone receptor (PR)-positive tumours, while its expression in luminal cells using K8-CReER(T2) mice gave rise to luminal ER(+)PR(+) tumours or basal-like ER(-)PR(-) tumours. Concomitant deletion of p53 and expression of Pik3ca(H1047R) accelerated tumour development and induced more aggressive mammary tumours. Interestingly, expression of Pik3ca(H1047R) in unipotent basal cells gave rise to luminal-like cells, while its expression in unipotent luminal cells gave rise to basal-like cells before progressing into invasive tumours. Transcriptional profiling of cells that underwent cell fate transition upon Pik3ca(H1047R) expression in unipotent progenitors demonstrated a profound oncogene-induced reprogramming of these newly formed cells and identified gene signatures characteristic of the different cell fate switches that occur upon Pik3ca(H1047R) expression in basal and luminal cells, which correlated with the cell of origin, tumour type and different clinical outcomes. Altogether our study identifies the cellular origin of Pik3ca-induced tumours and reveals that oncogenic Pik3ca(H1047R) activates a multipotent genetic program in normally lineage-restricted populations at the early stage of tumour initiation, setting the stage for future intratumoural heterogeneity. These results have important implications for our understanding of the mechanisms controlling tumour heterogeneity and the development of new strategies to block PIK3CA breast cancer initiation.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Fosfatidilinositol 3-Quinases/genética , Animais , Neoplasias da Mama/metabolismo , Diferenciação Celular/genética , Divisão Celular , Linhagem da Célula , Transformação Celular Neoplásica , Classe I de Fosfatidilinositol 3-Quinases , Feminino , Genes p53/genética , Humanos , Neoplasias Mamárias Animais/metabolismo , Camundongos , Mutação/genética , Invasividade Neoplásica/genética , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo
6.
Cell Rep ; 12(1): 90-101, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26119728

RESUMO

Epithelial lineages have been studied at cellular resolution in multiple organs that turn over rapidly. However, many epithelia, including those of the lung, liver, pancreas, and prostate, turn over slowly and may be regulated differently. We investigated the mouse tracheal epithelial lineage at homeostasis by using long-term clonal analysis and mathematical modeling. This pseudostratified epithelium contains basal cells and secretory and multiciliated luminal cells. Our analysis revealed that basal cells are heterogeneous, comprising approximately equal numbers of multipotent stem cells and committed precursors, which persist in the basal layer for 11 days before differentiating to luminal fate. We confirmed the molecular and functional differences within the basal population by using single-cell qRT-PCR and further lineage labeling. Additionally, we show that self-renewal of short-lived secretory cells is a feature of homeostasis. We have thus revealed early luminal commitment of cells that are morphologically indistinguishable from stem cells.


Assuntos
Linhagem da Célula , Proliferação de Células , Células Epiteliais/fisiologia , Mucosa Respiratória/citologia , Animais , Diferenciação Celular , Células Epiteliais/citologia , Homeostase , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...