Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(1): 112-123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177344

RESUMO

The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Suínos/genética , Animais , Humanos , Genótipo , Fenótipo , Análise de Sequência de RNA
2.
Alzheimers Res Ther ; 16(1): 14, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245754

RESUMO

BACKGROUND: Uncovering the functional relevance underlying verbal declarative memory (VDM) genome-wide association study (GWAS) results may facilitate the development of interventions to reduce age-related memory decline and dementia. METHODS: We performed multi-omics and pathway enrichment analyses of paragraph (PAR-dr) and word list (WL-dr) delayed recall GWAS from 29,076 older non-demented individuals of European descent. We assessed the relationship between single-variant associations and expression quantitative trait loci (eQTLs) in 44 tissues and methylation quantitative trait loci (meQTLs) in the hippocampus. We determined the relationship between gene associations and transcript levels in 53 tissues, annotation as immune genes, and regulation by transcription factors (TFs) and microRNAs. To identify significant pathways, gene set enrichment was tested in each cohort and meta-analyzed across cohorts. Analyses of differential expression in brain tissues were conducted for pathway component genes. RESULTS: The single-variant associations of VDM showed significant linkage disequilibrium (LD) with eQTLs across all tissues and meQTLs within the hippocampus. Stronger WL-dr gene associations correlated with reduced expression in four brain tissues, including the hippocampus. More robust PAR-dr and/or WL-dr gene associations were intricately linked with immunity and were influenced by 31 TFs and 2 microRNAs. Six pathways, including type I diabetes, exhibited significant associations with both PAR-dr and WL-dr. These pathways included fifteen MHC genes intricately linked to VDM performance, showing diverse expression patterns based on cognitive status in brain tissues. CONCLUSIONS: VDM genetic associations influence expression regulation via eQTLs and meQTLs. The involvement of TFs, microRNAs, MHC genes, and immune-related pathways contributes to VDM performance in older individuals.


Assuntos
Estudo de Associação Genômica Ampla , MicroRNAs , Humanos , Idoso , Estudo de Associação Genômica Ampla/métodos , Multiômica , Memória , Cognição , Polimorfismo de Nucleotídeo Único/genética
4.
Behav Brain Sci ; 46: e230, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695008

RESUMO

We contend that social science variables are the product of multiple partly heritable traits. Genetic associations with socioeconomic status (SES) may differ across populations, but this is a consequence of the intermediary traits associated with SES differences also varying. Furthermore, genetic data allow social scientists to make causal statements regarding the aetiology and consequences of SES.


Assuntos
Classe Social , Ciências Sociais , Humanos
5.
Nat Commun ; 14(1): 3146, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253732

RESUMO

Neuroticism is a heritable trait composed of separate facets, each conferring different levels of protection or risk, to health. By examining mitochondrial DNA in 269,506 individuals, we show mitochondrial haplogroups explain 0.07-0.01% of variance in neuroticism and identify five haplogroup and 15 mitochondria-marker associations across a general factor of neuroticism, and two special factors of anxiety/tension, and worry/vulnerability with effect sizes of the same magnitude as autosomal variants. Within-haplogroup genome-wide association studies identified H-haplogroup-specific autosomal effects explaining 1.4% variance of worry/vulnerability. These H-haplogroup-specific autosomal effects show a pleiotropic relationship with cognitive, physical and mental health that differs from that found when assessing autosomal effects across haplogroups. We identify interactions between chromosome 9 regions and mitochondrial haplogroups at P < 5 × 10-8, revealing associations between general neuroticism and anxiety/tension with brain-specific gene co-expression networks. These results indicate that the mitochondrial genome contributes toward neuroticism and the autosomal links between neuroticism and health.


Assuntos
Estudo de Associação Genômica Ampla , Mitocôndrias , Neuroticismo , Humanos , DNA Mitocondrial/genética , Variação Genética , Haplótipos , Mitocôndrias/genética
6.
Nat Commun ; 13(1): 6868, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369282

RESUMO

Cognitive deficits are known to be related to most forms of psychopathology. Here, we perform local genetic correlation analysis as a means of identifying independent segments of the genome that show biologically interpretable pleiotropic associations between cognitive dimensions and psychopathology. We identify collective segments of the genome, which we call "meta-loci", showing differential pleiotropic patterns for psychopathology relative to either cognitive task performance (CTP) or performance on a non-cognitive factor (NCF) derived from educational attainment. We observe that neurodevelopmental gene sets expressed during the prenatal-early childhood period predominate in CTP-relevant meta-loci, while post-natal gene sets are more involved in NCF-relevant meta-loci. Further, we demonstrate that neurodevelopmental gene sets are dissociable across CTP meta-loci with respect to their spatial distribution across the brain. Additionally, we find that GABA-ergic, cholinergic, and glutamatergic genes drive pleiotropic relationships within dissociable meta-loci.


Assuntos
Transtornos Cognitivos , Estudo de Associação Genômica Ampla , Pré-Escolar , Humanos , Estudo de Associação Genômica Ampla/métodos , Genômica , Psicopatologia
7.
Genome Biol ; 23(1): 176, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996157

RESUMO

BACKGROUND: Cross-species comparison of transcriptomes is important for elucidating evolutionary molecular mechanisms underpinning phenotypic variation between and within species, yet to date it has been essentially limited to model organisms with relatively small sample sizes. RESULTS: Here, we systematically analyze and compare 10,830 and 4866 publicly available RNA-seq samples in humans and cattle, respectively, representing 20 common tissues. Focusing on 17,315 orthologous genes, we demonstrate that mean/median gene expression, inter-individual variation of expression, expression quantitative trait loci, and gene co-expression networks are generally conserved between humans and cattle. By examining large-scale genome-wide association studies for 46 human traits (average n = 327,973) and 45 cattle traits (average n = 24,635), we reveal that the heritability of complex traits in both species is significantly more enriched in transcriptionally conserved than diverged genes across tissues. CONCLUSIONS: In summary, our study provides a comprehensive comparison of transcriptomes between humans and cattle, which might help decipher the genetic and evolutionary basis of complex traits in both species.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Animais , Bovinos/genética , Humanos , Herança Multifatorial , Fenótipo , Locos de Características Quantitativas
8.
Nat Genet ; 54(9): 1438-1447, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953587

RESUMO

Characterization of genetic regulatory variants acting on livestock gene expression is essential for interpreting the molecular mechanisms underlying traits of economic value and for increasing the rate of genetic gain through artificial selection. Here we build a Cattle Genotype-Tissue Expression atlas (CattleGTEx) as part of the pilot phase of the Farm animal GTEx (FarmGTEx) project for the research community based on 7,180 publicly available RNA-sequencing (RNA-seq) samples. We describe the transcriptomic landscape of more than 100 tissues/cell types and report hundreds of thousands of genetic associations with gene expression and alternative splicing for 23 distinct tissues. We evaluate the tissue-sharing patterns of these genetic regulatory effects, and functionally annotate them using multiomics data. Finally, we link gene expression in different tissues to 43 economically important traits using both transcriptome-wide association and colocalization analyses to decipher the molecular regulatory mechanisms underpinning such agronomic traits in cattle.


Assuntos
Locos de Características Quantitativas , Transcriptoma , Animais , Bovinos/genética , Regulação da Expressão Gênica , Fenótipo , Locos de Características Quantitativas/genética , Análise de Sequência de RNA , Transcriptoma/genética
9.
Nat Hum Behav ; 5(3): 399-406, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33318663

RESUMO

Indirect genetic effects, the effects of the genotype of one individual on the phenotype of other individuals, are environmental factors associated with human disease and complex trait variation that could help to expand our understanding of the environment linked to complex traits. Here, we study indirect genetic effects in 80,889 human couples of European ancestry for 105 complex traits. Using a linear mixed model approach, we estimate partner indirect heritability and find evidence of partner heritability on ~50% of the analysed traits. Follow-up analysis suggests that in at least ~25% of these traits, the partner heritability is consistent with the existence of indirect genetic effects including a wide variety of traits such as dietary traits, mental health and disease. This shows that the environment linked to complex traits is partially explained by the genotype of other individuals and motivates the need to find new ways of studying the environment.


Assuntos
Interação Gene-Ambiente , Genótipo , Nível de Saúde , Padrões de Herança , Estilo de Vida , Fenótipo , Adulto , Feminino , Humanos , Masculino , Fatores Sexuais , Cônjuges , População Branca
10.
Mol Psychiatry ; 26(8): 4344-4354, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31767999

RESUMO

Alcohol use and smoking are leading causes of death and disability worldwide. Both genetic and environmental factors have been shown to influence individual differences in the use of these substances. In the present study we tested whether genetic factors, modelled alongside common family environment, explained phenotypic variance in alcohol use and smoking behaviour in the Generation Scotland (GS) family sample of up to 19,377 individuals. SNP and pedigree-associated effects combined explained between 18 and 41% of the variance in substance use. Shared couple effects explained a significant amount of variance across all substance use traits, particularly alcohol intake, for which 38% of the phenotypic variance was explained. We tested whether the within-couple substance use associations were due to assortative mating by testing the association between partner polygenic risk scores in 34,987 couple pairs from the UK Biobank (UKB). No significant association between partner polygenic risk scores were observed. Associations between an individual's alcohol PRS (b = 0.05, S.E. = 0.006, p < 2 × 10-16) and smoking status PRS (b = 0.05, S.E. = 0.005, p < 2 × 10-16) were found with their partner's phenotype. In support of this, G carriers of a functional ADH1B polymorphism (rs1229984), known to be associated with greater alcohol intake, were found to consume less alcohol if they had a partner who carried an A allele at this SNP. Together these results show that the shared couple environment contributes significantly to patterns of substance use. It is unclear whether this is due to shared environmental factors, assortative mating, or indirect genetic effects. Future studies would benefit from longitudinal data and larger sample sizes to assess this further.


Assuntos
Consumo de Bebidas Alcoólicas , Fumar , Álcool Desidrogenase/genética , Consumo de Bebidas Alcoólicas/genética , Família , Humanos , Linhagem , Escócia , Fumar/genética , Fumar Tabaco
11.
Nat Commun ; 10(1): 2069, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043600

RESUMO

In the original version of this Article, the legend in the upper panel of Figure 2 incorrectly read 'paternal imprinting' and should have read 'maternal imprinting'. This has been corrected in both the PDF and HTML versions of the Article.

12.
Nat Commun ; 10(1): 1383, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918249

RESUMO

Parent-of-origin effects (POE) exist when there is differential expression of alleles inherited from the two parents. A genome-wide scan for POE on DNA methylation at 639,238 CpGs in 5,101 individuals identifies 733 independent methylation CpGs potentially influenced by POE at a false discovery rate ≤ 0.05 of which 331 had not previously been identified. Cis and trans methylation quantitative trait loci (mQTL) regulate methylation variation through POE at 54% (399/733) of the identified POE-influenced CpGs. The combined results provide strong evidence for previously unidentified POE-influenced CpGs at 171 independent loci. Methylation variation at 14 of the POE-influenced CpGs is associated with multiple metabolic traits. A phenome-wide association analysis using the POE mQTL SNPs identifies a previously unidentified imprinted locus associated with waist circumference. These results provide a high resolution population-level map for POE on DNA methylation sites, their local and distant regulators and potential consequences for complex traits.


Assuntos
Metilação de DNA/genética , Regulação da Expressão Gênica , Impressão Genômica/genética , Locos de Características Quantitativas/genética , Adulto , Ilhas de CpG , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Escócia
13.
Mol Psychiatry ; 23(12): 2347-2362, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29321673

RESUMO

Pedigree-based analyses of intelligence have reported that genetic differences account for 50-80% of the phenotypic variation. For personality traits these effects are smaller, with 34-48% of the variance being explained by genetic differences. However, molecular genetic studies using unrelated individuals typically report a heritability estimate of around 30% for intelligence and between 0 and 15% for personality variables. Pedigree-based estimates and molecular genetic estimates may differ because current genotyping platforms are poor at tagging causal variants, variants with low minor allele frequency, copy number variants, and structural variants. Using ~20,000 individuals in the Generation Scotland family cohort genotyped for ~700,000 single-nucleotide polymorphisms (SNPs), we exploit the high levels of linkage disequilibrium (LD) found in members of the same family to quantify the total effect of genetic variants that are not tagged in GWAS of unrelated individuals. In our models, genetic variants in low LD with genotyped SNPs explain over half of the genetic variance in intelligence, education, and neuroticism. By capturing these additional genetic effects our models closely approximate the heritability estimates from twin studies for intelligence and education, but not for neuroticism and extraversion. We then replicated our finding using imputed molecular genetic data from unrelated individuals to show that ~50% of differences in intelligence, and ~40% of the differences in education, can be explained by genetic effects when a larger number of rare SNPs are included. From an evolutionary genetic perspective, a substantial contribution of rare genetic variants to individual differences in intelligence, and education is consistent with mutation-selection balance.


Assuntos
Inteligência/genética , Personalidade/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Coortes , Família , Feminino , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Escócia
14.
Wellcome Open Res ; 3: 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30756089

RESUMO

Background: Stressful life events (SLEs) and neuroticism are risk factors for major depressive disorder (MDD). However, SLEs and neuroticism are heritable and genetic risk for SLEs is correlated with risk for MDD. We sought to investigate the genetic and environmental contributions to SLEs in a family-based sample, and quantify genetic overlap with MDD and neuroticism. Methods: A subset of Generation Scotland: the Scottish Family Health Study (GS), consisting of 9618 individuals with information on MDD, past 6 month SLEs, neuroticism and genome-wide genotype data was used in the present study. We estimated the heritability of SLEs using GCTA software. The environmental contribution to SLEs was assessed by modelling familial, couple and sibling components. Using polygenic risk scores (PRS) and LD score regression (LDSC) we analysed the genetic overlap between MDD, neuroticism and SLEs. Results: Past 6-month life events were positively correlated with lifetime MDD status (ß=0.21, r 2=1.1%, p=2.5 x 10 -25) and neuroticism (ß =0.13, r 2=1.9%, p=1.04 x 10 -37) at the phenotypic level.  Common SNPs explained 8% of the phenotypic variance in personal life events (those directly affecting the individual) (S.E.=0.03, p= 9 x 10 -4). A significant effect of couple environment was detected accounting for 13% (S.E.=0.03, p=0.016) of the phenotypic variation in SLEs. PRS analyses found that reporting more SLEs was associated with a higher polygenic risk for MDD (ß =0.05, r 2=0.3%, p=3 x 10 -5), but not a higher polygenic risk for neuroticism. LDSC showed a significant genetic correlation between SLEs and both MDD (r G=0.33, S.E.=0.08 ) and neuroticism (r G=0.15, S.E.=0.07). Conclusions: These findings suggest that SLEs should not be regarded solely as environmental risk factors for MDD as they are partially heritable and this heritability is shared with risk for MDD and neuroticism. Further work is needed to determine the causal direction and source of these associations.

15.
Nat Commun ; 8(1): 801, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986520

RESUMO

Regional differences in health-related phenotypes have been detected between and within countries. In Scotland, regions differ for a variety of health-related traits and display differences in mean lifespan of up to 7.5 years. Both genetics and lifestyle differences are potential causes of this variation. Using data on obesity-related traits of ~11,000 Scottish individuals with genome-wide genetic information and records of lifestyle and socioeconomic factors, we explored causes of regional variation by using models that incorporate genetic and environmental information jointly. We found that variation between individuals within regions showed substantial influence of both genetic variation and family environment. Regional variation for most obesity traits was associated with lifestyle and socioeconomic variables, such as smoking, diet and deprivation which are potentially modifiable. There was limited evidence that regional differences were of genetic origin. This has important implications for healthcare policies, suggesting that inequalities can be tackled with appropriate social and economic interventions.Health-related traits are known to vary geographically. Here, Amador and colleagues show that regional variation of obesity-related traits in a Scottish population is influenced more by lifestyle differences than it is by genetic differences.


Assuntos
Interação Gene-Ambiente , Estilo de Vida , Obesidade/epidemiologia , Fatores Socioeconômicos , Tecido Adiposo , Composição Corporal , Estatura , Índice de Massa Corporal , Peso Corporal , Colesterol/sangue , HDL-Colesterol/sangue , Creatinina/sangue , Impedância Elétrica , Feminino , Política de Saúde , Humanos , Masculino , Obesidade/sangue , Obesidade/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Escócia/epidemiologia , Circunferência da Cintura , Relação Cintura-Quadril
17.
EBioMedicine ; 14: 161-167, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27838479

RESUMO

BACKGROUND: Both genetic and environmental factors contribute to risk of depression, but estimates of their relative contributions are limited. Commonalities between clinically-assessed major depressive disorder (MDD) and self-declared depression (SDD) are also unclear. METHODS: Using data from a large Scottish family-based cohort (GS:SFHS, N=19,994), we estimated the genetic and environmental variance components for MDD and SDD. The components representing the genetic effect associated with genome-wide common genetic variants (SNP heritability), the additional pedigree-associated genetic effect and non-genetic effects associated with common environments were estimated in a linear mixed model (LMM). FINDINGS: Both MDD and SDD had significant contributions from components representing the effect from common genetic variants, the additional genetic effect associated with the pedigree and the common environmental effect shared by couples. The estimate of correlation between SDD and MDD was high (r=1.00, se=0.20) for common-variant-associated genetic effect and lower for the additional genetic effect from the pedigree (r=0.57, se=0.08) and the couple-shared environmental effect (r=0.53, se=0.22). INTERPRETATION: Both genetics and couple-shared environmental effects were major factors influencing liability to depression. SDD may provide a scalable alternative to MDD in studies seeking to identify common risk variants. Rarer variants and environmental effects may however differ substantially according to different definitions of depression.


Assuntos
Depressão/epidemiologia , Depressão/etiologia , Meio Ambiente , Interação Gene-Ambiente , Predisposição Genética para Doença , Autorrelato , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/etiologia , Feminino , Genótipo , Humanos , Masculino , Modelos Estatísticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Risco
18.
PLoS Genet ; 12(2): e1005804, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26836320

RESUMO

Genome-wide association studies have successfully identified thousands of loci for a range of human complex traits and diseases. The proportion of phenotypic variance explained by significant associations is, however, limited. Given the same dense SNP panels, mixed model analyses capture a greater proportion of phenotypic variance than single SNP analyses but the total is generally still less than the genetic variance estimated from pedigree studies. Combining information from pedigree relationships and SNPs, we examined 16 complex anthropometric and cardiometabolic traits in a Scottish family-based cohort comprising up to 20,000 individuals genotyped for ~520,000 common autosomal SNPs. The inclusion of related individuals provides the opportunity to also estimate the genetic variance associated with pedigree as well as the effects of common family environment. Trait variation was partitioned into SNP-associated and pedigree-associated genetic variation, shared nuclear family environment, shared couple (partner) environment and shared full-sibling environment. Results demonstrate that trait heritabilities vary widely but, on average across traits, SNP-associated and pedigree-associated genetic effects each explain around half the genetic variance. For most traits the recently-shared environment of couples is also significant, accounting for ~11% of the phenotypic variance on average. On the other hand, the environment shared largely in the past by members of a nuclear family or by full-siblings, has a more limited impact. Our findings point to appropriate models to use in future studies as pedigree-associated genetic effects and couple environmental effects have seldom been taken into account in genotype-based analyses. Appropriate description of the trait variation could help understand causes of intra-individual variation and in the detection of contributing loci and environmental factors.


Assuntos
Meio Ambiente , Coração/fisiologia , Metabolismo/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Simulação por Computador , Feminino , Humanos , Padrões de Herança/genética , Masculino , Modelos Genéticos , Característica Quantitativa Herdável , Tamanho da Amostra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...