Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
Sensors (Basel) ; 24(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39123894

RESUMO

Synchronous monitoring electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) have received significant attention in brain science research for their provision of more information on neuro-loop interactions. There is a need for an integrated hybrid EEG-fNIRS patch to synchronously monitor surface EEG and deep brain fNIRS signals. Here, we developed a hybrid EEG-fNIRS patch capable of acquiring high-quality, co-located EEG and fNIRS signals. This patch is wearable and provides easy cognition and emotion detection, while reducing the spatial interference and signal crosstalk by integration, which leads to high spatial-temporal correspondence and signal quality. The modular design of the EEG-fNIRS acquisition unit and optimized mechanical design enables the patch to obtain EEG and fNIRS signals at the same location and eliminates spatial interference. The EEG pre-amplifier on the electrode side effectively improves the acquisition of weak EEG signals and significantly reduces input noise to 0.9 µVrms, amplitude distortion to less than 2%, and frequency distortion to less than 1%. Detrending, motion correction algorithms, and band-pass filtering were used to remove physiological noise, baseline drift, and motion artifacts from the fNIRS signal. A high fNIRS source switching frequency configuration above 100 Hz improves crosstalk suppression between fNIRS and EEG signals. The Stroop task was carried out to verify its performance; the patch can acquire event-related potentials and hemodynamic information associated with cognition in the prefrontal area.


Assuntos
Encéfalo , Eletroencefalografia , Espectroscopia de Luz Próxima ao Infravermelho , Dispositivos Eletrônicos Vestíveis , Humanos , Eletroencefalografia/métodos , Eletroencefalografia/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Masculino , Adulto , Feminino , Processamento de Sinais Assistido por Computador , Algoritmos , Adulto Jovem
2.
World J Pediatr Surg ; 7(2): e000748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104727

RESUMO

Objective: This study was performed to evaluate the efficacy of robot-assisted thoracoscopic surgery (RATS) in the treatment of pulmonary sequestration (PS) in children. Methods: All video-assisted thoracoscopic surgery (VATS) and RAST performed on patients with PS at a single center from May 2019 to July 2023 were identified. The χ 2 and Wilcoxon tests were used to compare the perioperative outcomes between VATS and RATS groups. Results: Ninety-three patients underwent RATS while 77 patients underwent VATS. In both two groups, one patient converted to thoracotomy and no surgical mortality case. The median operation time was longer for the RATS group compared with the VATS group (75 min vs. 60 min, p <0.001). A lower ratio of chest tube indwelling (61.3% vs. 90.9%, p <0.001), fewer drainage days (1.0 day vs. 2.0 days, p <0.001), and a shorter postoperative length of stay (5.0 days vs. 6.0 days, p <0.001) were found in the RATS group than that in the VATS group. No significant difference was found in the incidence of short-term postoperative complications (hydrothorax and pneumothorax) between two groups. Conclusions: RATS was safe and effective in children with PS over 6 months old and more than 7 kg. Furthermore, RATS led to better short-time postoperative outcome than VATS. Multi-institutional studies are warranted to compare differences in long-term outcomes between RATS and VATS.

3.
Biomed Mater ; 19(5)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39025105

RESUMO

Endoscopic submucosal dissection (ESD) is the gold-standard surgical procedure for superficial esophageal cancer. A significant and challenging complication of this technique is post-ESD esophageal stricture. In this study, the feasibility of endoscopic catheter delivery of bioadhesive to esophageal lesions in a porcine model was tested. Injectable bioadhesive was composed of oxidized dextran (ODA) and chitosan hydrochloride (CS), its physicochemical properties, injectability, antibacterial activity, and cytocompatibility were investigated beforein vivotest. ODA-CS bioadhesive was delivered to the wound bed of the esophageal tissue using a custom-made catheter device after ESD in a porcine model. Our results show that the ODA-CS bioadhesive is of good injectability, tissue adhesive strength, antibacterial capacity, and blood compatibility.In vivodelivery was achieved by endoscopic spraying of ODA and CS in separate catheters fixed on the endoscopic probe. ODA and CS can be mixed well to allow in situ bioadhesive formation and firmly adhere to the esophageal wound surface. After two weeks, the bioadhesive maintained structural integrity and adhered to the surface of esophageal wounds. However, histological analysis reveals that the ODA-CS bioadhesive did not show improvement in attenuating inflammatory response after ESD. This pilot study demonstrates the feasibility of ODA-CS bioadhesive for shielding esophageal wounds after ESD, whereas efforts need to improve its anti-inflammatory activity to reduce fibrosis for stricture prevention.


Assuntos
Quitosana , Dextranos , Esôfago , Adesivos Teciduais , Animais , Projetos Piloto , Suínos , Quitosana/química , Adesivos Teciduais/química , Dextranos/química , Teste de Materiais , Materiais Biocompatíveis/química , Injeções , Ressecção Endoscópica de Mucosa/métodos , Neoplasias Esofágicas/cirurgia , Cicatrização/efeitos dos fármacos , Estenose Esofágica
4.
Cell Biosci ; 14(1): 94, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026356

RESUMO

BACKGROUD: Type II congenital pulmonary airway malformation (CPAM) is a rare pulmonary microcystic developmental malformation. Surgical excision is the primary treatment for CPAM, although maternal steroids and betamethasone have proven effective in reducing microcystic CPAM. Disturbed intercellular communication may contribute to the development of CPAM. This study aims to investigate the expression profile and analyze intercellular communication networks to identify genes potentially associated with type II CPAM pathogenesis and therapeutic targets. METHODS: RNA sequencing (RNA-seq) was performed on samples extracted from both the cystic area and the adjacent normal tissue post-surgery in CPAM patients. Iterative weighted gene correlation network analysis (iWGCNA) was used to identify genes specifically expressed in type II CPAM. Single-cell RNA-seq (scRNA-seq) was integrated to unveil the heterogeneity in cell populations and analyze the communication and interaction within epithelial cell sub-populations. RESULTS: A total of 2,618 differentially expressed genes were identified, primarily enriched in cilium-related biological process and inflammatory response process. Key genes such as EDN1, GPR17, FPR2, and CHRM1, involved in the G protein-coupled receptor (GPCR) signaling pathway and playing roles in cell differentiation, apoptosis, calcium homeostasis, and the immune response, were highlighted based on the protein-protein interaction network. Type II CPAM-associated modules, including ciliary function-related genes, were identified using iWGCNA. By integrating scRNA-seq data, AGR3 (related to calcium homeostasis) and SLC11A1 (immune related) were identified as the only two differently expressed genes in epithelial cells of CPAM. Cell communication analysis revealed that alveolar type 1 (AT1) and alveolar type 2 (AT2) cells were the predominant communication cells for outgoing and incoming signals in epithelial cells. The ligands and receptors between epithelial cell subtypes included COLLAGEN genes enriched in PI3K-AKT singaling and involved in epithelial to mesenchymal transition. CONCLUSIONS: In summary, by integrating bulk RNA-seq data of type II CPAM with scRNA-seq data, the gene expression profile and critical signaling pathways such as GPCR signaling and PI3K-AKT signaling pathways were revealed. Abnormally expressed genes in these pathways may disrupt epithelial-mesenchymal transition and contribute to the development of CPAM. Given the effectiveness of prenatal treatments of microcystic CPAM using maternal steroids and maternal betamethasone administration, targeting the genes and signaling pathways involved in the development of CPAM presents a promising therapeutic strategy.

5.
Genes Dis ; 11(5): 100949, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39071111

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL), a heterogeneous hematological malignancy, is caused by the developmental arrest of normal T-cell progenitors. The development of targeted therapeutic regimens is impeded by poor knowledge of the stage-specific aberrances in this disease. In this study, we performed multi-omics integration analysis, which included mRNA expression, chromatin accessibility, and gene-dependency database analyses, to identify potential stage-specific druggable targets and repositioned drugs for this disease. This multi-omics integration helped identify 29 potential pathological genes for T-ALL. These genes exhibited tissue-specific expression profiles and were enriched in the cell cycle, hematopoietic stem cell differentiation, and the AMPK signaling pathway. Of these, four known druggable targets (CDK6, TUBA1A, TUBB, and TYMS) showed dysregulated and stage-specific expression in malignant T cells and may serve as stage-specific targets in T-ALL. The TUBA1A expression level was higher in the early T cell precursor (ETP)-ALL cells, while TUBB and TYMS were mainly highly expressed in malignant T cells arrested at the CD4 and CD8 double-positive or single-positive stage. CDK6 exhibited a U-shaped expression pattern in malignant T cells along the naïve to maturation stages. Furthermore, mebendazole and gemcitabine, which target TUBA1A and TYMS, respectively, exerted stage-specific inhibitory effects on T-ALL cell lines, indicating their potential stage-specific antileukemic role in T-ALL. Collectively, our findings might aid in identifying potential stage-specific druggable targets and are promising for achieving more precise therapeutic strategies for T-ALL.

6.
Adv Sci (Weinh) ; 11(29): e2306860, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38864559

RESUMO

Breast tumor-initiating cells (BTICs) of triple-negative breast cancer (TNBC) tissues actively repair DNA and are resistant to treatments including chemotherapy, radiotherapy, and targeted therapy. Herein, it is found that a previously reported secreted protein, sclerostin domain containing 1 (SOSTDC1), is abundantly expressed in BTICs of TNBC cells and positively correlated with a poor patient prognosis. SOSTDC1 knockdown impairs homologous recombination (HR) repair, BTIC maintenance, and sensitized bulk cells and BTICs to Olaparib. Mechanistically, following Olaparib treatment, SOSTDC1 translocates to the nucleus in an importin-α dependent manner. Nuclear SOSTDC1 interacts with the N-terminus of the nucleoprotein, chromatin helicase DNA-binding factor (CHD1), to promote HR repair and BTIC maintenance. Furthermore, nuclear SOSTDC1 bound to ß-transducin repeat-containing protein (ß-TrCP) binding motifs of CHD1 is found, thereby blocking the ß-TrCP-CHD1 interaction and inhibiting ß-TrCP-mediated CHD1 ubiquitination and degradation. Collectively, these findings identify a novel nuclear SOSTDC1 pathway in regulating HR repair and BTIC maintenance, providing insight into the TNBC therapeutic strategies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ligação a DNA , Ftalazinas , Piperazinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Feminino , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Piperazinas/farmacologia , Ftalazinas/farmacologia , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Reparo de DNA por Recombinação/genética , Progressão da Doença , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Modelos Animais de Doenças , Núcleo Celular/metabolismo , DNA Helicases
7.
PLoS Biol ; 22(6): e3002647, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900742

RESUMO

The human brain is organized as segregation and integration units and follows complex developmental trajectories throughout life. The cortical manifold provides a new means of studying the brain's organization in a multidimensional connectivity gradient space. However, how the brain's morphometric organization changes across the human lifespan remains unclear. Here, leveraging structural magnetic resonance imaging scans from 1,790 healthy individuals aged 8 to 89 years, we investigated age-related global, within- and between-network dispersions to reveal the segregation and integration of brain networks from 3D manifolds based on morphometric similarity network (MSN), combining multiple features conceptualized as a "fingerprint" of an individual's brain. Developmental trajectories of global dispersion unfolded along patterns of molecular brain organization, such as acetylcholine receptor. Communities were increasingly dispersed with age, reflecting more disassortative morphometric similarity profiles within a community. Increasing within-network dispersion of primary motor and association cortices mediated the influence of age on the cognitive flexibility of executive functions. We also found that the secondary sensory cortices were decreasingly dispersed with the rest of the cortices during aging, possibly indicating a shift of secondary sensory cortices across the human lifespan from an extreme to a more central position in 3D manifolds. Together, our results reveal the age-related segregation and integration of MSN from the perspective of a multidimensional gradient space, providing new insights into lifespan changes in multiple morphometric features of the brain, as well as the influence of such changes on cognitive performance.


Assuntos
Envelhecimento , Encéfalo , Cognição , Longevidade , Imageamento por Ressonância Magnética , Humanos , Adulto , Idoso , Cognição/fisiologia , Adolescente , Pessoa de Meia-Idade , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Idoso de 80 Anos ou mais , Criança , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/crescimento & desenvolvimento , Adulto Jovem , Longevidade/fisiologia , Envelhecimento/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Função Executiva/fisiologia
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167288, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38862096

RESUMO

AD is the abbreviation for Alzheimer's Disease, which is a neurodegenerative disorder that features progressive dysfunction in cognition. Previous research has reported that mitophagy impairment and mitochondrial dysfunction have been crucial factors in the AD's pathogenesis. More recently, literature has emerged which offers findings suggesting that the nicotinamide adenine dinucleotide (short for NAD+) augmentation eliminates the defective mitochondria and restores mitophagy. Meanwhile, as an enzyme which is rate-limiting, the Nicotinamide phosphoribosyltransferase, or NAMPT, is part of the salvage pathway of NAD+ synthesis. Therefore, the aim of the research project has been to produce proof for how the NAMPT-NAD +-silent information-regulated transcription factors1/3 (short for SIRT1/3) axis function in mediating mitophagy in APP/PS1 mice aged six months. The results revealed that the NAMPT-NAD+-SIRT1/3 axis in the APP/PS1 mice's hippocampus was considerably declined. Surprisingly, P7C3 (an NAMPT activator) noticeably promoted the NAD+-SIRT1/3 axis, improved mitochondrial structure and function, enhanced mitophagy activity along with the ability of learning and memory. While FK866 (an NAMPT inhibitor) reversed the decreased NAD+-SIRT1/3 axis, and even exacerbated Aß plaque deposition level in the APP/PS1 mice's hippocampus. The findings observed in this study indicate two main points: avoiding downregulation of the NAMPT activity can prevent AD-related mitophagy impairment; on the other hand, NAMPT characterizes a potential therapeutic intervention regarding AD pathogenesis.

9.
Am J Med Sci ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944201

RESUMO

BACKGROUND AND OBJECTIVE: Non-small cell lung cancer (NSCLC) is a pernicious tumor with high incidence and mortality rates. The incidence rate of NSCLC increases with age and poses a serious danger to human health. The aim of this study was to determine the mechanism by which (-)-epicatechin (EC) alleviates NSCLC. METHODS: Twenty-four pairs of NSCLC tissues and cancer-adjacent tissues were collected, and A549 and H460 radiotherapy-resistant strains were generated by repeatedly irradiating A549 and H460 cells with dose-gradient X-rays. Radiotherapy-resistant H460 cells were successfully injected subcutaneously into the left dorsal side of nude mice at a dose of 1 × 105 to establish an NSCLC animal model. The levels of interrelated genes and proteins were detected by RT‒qPCR and Western blotting, and cell proliferation and apoptosis were evaluated by CCK‒8 assay, Transwell assay, flow cytometry, and TUNEL staining. RESULTS: LOC107986454 was highly expressed in NSCLC patients, while miR-143-3p was expressed at low levels and was negatively correlated with LOC107986454. Functionally, EC promoted autophagy and apoptosis induced by radiotherapy, restrained cell proliferation and migration, and ultimately enhanced the radiosensitivity of NSCLC cells. A downstream mechanistic study showed that EC facilitated miR-143-3p expression by inhibiting LOC107986454 and then restraining the expression of EZH2, which ultimately facilitated autophagy and apoptosis in cancer cells, inhibited proliferation and migration, and enhanced the radiosensitivity of NSCLC cells. CONCLUSION: EC can enhance the radiosensitivity of NSCLC cells by regulating the LOC107986454/miR-143-3p/EZH2 axis.

10.
EClinicalMedicine ; 73: 102656, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38828130

RESUMO

Background: Gastrointestinal stromal tumors (GISTs) represent the most prevalent type of subepithelial lesions (SELs) with malignant potential. Current imaging tools struggle to differentiate GISTs from leiomyomas. This study aimed to create and assess a real-time artificial intelligence (AI) system using endoscopic ultrasonography (EUS) images to differentiate between GISTs and leiomyomas. Methods: The AI system underwent development and evaluation using EUS images from 5 endoscopic centers in China between January 2020 and August 2023. EUS images of 1101 participants with SELs were retrospectively collected for AI system development. A cohort of 241 participants with SELs was recruited for external AI system evaluation. Another cohort of 59 participants with SELs was prospectively enrolled to assess the real-time clinical application of the AI system. The AI system's performance was compared to that of endoscopists. This study is registered with Chictr.org.cn, Number ChiCT2000035787. Findings: The AI system displayed an area under the curve (AUC) of 0.948 (95% CI: 0.921-0.969) for discriminating GISTs and leiomyomas. The AI system's accuracy (ACC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) reached 91.7% (95% CI 87.5%-94.6%), 90.3% (95% CI 83.4%-94.5%), 93.0% (95% CI 87.2%-96.3%), 91.9% (95% CI 85.3%-95.7%), and 91.5% (95% CI 85.5%-95.2%), respectively. Moreover, the AI system exhibited excellent performance in diagnosing ≤20 mm SELs (ACC 93.5%, 95% CI 0.900-0.969). In a prospective real-time clinical application trial, the AI system achieved an AUC of 0.865 (95% CI 0.764-0.966) and 0.864 (95% CI 0.762-0.966) for GISTs and leiomyomas diagnosis, respectively, markedly surpassing endoscopists [AUC 0.698 (95% CI 0.562-0.834) for GISTs and AUC 0.695 (95% CI 0.546-0.825) for leiomyomas]. Interpretation: We successfully developed a real-time AI-assisted EUS diagnostic system. The incorporation of the real-time AI system during EUS examinations can assist endoscopists in rapidly and accurately differentiating various types of SELs in clinical practice, facilitating improved diagnostic and therapeutic decision-making. Funding: Science and Technology Commission Foundation of Shanghai Municipality, Science and Technology Commission Foundation of the Xuhui District, the Interdisciplinary Program of Shanghai Jiao Tong University and the Research Funds of Shanghai Sixth people's Hospital.

11.
Mol Divers ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833123

RESUMO

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is implicated in accumulation of amyloid ß-protein (Aß) and phosphorylation of Tau proteins, and thus represents an important therapeutic target for neurodegenerative diseases. Though many DYRK1A inhibitors have been discovered, there is still no marketed drug targeting DYRK1A. This is partly due to the lack of effective and safe chemotypes. Therefore, it is still necessary to identify new classes of DYRK1A inhibitors. By performing virtual screening with the workflow mainly composed of pharmacophore modeling and molecular docking as well as the following DYRK1A inhibition assay, we identified compound L9, ((Z)-1-(((5-phenyl-1H-pyrazol-4-yl)methylene)-amino)-1H-tetrazol-5-amine), as a moderately active DYRK1A inhibitor (IC50: 1.67 µM). This compound was structurally different from the known DYRK1A inhibitors, showed a unique binding mode to DYRK1A. Furthermore, compound L9 showed neuroprotective activity against okadaic acid (OA)-induced injury in the human neuroblastoma cell line SH-SY5Y by regulating the expression of Aß and phosphorylation of Tau protein. This compound was neither toxic to the SH-SY5Y cells nor to the human normal liver cell line HL-7702 (IC50: >100 µM). In conclusion, we have identified a novel DYRK1A inhibitor with neuroprotective activity through virtual screening and in vitro biological evaluation, which holds the promise for further study.

13.
Mol Carcinog ; 63(8): 1500-1514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38751032

RESUMO

The serine protease CORIN catalyzes pro-atrial natriuretic peptide (pro-ANP) into an active ANP and maintains homeostasis of the internal environment. However, it is unclear whether CORIN participates in the regulation of tumor progression. We analyzed the expression profile of CORIN in gastric cancer tissues (GCs) and adjacent nontumoral tissues (NTs). We investigated the prognostic value of CORIN in GC patients. We characterized the in vitro and in vivo activity of CORIN in cultured GC cells with gain-of-function and loss-of-function experiments. The underlying mechanism was explored by using bioinformatics, a signaling antibody array, and confirmative western blot analyses, as well as rescue experiments with highly selective small-molecule inhibitors targeting the ERK1/2 MAPK signaling pathway. CORIN was upregulated in GCs than in NTs. Overexpression of CORIN was correlated with unfavorable prognoses in patients with GC. Ectopic expression of CORIN was promoted, whereas silencing of CORIN suppressed proliferation, colony formation, migration and invasion of GC cells, and tumor growth in vivo. Overexpression of CORIN-induced epithelial-mesenchymal transition (EMT) and activation of the ERK1/2 MAPK signaling pathway, while silencing of CORIN yielded opposite results. The in vitro tumor-promoting potency of CORIN could be antagonized by selective inhibitors targeting the ERK1/2 MAPK pathway. In conclusion, CORIN is a potential prognostic marker and therapeutic target for GC patients, which may promote tumor progression by mediating the ERK1/2 MAPK signaling pathway and EMT in GC cells.


Assuntos
Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Serina Endopeptidases , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Animais , Camundongos , Feminino , Masculino , Prognóstico , Linhagem Celular Tumoral , Movimento Celular , Pessoa de Meia-Idade , Camundongos Nus , Camundongos Endogâmicos BALB C , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
14.
Eur J Drug Metab Pharmacokinet ; 49(4): 437-447, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38709450

RESUMO

BACKGROUND AND OBJECTIVES: A substantial inter-individual variability has been observed in the pharmacokinetics of lamotrigine. The aim of the study was to investigate the impact of genetic polymorphism of the metabolizing enzymes (UGT2B7, UGT1A4) and transporter (ABCG2) on the pharmacokinetics and therapeutic efficacy of lamotrigine in patients with epilepsy. METHODS: The genetic analysis of single-nucleotide polymorphisms was conducted using polymerase chain reaction sequence. High-performance liquid chromatography/tandem mass spectrometry was employed to measure the plasma concentrations of lamotrigine. The efficacy of lamotrigine was assessed by evaluating the reduction rate of epileptic seizure frequency. RESULTS: This study included a cohort of 331 patients who were treated with lamotrigine as monotherapy. A linear correlation was observed between the lamotrigine concentration and daily dose taken (r = 0.58, p < 2.2e-16). Statistically significant differences were found in both the median plasma concentration and dose-adjusted concentration (C/D ratio) when comparing the ineffective to the effective group (p < 0.05). Multivariate analysis showed that UGT1A4 rs2011425, ABCG2 rs2231142 polymorphisms and age had a significant relationship with the lamotrigine concentrations (p < 0.05). Age was a predictive factor for C/D ratio (p < 0.001). Lamotrigine concentration and weight were good predictive factors for effective seizure outcomes (odds ratio [OR] = 0.715, 95% CI 0.658-0.776, p < 0.001; OR = 0.926, 95% CI 0.901-0.951, p < 0.001, respectively). The cut-off values of lamotrigine trough concentrations for clinical outcomes in the age-related groups were determined as 2.49 µg/ml (area under the receiver-operating characteristic curve [AUC]: 0.828, 95% CI 0.690-0.966), 2.70 µg/ml (AUC: 0.805, 95% CI 0.745-0.866) and 3.25 µg/ml (AUC: 0.807, 95% CI 0.686-0.928) for the adult group, adolescent group, and toddler and school-age group, respectively. CONCLUSIONS: UGT1A4 rs2011425 and ABCG2 rs2231142 were correlated with lamotrigine concentrations. Lower lamotrigine trough concentration was found in the ineffective group and the troughs were associated with seizure outcomes.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Anticonvulsivantes , Epilepsia , Glucuronosiltransferase , Lamotrigina , Proteínas de Neoplasias , Polimorfismo de Nucleotídeo Único , Humanos , Lamotrigina/farmacocinética , Lamotrigina/uso terapêutico , Lamotrigina/administração & dosagem , Glucuronosiltransferase/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Masculino , Feminino , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/uso terapêutico , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Proteínas de Neoplasias/genética , Adolescente , Idoso , Criança , Resultado do Tratamento , Estudos de Coortes
15.
Nat Prod Res ; : 1-9, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720659

RESUMO

In this study, thirty-four samples of Laggera crispata (Vahl) Hepper & J. R. I. Wood from five main production areas in Yunnan Province, were collected for experimentation. UPLC- PDA was used to generate fingerprints and the common peaks were analysed through R and SIMCA-P. L. crispata from different origins can be distinguished by OPLS-DA and PCA. The VIP values were compared, and 8 characteristic components with great differences were obtained. It was confirmed that the two characteristic components were chrysosplenetin and artemisetin, and the quantitative analysis was performed with these two compounds from L. crispata samples with different origins. Based on the variance analysis results, the most significant difference in the content of chrysosplendin and artemisin was in Lancang and Honghe and Lancang and Simao, respectively. The chrysosplenetin can be used as an important indicator for quality control and to trace the origin of L. crispata.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38758156

RESUMO

Objective: To establish and determine the content of the genotoxic impurity piperidine in the active pharmaceutical ingredient (API) of rimonabant using a liquid chromatography-mass spectrometry (LC-MS) method. This study underscores the importance of detecting piperidine due to its potential health risks, including carcinogenic and mutagenic effects, thus highlighting the critical need for rigorous quality control in pharmaceutical products. Methods: An Atlantis C18 column (5 µm, 3.9×100 mm) was chosen for separation due to its high efficiency and selectivity for piperidine, with a gradient elution of 0.05% formic acid-water (A) and methanol (B) as the mobile phase at a flow rate of 1.0 mL/min. The column temperature was optimized at 30°C to ensure peak resolution and sensitivity, the injection volume was set to 5.0 µL to minimize sample consumption while maintaining detectability, and the analysis time was kept at 7 min for efficient throughput. Results: Piperidine demonstrated excellent linearity in the concentration range of 0.03-0.40 µg/mL (R>0.99), with a detection limit of 0.01010 µg/mL. This detection limit is significantly lower than regulatory thresholds, indicating the method's high sensitivity compared to existing methods and its adequacy for regulatory compliance in pharmaceutical quality control. Conclusion: This LC-MS method not only demonstrated high accuracy, good repeatability, and strong durability but also sets a benchmark for future research, regulatory practices, and pharmaceutical quality control. By accurately detecting low levels of genotoxic impurities like piperidine, this method supports the development of safer drug formulations and underscores the importance of stringent quality control measures in the pharmaceutical industry.

17.
ACS Nano ; 18(22): 14441-14456, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38758604

RESUMO

The active targeting drug delivery system based on special types of endogenous cells such as macrophages has emerged as a promising strategy for tumor therapy, owing to its tumor homing property and biocompatibility. In this work, the active tumor-targeting drug delivery system carrying doxorubicin-loaded nanoparticles (DOX@MPF127-MCP-1, DMPM) on macrophage (RAW264.7) surfaces via the mediation of interaction with the CCR2/MCP-1 axis was exploited. Initially, the amphiphilic block copolymer Pluronic F127 (PF127) was carboxylated to MPF127 at the hydroxyl terminus. Subsequently, MPF127 was modified with MCP-1 peptide to prepare MPF127-MCP-1 (MPM). The DOX was wrapped in MPM to form DMPM nanomicelles (approximately 100 nm) during the self-assembly process of MPM. The DMPM spontaneously bound to macrophages (RAW264.7), which resulted in the construction of an actively targeting delivery system (macrophage-DMPM, MA-DMPM) in vitro and in vivo. The DOX in MA-DMPM was released in the acidic tumor microenvironment (TME) in a pH-responsive manner to increase DOX accumulation and enhance the tumor treatment effect. The ratio of MA-DMPM homing reached 220% in vitro compared with the control group, indicating that the MA-DMPM was excellently capable of tumor-targeting delivery. In in vivo experiments, nonsmall cell lung cancer cell (NCI-H1299) tumor models were established. The results of the fluorescence imaging system (IVIS) showed that MA-DMPM demonstrated tremendous tumor-targeting ability in vivo. The antitumor effects of MA-DMPM in vivo indicated that the proportion of tumor cell apoptosis in the DMPM-treated group was 63.33%. The findings of the tumor-bearing mouse experiment proved that MA-DMPM significantly suppressed tumor cell growth, which confirmed its immense potential and promising applications in tumor therapy.


Assuntos
Doxorrubicina , Macrófagos , Nanopartículas , Poloxâmero , Microambiente Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Animais , Microambiente Tumoral/efeitos dos fármacos , Camundongos , Poloxâmero/química , Nanopartículas/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Células RAW 264.7 , Sistemas de Liberação de Medicamentos , Humanos , Portadores de Fármacos/química , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem , Camundongos Endogâmicos BALB C , Quimiocina CCL2/metabolismo
19.
Int J Biol Macromol ; 269(Pt 1): 132024, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704072

RESUMO

Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) plays an essential role in Tau and Aß pathology closely related to Alzheimer's disease (AD). Accumulative evidence has demonstrated DYRK1A inhibition is able to reduce the pathological features of AD. Nevertheless, there is no approved DYRK1A inhibitor for clinical use as anti-AD therapy. This is somewhat due to the lack of effective and safe chemotypes of DYRK1A inhibitors. To address this issue, we carried out in silico screening, in vitro assays and in vivo efficacy evaluation with the aim to discover a new class of DYRK1A inhibitors for potential treatment of AD. By in silico screening, we selected and purchased 16 potential DYRK1A inhibitors from the Specs chemical library. Among them, compound Q17 (Specs ID: AO-476/40829177) potently inhibited DYRK1A. The hydrogen bonds between compound Q17 and two amino acid residues named GLU239 and LYS188, were uncovered by molecular docking and molecular dynamics simulation. The cell-based assays showed that compound Q17 could protect the SH-SY5Y human neuroblastoma cell line from okadaic acid (OA)-induced injury by targeting DYRK1A. More importantly, compound Q17 significantly improved cognitive dysfunction of 3 × Tg-AD mice, ameliorated pathological changes, and attenuated Tau hyperphosphorylation as well as Aß deposition. In summary, our computational modeling strategy is effective to identify novel chemotypes of DYRK1A inhibitors with great potential to treat AD, and the identified compound Q17 in this study is worthy of further study.


Assuntos
Doença de Alzheimer , Quinases Dyrk , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Animais , Camundongos , Simulação de Dinâmica Molecular , Linhagem Celular Tumoral , Proteínas tau/metabolismo , Descoberta de Drogas , Simulação por Computador , Modelos Animais de Doenças
20.
Cancer Res ; 84(14): 2282-2296, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657120

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. IL1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. In this study, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAM) to inhibit BTIC self-renewal and CD8+ T-cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1ß increased PD-L1 expression by interacting with the transcription factor Yin Yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PDL-1. Combined treatment with an IL1R2-neutralizing antibodies and anti-PD-1 led to enhanced antitumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes. Significance: IL1R2 in both macrophages and breast cancer cells orchestrates an immunosuppressive tumor microenvironment by upregulating PD-L1 expression and can be targeted to enhance the efficacy of anti-PD-1 in triple-negative breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Camundongos , Humanos , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Linhagem Celular Tumoral , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...