Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202403048, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39239923

RESUMO

Sr4Ba3(BO3)3.83H2.5, as the second compound to combine borate and hydride ions, has been synthesized by a mechanochemical synthesis route. The structure has been elucidated by synchrotron X-ray and neutron diffraction and determined to crystallize in the non-centrosymmetric space group P63mc (186) with the cell parameters a = 10.87762(15) Å and c = 6.98061(11) Å. A detailed investigation of the compound by vibrational spectroscopy in combination with Density Functional Theory calculations reveals the disordered nature of the structure and proves the presence of both borate and hydride ions. Electronic band structure calculations predict a large band gap of 7.1 eV. Hydride states are predicted at the topmost valence band, which agrees well with earlier reported heteroanionic hydrides. We hereby were able to successfully apply previously synthetic and analytical schemes to introduce another member of the rare compounds that contain complex oxoanions simultaneously with hydride ions.

2.
Int J Mol Sci ; 24(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37834417

RESUMO

As the first europium(II) hydride oxide iodide, dark red single crystals of Eu5H2O2I4 could be synthesized from oxygen-contaminated mixtures of EuH2 and EuI2. Its orthorhombic crystal structure (a = 1636.97(9) pm, b = 1369.54(8) pm, c = 604.36(4) pm, Z = 4) was determined via single-crystal X-ray diffraction in the space group Cmcm. Anion-centred tetrahedra [HEu4]7+ and [OEu4]6+ serve as central building blocks interconnected via common edges to infinite ribbons parallel to the c axis. These ribbons consist of four trans-edge connected (Eu2+)4 tetrahedra as repetition unit, two H--centred ones in the inner part, and two O2--centred ones representing the outer sides. They are positively charged, according to ∞1{[Eu5H2O2]4+}, to become interconnected and charge-balanced by iodide anions. Upon excitation with UV light, the compound shows blue-green luminescence with the shortest Eu2+ emission wavelength ever observed for a hydride derivative, peaking at 463 nm. The magnetic susceptibility of Eu5H2O2I4 follows the Curie-Weiss law down to 100 K, and exhibits a ferromagnetic ordering transition at about 10 K.


Assuntos
Európio , Luminescência , Európio/química , Iodetos , Óxidos , Peróxido de Hidrogênio
3.
Chemistry ; 26(51): 11742-11750, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32542938

RESUMO

The unprecedented borate hydride Sr5 (BO3 )3 H and deuteride Sr5 (11 BO3 )3 D crystallizing in an apatite-related structure are reported. Despite the presence of hydride anions, the compound decomposes only slowly in air. Doped with Eu2+ , it shows broad-band orange-red emission under violet excitation owing to the 4f6 5d-4f7 transition of Eu2+ . The observed 1 H NMR chemical shift is in good agreement with previously reported 1 H chemical shifts of ionic metal hydrides as well as with quantum chemical calculations and very different from 1 H chemical shifts usually found for hydroxide ions in similar materials. FTIR and Raman spectroscopy of different samples containing 1 H, 2 H, nat B, and 11 B combined with calculations unambiguously prove the absence of hydroxide ions and the sole incorporation of hydride ions into the borate. The orange-red emission obtained by doping with Eu2+ shows that the new compound class might be a promising host material for optical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...