Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Res ; : 119789, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153564

RESUMO

BACKGROUND: At present, several cross-sectional studies have found that exposure to metal/metalloid elements is closely associated with male reproduction. However, the long-term effects of metal exposure on male reproduction have not been explored. METHODS: In 2013, 796 volunteers were recruited, followed by first and second follow-ups in 2014 and 2015. Urine, semen, and blood samples were collected at each stage to examine urinary metal/metalloid levels, sperm parameters, and sex hormones. Initially, the latent class trajectory model (LCTM) was utilized to analyze the trajectories of urinary metals. Subsequently, the effects of urinary metal trajectories on semen parameters and sex hormones were examined using the linear mixed model. Finally, the impact of urinary metal trajectories on the classification of semen quality (normal or abnormal) was evaluated using the generalized linear mixed model. RESULTS: Among the 18 metals/metalloids studied, trajectories were formed by 6 of them (Li, Al, Fe, Zn, As, Rb). Further analysis using the linear mixed model and the generalized linear mixed model revealed that Li was negatively correlated with semen volume, and sperm motility (P<0.05). The maximum-decreasing trajectory group had a detrimental effect on semen quality (OR=1.75, 95%CI: 1.22, 2.53) compared to the minimum-stable trajectory group. Al showed negative associations with sperm concentration, total sperm count, and normal morphology (P<0.05). Rb was positively associated with progressive motility (P<0.05). The high-stable trajectory group exhibited a protective effect on semen quality (OR=0.66, 95%CI: 0.49, 0.90) compared to the low-stable trajectory group. Additionally, Fe was observed to have a negative relationship with follicle-stimulating hormone (FSH) (P<0.05), and Rb exhibited a negative correlation with progesterone (P) (P<0.05). CONCLUSION: Our three-year cohort study provides new evidence that Li and Al have a negative impact on semen quality, whereas Rb is associated with beneficial effects. Additionally, Rb and Fe are endocrine disruptors of sex hormones.

2.
Environ Res ; 229: 115888, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054833

RESUMO

BACKGROUND: The effects of metal exposure on semen quality and the role of oxidative damage in this process remain unclear. METHODS: We recruited 825 Chinese male volunteers, and 12 seminal metals (Mn, Cu, Zn, Se, Ni, Cd, Pb, Co, Ag, Ba, Tl, and Fe), the total antioxidant capacity (TAC), and reduced glutathione were measured. Semen parameters and GSTM1/GSTT1-null genotypes were also detected. Bayesian kernel machine regression (BKMR) was applied to evaluate the effect of the mixed exposure to metals on semen parameters. The mediation of TAC and moderation of GSTM1/GSTT1 deletion were analyzed. RESULTS: Most seminal metal concentrations were correlated with each other. The BKMR models revealed a negative association between the semen volume and metal mixture, with Cd (cPIP = 0.60) and Mn (cPIP = 0.10) as the major contributors. Compared to fixing all scaled metals at their median value (50th percentiles), fixing the scaled metals at their 75th percentiles decreased the TAC by 2.17 units (95%CI: -2.60, -1.75). Mediation analysis indicated that Mn decreased the semen volume, with 27.82% of this association mediated by TAC. Both the BKMR and multi-linear models showed that seminal Ni was negatively correlated with sperm concentration, total sperm count, and progressive motility, which was modified by GSTM1/GSTT1. Furthermore, Ni and the total sperm count showed a negative association in GSTT1 and GSTM1 null males (ß[95%CI]: 0.328 [-0.521, -0.136]) but not in males with GSTT1 and/or GSTM1. Although Fe and the sperm concentration and total sperm count were positively correlated, they showed inverse "U" shapes in univariate analysis. CONCLUSION: Exposure to the 12 metals was negatively associated with semen volume, with Cd and Mn as the major contributors. TAC may mediate this process. GSTT1 and GSTM1 can modify the reduction in the total sperm count caused by seminal Ni exposure.


Assuntos
Antioxidantes , Glutationa Transferase , Análise do Sêmen , Adulto , Humanos , Masculino , Teorema de Bayes , Cádmio , População do Leste Asiático , Deleção de Genes , Metais/toxicidade , Sêmen , Glutationa Transferase/genética , Manganês
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...