Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535431

RESUMO

Laser additive manufacturing is a promising technique for the preparation of complex-shaped SiC composites. High-quality powders are critical for high-precision laser printing. In this work, core-shell Cf @phenolic resin (PR) composites for selective laser sintering of carbon fiber reinforced silicon carbide (Cf/SiC) composites were fabricated by surface modification using 3-aminopropyltriethoxy silane coupling agent (KH550) in combination with planetary ball milling. PR coated uniformly on the fiber surface to form a core-shell structure. The effects of PR on the morphology, elemental composition, interfacial interactions, and laser absorption of the core-shell composite powder were investigated in detail. Results indicated that the composite powder exhibited good laser absorption within the infrared band.

2.
Materials (Basel) ; 14(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440725

RESUMO

In this work, a (SiC-AlN)/ZrB2 composite with outstanding mechanical properties was prepared by using polymer-derived ceramics (PDCs) and hot-pressing technique. Flexural strength reached up to 460 ± 41 MPa, while AlN and ZrB2 contents were 10 wt%, and 15 wt%, respectively, under a hot-pressing temperature of 2000 °C. XRD pattern-evidenced SiC generated by pyrolysis of polycarbosilane (PCS) was mainly composed by 2H-SiC and 4H-SiC, both belonging to α-SiC. Micron-level ZrB2 secondary phase was observed inside the (SiC-AlN)/ZrB2 composite, while the mean grain size (MGS) of SiC-AlN matrix was approximately 97 nm. This unique nano-micron hybrid microstructure enhanced the mechanical properties. The present investigation provided a feasible tactic for strengthening ceramics from PDCs raw materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...