Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Blood ; 144(3): 247-248, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023873
2.
Cell Mol Gastroenterol Hepatol ; : 101378, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992465

RESUMO

BACKGROUND & AIMS: Addition of sialic acids (sialylation) to glycoconjugates is a common capping step of glycosylation. Our study aims to determine the roles of the overall sialylation in intestinal mucosal homeostasis. METHODS: Mice with constitutive deletion of intestinal epithelial sialylation (IEC Slc35a1-/- mice) and mice with inducible deletion of sialylation in intestinal epithelium (TM-IEC Slc35a1-/- mice) were generated, which were used to determine the roles of overall sialylation in intestinal mucosal homeostasis by ex vivo and muti-omics studies. RESULTS: IEC Slc35a1-/- mice developed mild spontaneous microbiota-dependent colitis. Additionally, 30% of IEC Slc35a1-/- mice had spontaneous tumors in the rectum over the age of 12 months. TM-IEC Slc35a1-/- mice were highly susceptible to acute inflammation induced by 1% DSS vs controls. Loss of total sialylation was associated with reduced mucus thickness on fecal sections and within colon tissues. TM-IEC Slc35a1-/- mice showed altered microbiota with an increase in Clostridia disporicum, which is associated a global reduction in the abundance of at least 20 unique taxa; however, metabolomic analysis did not show any significant differences in short-chain fatty acid levels. Treatment with 5-fluorouracil (5-FU) led to more severe small intestine mucositis in the IEC Slc35a1-/- mice vs. WT littermates, which was associated with reduced Lgr5+ cell representation in small intestinal crypts in IEC Slc35a1-/-;Lgr5-GFP mice. CONCLUSIONS: Loss of overall sialylation impairs mucus stability and the stem cell niche leading to microbiota-dependent spontaneous colitis and tumorigenesis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38899470

RESUMO

BACKGROUND: Integrin-regulated monocyte recruitment and cellular responses of monocyte-derived macrophages are critical for the pathogenesis of atherosclerosis. In the canonical model, talin1 controls ligand binding to integrins, a prerequisite for integrins to mediate leukocyte recruitment and induce immune responses. However, the role of talin1 in the development of atherosclerosis has not been studied. Our study investigated how talin1 in myeloid cells regulates the progression of atherosclerosis. METHODS: On an Apoe-/- background, myeloid talin1-deficient mice and the control mice were fed with a high-fat diet for 8 or 12 weeks to induce atherosclerosis. The atherosclerosis development in the aorta and monocyte recruitment into atherosclerotic lesions were analyzed. RESULTS: Myeloid talin1 deletion facilitated the formation of atherosclerotic lesions and macrophage deposition in lesions. Talin1 deletion abolished integrin ß2-mediated adhesion of monocytes but did not impair integrin α4ß1-dependent cell adhesion in a flow adhesion assay. Strikingly, talin1 deletion did not prevent Mn2+- or chemokine-induced activation of integrin α4ß1 to the high-affinity state for ligands. In an in vivo competitive homing assay, monocyte infiltration into inflamed tissues was prohibited by antibodies to integrin α4ß1 but was not affected by talin1 deletion or antibodies to integrin ß2. Furthermore, quantitative polymerase chain reaction and ELISA analysis showed that macrophages produced cytokines to promote inflammation and the proliferation of smooth muscle cells. Ligand binding to integrin ß3 inhibited cytokine generation in macrophages, although talin1 deletion abolished the negative effects of integrin ß3. CONCLUSIONS: Integrin α4ß1 controls monocyte recruitment during atherosclerosis. Talin1 is dispensable for integrin α4ß1 activation to the high-affinity state and integrin α4ß1-mediated monocyte recruitment. Yet, talin1 is required for integrin ß3 to inhibit the production of inflammatory cytokines in macrophages. Thus, intact monocyte recruitment and elevated inflammatory responses cause enhanced atherosclerosis in talin1-deficient mice. Our study provides novel insights into the roles of myeloid talin1 and integrins in the progression of atherosclerosis.

4.
Food Chem ; 454: 139696, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810446

RESUMO

A spindle-like Cu-based framework (Cu-Trp, Trp = L-Tryptophan) nanocrystal with ammonia-responsiveness was fabricated via simple aqueous solution approach, and it was subsequently explored as a functional compatibilizer of carboxymethyl starch/polyvinyl alcohol (CMS/PVA) blend toward constructing high-performance intelligent packaging films. The results showed that incorporation of Cu-Trp nanocrystal into CMS/PVA blend resulted in significant promotions regarding to the compatibility, mechanical strength (42.92 MPa), UV-blocking (with UV transmittance of only 2.4%), and water vapor barrier effectiveness of the blend film. Besides, the constructed CMS/PVA/Cu-Trp nanocomposite film exhibited superb long-term color stability, favorable antibacterial capacity (over 98.0%) toward both E. coli and S. aureus bacteria, as well as color change ability under ammonia environment. Importantly, the application trial confirmed that the CMS/PVA/Cu-Trp nanocomposite film is capable of visually monitoring shrimp spoilage during storage. These results implied that the CMS/PVA/Cu-Trp nanocomposite film holds tremendous potential as an intelligent active packaging material.


Assuntos
Antibacterianos , Cobre , Escherichia coli , Embalagem de Alimentos , Álcool de Polivinil , Staphylococcus aureus , Amido , Amido/química , Amido/análogos & derivados , Embalagem de Alimentos/instrumentação , Álcool de Polivinil/química , Escherichia coli/química , Antibacterianos/química , Antibacterianos/farmacologia , Cobre/química , Nanopartículas/química , Triptofano/química , Animais , Nanocompostos/química
5.
Cell Mol Gastroenterol Hepatol ; 17(6): 1039-1061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467191

RESUMO

BACKGROUND & AIMS: The functional maturation of the liver largely occurs after birth. In the early stages of life, the liver of a newborn encounters enormous high-fat metabolic stress caused by the consumption of breast milk. It is unclear how the maturing liver adapts to high lipid metabolism. Liver sinusoidal endothelial cells (LSECs) play a fundamental role in establishing liver vasculature and are decorated with many glycoproteins on their surface. The Slc35a1 gene encodes a cytidine-5'-monophosphate (CMP)-sialic acid transporter responsible for transporting CMP-sialic acids between the cytoplasm and the Golgi apparatus for protein sialylation. This study aimed to determine whether endothelial sialylation plays a role in hepatic vasculogenesis and functional maturation. METHODS: Endothelial-specific Slc35a1 knockout mice were generated. Liver tissues were collected for histologic analysis, lipidomic profiling, RNA sequencing, confocal immunofluorescence, and immunoblot analyses. RESULTS: Endothelial Slc35a1-deficient mice exhibited excessive neonatal hepatic lipid deposition, severe liver damage, and high mortality. Endothelial deletion of Slc35a1 led to sinusoidal capillarization and disrupted hepatic zonation. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) in LSECs was desialylated and VEGFR2 signaling was enhanced in Slc35a1-deficient mice. Inhibition of VEGFR2 signaling by SU5416 alleviated lipid deposition and restored hepatic vasculature in Slc35a1-deficient mice. CONCLUSIONS: Our findings suggest that sialylation of LSECs is critical for maintaining hepatic vascular development and lipid homeostasis. Targeting VEGFR2 signaling may be a new strategy to prevent liver disorders associated with abnormal vasculature and lipid deposition.


Assuntos
Células Endoteliais , Metabolismo dos Lipídeos , Fígado , Camundongos Knockout , Animais , Camundongos , Animais Recém-Nascidos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fígado/metabolismo , Fígado/patologia , Proteínas de Transporte de Nucleotídeos/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Blood Adv ; 8(4): 991-1001, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38237079

RESUMO

ABSTRACT: Glucosamine (UDP-N-acetyl)-2-epimerase and N-acetylmannosamine (ManNAc) kinase (GNE) is a cytosolic enzyme in de novo sialic acid biosynthesis. Congenital deficiency of GNE causes an autosomal recessive genetic disorder associated with hereditary inclusion body myopathy and macrothrombocytopenia. Here, we report a pediatric patient with severe macrothrombocytopenia carrying 2 novel GNE missense variants, c.1781G>A (p.Cys594Tyr, hereafter, C594Y) and c.2204C>G (p.Pro735Arg, hereafter, P735R). To investigate the biological significance of these variants in vivo, we generated a mouse model carrying the P735R mutation. Mice with homozygous P735R mutations exhibited cerebral hemorrhages as early as embryonic day 11 (E11), which subsequently progressed to large hemorrhages in the brain and spinal cord, and died between E11.5 and E12.5. Defective angiogenesis such as distended vascular sprouts were found in neural tissues and embryonic megakaryocytes were abnormally accumulated in the perineural vascular plexus in mutant mouse embryos. Furthermore, our in vitro experiments indicated that both C594Y and P735R are loss-of-function mutations with respect to de novo sialic acid biosynthesis. Overall, this study reveals a novel role for GNE-mediated de novo sialic acid biosynthesis in mouse embryonic angiogenesis.


Assuntos
Angiogênese , Ácido N-Acetilneuramínico , Animais , Criança , Humanos , Camundongos , Encéfalo , Mutação , Mutação de Sentido Incorreto
7.
Blood ; 143(13): 1293-1309, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38142410

RESUMO

ABSTRACT: Although it is caused by a single-nucleotide mutation in the ß-globin gene, sickle cell anemia (SCA) is a systemic disease with complex, incompletely elucidated pathologies. The mononuclear phagocyte system plays critical roles in SCA pathophysiology. However, how heterogeneous populations of hepatic macrophages contribute to SCA remains unclear. Using a combination of single-cell RNA sequencing and spatial transcriptomics via multiplexed error-robust fluorescence in situ hybridization, we identified distinct macrophage populations with diversified origins and biological functions in SCA mouse liver. We previously found that administering the von Willebrand factor (VWF)-cleaving protease ADAMTS13 alleviated vaso-occlusive episode in mice with SCA. Here, we discovered that the ADAMTS13-cleaved VWF was cleared from the circulation by a Clec4f+Marcohigh macrophage subset in a desialylation-dependent manner in the liver. In addition, sickle erythrocytes were phagocytized predominantly by Clec4f+Marcohigh macrophages. Depletion of macrophages not only abolished the protective effect of ADAMTS13 but exacerbated vaso-occlusive episode in mice with SCA. Furthermore, promoting macrophage-mediated VWF clearance reduced vaso-occlusion in SCA mice. Our study demonstrates that hepatic macrophages are important in the pathogenesis of SCA, and efficient clearance of VWF by hepatic macrophages is critical for the protective effect of ADAMTS13 in SCA mice.


Assuntos
Anemia Falciforme , Doenças Vasculares , Camundongos , Animais , Fator de von Willebrand/genética , Hibridização in Situ Fluorescente , Anemia Falciforme/patologia , Macrófagos/patologia , Proteína ADAMTS13/genética
8.
Cell Death Dis ; 14(8): 547, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612278

RESUMO

Although most cell membrane proteins are modified by glycosylation, our understanding of the role and actions of protein glycosylation is still very limited. ß1,3galactosyltransferase (C1GalT1) is a key glycosyltransferase that controls the biosynthesis of the Core 1 structure of O-linked mucin type glycans and is overexpressed by many common types of epithelial cancers. This study reports that suppression of C1GalT1 expression in human colon cancer cells caused substantial changes of protein glycosylation of cell membrane proteins, many of which were ligands of the galactoside-binding galectin-3 and the macrophage galactose-type lectin (MGL). This led to significant reduction of cancer cell proliferation, adhesion, migration and the ability of tumour cells to form colonies. Crucially, C1GalT1 suppression significantly reduced galectin-3-mediated tumour cell-cell interaction and galectin-3-promoted tumour cell activities. In the meantime, C1GalT1 suppression substantially increased MGL-mediated macrophage-tumour cell interaction and macrophage-tumour cell phagocytosis and cytokine secretion. C1GalT1-expressing cancer cells implanted in chick embryos resulted in the formation of significantly bigger tumours than C1GalT1-suppressed cells and the presence of galectin-3 increased tumour growth of C1GalT1-expressing but not C1GalT1-suppressed cells. More MGL-expressing macrophages and dendritic cells were seen to be attracted to the tumour microenvironment in ME C1galt1-/-/Erb mice than in C1galt1f/f /Erb mice. These results indicate that expression of C1GalT1 by tumour cells reciprocally controls tumour cell-cell and tumour-macrophage interactions mediated by galectin-3 and MGL with double impact on cancer development and progression. C1GalT1 overexpression in epithelial cancers therefore may represent a fundamental mechanism in cancer promotion and in reduction of immune response/surveillance in cancer progression.


Assuntos
Neoplasias do Colo , Galectina 3 , Embrião de Galinha , Humanos , Animais , Camundongos , Galectina 3/genética , Galactose , Neoplasias do Colo/genética , Glicosilação , Macrófagos , Microambiente Tumoral
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 1211-1216, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37551500

RESUMO

OBJECTIVE: To apply Bionano Saphyr visual full-length DNA optical mapping technology to the precise genetic diagnosis of hemophilia A carriers. METHODS: For 2 suspected F8 gene deficiency female carriers who could not be diagnosed by conventional next-generation sequencing technology, the full-length DNA optical mapping technology was used to detect and scan the sample X chromosome full-length visual haplotype characteristic map, which was compared with the normal haplotype. The gene structure variation information of the samples was obtained by compare with DNA atlas library. RESULTS: The average fluorescent marker length of the X chromosome DNA molecular where the F8 gene was located in the two samples was greater than 2.5 Mbp, and the average copy number was greater than 20×. After comparative analysis, one of the samples was a proximal inversion of intron 22 of the F8 gene, and another was an inversion of intron 22 accompanied by multiple deletions of large fragments. CONCLUSIONS: Bionano technology has a good detection rate for gene defects with large length and complex variation. In the absence of a proband or accurate genetic diagnosis results of the proband, the application of this technology to detect the heterozygous complex variant of the F8 gene is of great significance for the prenatal diagnosis and pre-pregnancy diagnosis of hemophilia carriers.

10.
Circ Res ; 133(6): 463-480, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555328

RESUMO

BACKGROUND: Cardiac valve disease is observed in 2.5% of the general population and 10% of the elderly people. Effective pharmacological treatments are currently not available, and patients with severe cardiac valve disease require surgery. PROX1 (prospero-related homeobox transcription factor 1) and FOXC2 (Forkhead box C2 transcription factor) are transcription factors that are required for the development of lymphatic and venous valves. We found that PROX1 and FOXC2 are expressed in a subset of valvular endothelial cells (VECs) that are located on the downstream (fibrosa) side of cardiac valves. Whether PROX1 and FOXC2 regulate cardiac valve development and disease is not known. METHODS: We used histology, electron microscopy, and echocardiography to investigate the structure and functioning of heart valves from Prox1ΔVEC mice in which Prox1 was conditionally deleted from VECs. Isolated valve endothelial cells and valve interstitial cells were used to identify the molecular mechanisms in vitro, which were tested in vivo by RNAScope, additional mouse models, and pharmacological approaches. The significance of our findings was tested by evaluation of human samples of mitral valve prolapse and aortic valve insufficiency. RESULTS: Histological analysis revealed that the aortic and mitral valves of Prox1ΔVEC mice become progressively thick and myxomatous. Echocardiography revealed that the aortic valves of Prox1ΔVEC mice are stenotic. FOXC2 was downregulated and PDGF-B (platelet-derived growth factor-B) was upregulated in the VECs of Prox1ΔVEC mice. Conditional knockdown of FOXC2 and conditional overexpression of PDGF-B in VECs recapitulated the phenotype of Prox1ΔVEC mice. PDGF-B was also increased in mice lacking FOXC2 and in human mitral valve prolapse and insufficient aortic valve samples. Pharmacological inhibition of PDGF-B signaling with imatinib partially ameliorated the valve defects of Prox1ΔVEC mice. CONCLUSIONS: PROX1 antagonizes PDGF-B signaling partially via FOXC2 to maintain the extracellular matrix composition and prevent myxomatous degeneration of cardiac valves.


Assuntos
Doenças das Valvas Cardíacas , Prolapso da Valva Mitral , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/prevenção & controle , Doenças das Valvas Cardíacas/metabolismo , Valva Mitral/metabolismo , Prolapso da Valva Mitral/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo
11.
Blood ; 142(12): 1071-1081, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294924

RESUMO

Rebalance of coagulation and anticoagulation to achieve a hemostatic effect has recently gained attention as an alternative therapeutic strategy for hemophilia. We engineered a humanized chimeric antibody, SR604, based on a previously published murine antibody, HAPC1573, which selectively blocks the anticoagulant activity of human activated protein C (APC). SR604 effectively blocked the anticoagulation activities of APC in human plasma deficient in various coagulation factors in vitro with affinities ∼60 times greater than that of HAPC1573. SR604 exhibited prophylactic and therapeutic efficacy in the tail-bleeding and knee-injury models of hemophilia A and B mice expressing human APC (humanized hemophilic mice). SR604 did not interfere with the cytoprotection and endothelial barrier function of APC, nor were there obvious toxicity effects in humanized hemophilic mice. Pharmacokinetic study showed a high bioavailability (106%) of subcutaneously injected SR604 in cynomolgus monkeys. These results demonstrate that SR604 is expected to be a safe and effective therapeutic and/or prophylactic agent with a prolonged half-life for patients with congenital factor deficiencies including hemophilia A and B.


Assuntos
Hemofilia A , Proteína C , Humanos , Camundongos , Animais , Proteína C/uso terapêutico , Hemofilia A/tratamento farmacológico , Modelos Animais de Doenças , Coagulação Sanguínea , Anticoagulantes/uso terapêutico
12.
Phys Rev Lett ; 130(22): 223601, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327414

RESUMO

Integrated quantum photonics has recently emerged as a powerful platform for generating, manipulating, and detecting entangled photons. Multipartite entangled states lie at the heart of the quantum physics and are the key enabling resources for scalable quantum information processing. Dicke state is an important class of genuinely entangled state, which has been systematically studied in the light-matter interactions, quantum state engineering, and quantum metrology. Here, by using a silicon photonic chip, we report the generation and collectively coherent control of the entire family of four-photon Dicke states, i.e., with arbitrary excitations. We generate four entangled photons from two microresonators and coherently control them in a linear-optic quantum circuit, in which the nonlinear and linear processing are achieved in a chip-scale device. The generated photons are in telecom band, which lays the groundwork for large-scale photonic quantum technologies for multiparty networking and metrology.


Assuntos
Cognição , Olho , Coração , Fótons , Física
13.
Cell Mol Gastroenterol Hepatol ; 15(2): 425-438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36244647

RESUMO

BACKGROUND & AIMS: Increased intestinal permeability is seen in a variety of inflammatory conditions such as enteric infections and inflammatory bowel disease. Because barrier function can provide a key biomarker of disease severity, it often is assayed in animal models. A common methodology involves gavaging mice with fluorescein isothiocyanate-conjugated dextran (FITC-D), followed by cardiac puncture to assay plasma fluorescence on a spectrophotometer. Although the FITC-D method is relatively simple, its sensitivity is limited and enables only a single measurement because the test requires killing the subject. Herein, we describe a novel flow cytometry-based method of intestinal permeability measurement based on detection of orally gavaged ovalbumin (OVA) that leaks out of the gut. Our approach uses minute blood volumes collected from the tail vein, permitting repeated testing of the same subject at multiple time points. By comparing this assay against the gold standard FITC-D method, we show the expanded utility of our OVA assay in measuring intestinal permeability. METHODS: We directly compared our OVA assay against the FITC-D assay by co-administering both probes orally to the same animals and subsequently using their respective methodologies to measure intestinal permeability by detecting probe levels in the plasma. Permeability was assessed in mice genetically deficient in intestinal mucus production or glycosylation. In addition, wild-type mice undergoing dextran sodium sulfate-induced colitis or infected by the enteric bacterial pathogen Citrobacter rodentium also were tested. RESULTS: The OVA assay showed very high efficacy in all animal models of intestinal barrier dysfunction tested. Besides identifying intestinal barrier dysfunction in mice with impaired mucin glycosylation, the assay also allowed for repeated tracking of intestinal permeability within the same animal over time, providing data that cannot be easily acquired with other currently applied methods. CONCLUSIONS: The OVA assay is a highly sensitive and effective method of measuring intestinal permeability in mouse models of barrier dysfunction and experimental colitis.


Assuntos
Colite , Dextranos , Camundongos , Animais , Dextranos/efeitos adversos , Mucosa Intestinal , Citometria de Fluxo , Fluoresceína-5-Isotiocianato/efeitos adversos , Colite/induzido quimicamente , Modelos Animais de Doenças , Permeabilidade
14.
Blood ; 140(22): 2314-2315, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454596
15.
Proc Natl Acad Sci U S A ; 119(34): e2207592119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969769

RESUMO

Vaso-occlusive episode (VOE) is a common and critical complication of sickle cell disease (SCD). Its pathogenesis is incompletely understood. von Willebrand factor (VWF), a multimeric plasma hemostatic protein synthesized and secreted by endothelial cells and platelets, is increased during a VOE. However, whether and how VWF contributes to the pathogenesis of VOE is not fully understood. In this study, we found increased VWF levels during tumor necrosis factor (TNF)-induced VOE in a humanized mouse model of SCD. Deletion of endothelial VWF decreased hemolysis, vascular occlusion, and organ damage caused by TNF-induced VOE in SCD mice. Moreover, administering ADAMTS13, the VWF-cleaving plasma protease, reduced plasma VWF levels, decreased inflammation and vaso-occlusion, and alleviated organ damage during VOE. These data suggest that promoting VWF cleavage via ADAMTS13 may be an effective treatment for reducing hemolysis, inflammation, and vaso-occlusion during VOE.


Assuntos
Anemia Falciforme , Doenças Vasculares , Fator de von Willebrand , Proteína ADAMTS13/metabolismo , Proteína ADAMTS13/farmacologia , Proteína ADAMTS13/uso terapêutico , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Deleção de Genes , Hemólise/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/etiologia , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
17.
Blood Adv ; 6(11): 3304-3314, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35390147

RESUMO

Hemophilia A and B are hereditary coagulation defects resulting in unstable blood clotting and recurrent bleeding. Current factor replacement therapies have major limitations such as the short half-life of the factors and development of inhibitors. Alternative approaches to rebalance the hemostasis by inhibiting the anticoagulant pathways have recently gained considerable interest. In this study, we tested the therapeutic potential of a monoclonal antibody, HAPC1573, that selectively blocks the anticoagulant activity of human activated protein C (APC). We generated F8-/- or F9-/- hemophilia mice expressing human protein C by genetically replacing the murine Proc gene with the human PROC. The resulting PROC+/+;F8-/- or PROC+/+;F9-/- mice had bleeding characteristics similar to their corresponding F8-/- or F9-/- mice. Pretreating the PROC+/+;F8-/- mice with HAPC1573 shortened the tail bleeding time. HAPC1573 pretreatment significantly reduced mortality and alleviated joint swelling, similar to those treated with either FVIII or FIX, of either PROC+/+;F8-/- or PROC+/+;F9-/- mice in a needle puncture-induced knee-joint bleeding model. Additionally, we found that HAPC1573 significantly improved the thrombin generation of PROC+/+;F8-/- mice but not F8-/- mice, indicating that HAPC1573 enhanced the coagulant activity of hemophilia mice by modulating human APC in vivo. We further documented that HAPC1573 inhibited the APC anticoagulant activity to improve the clotting time of human plasma deficient of FVIII, FIX, FXI, FVII, VWF, FV, or FX. These results demonstrate that selectively blocking the anticoagulant activity of human APC may be an effective therapeutic and/or prophylactic approach for bleeding disorders lacking FVIII, FIX, or other clotting factors.


Assuntos
Hemofilia A , Animais , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Coagulação Sanguínea , Hemofilia A/tratamento farmacológico , Hemofilia A/genética , Hemorragia , Hemostasia , Humanos , Camundongos , Proteína C/farmacologia , Proteína C/uso terapêutico
18.
Gut Microbes ; 14(1): 2052699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35380912

RESUMO

Over the past two decades, our appreciation of the gut mucus has moved from a static lubricant to a dynamic and essential component of the gut ecosystem that not only mediates the interface between host tissues and vast microbiota, but regulates how this ecosystem functions to promote mutualistic symbioses and protect from microbe-driven diseases. By delving into the complex chemistry and biology of the mucus, combined with innovative in vivo and ex vivo approaches, recent studies have revealed novel insights into the formation and function of the mucus system, the O-glycans that make up this system, and how they mediate two major host-defense strategies - resistance and tolerance - to reduce damage caused by indigenous microbes and opportunistic pathogens. This current review summarizes these findings by highlighting the emerging roles of mucus and mucin-type O-glycans in influencing host and microbial physiology with an emphasis on host defense strategies against bacteria in the gastrointestinal tract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Glicosilação , Mucosa Intestinal/microbiologia , Mucinas/metabolismo , Muco/metabolismo , Simbiose
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(1): 323-326, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35123648

RESUMO

Tubulin affects platelets count through the control of mitosis and the formation of pro-platelets during the maturation of megakaryoblast to platelets. Tubulin is involved in maintaining the integrity of platelet skeleton, and also participates in the change of platelet morphology during platelet activation. Some new anti-tumor drugs targeting cell mitosis are trying to reduce the effect on tubulin in order to reduce the side effect of drugs on platelet formation. In some patients with thrombocytopenia, the variation and polymorphism of the tubulin gene affect the structure of microtubule multimers, which leads to the decrease of platelet formation. This review summarized the latest progresses of tubulin in the regulation of megakaryopoiesis and thrombopoiesis.


Assuntos
Trombopoese , Tubulina (Proteína) , Plaquetas , Humanos , Megacariócitos , Contagem de Plaquetas
20.
Blood ; 139(16): 2523-2533, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35157766

RESUMO

Microvascular thrombosis in patients with thrombotic thrombocytopenic purpura (TTP) is initiated by GPIbα-mediated platelet binding to von Willebrand factor (VWF). Binding of VWF to GPIbα causes activation of the platelet surface integrin αIIbß3. However, the mechanism of GPIbα-initiated activation of αIIbß3 and its clinical importance for microvascular thrombosis remain elusive. Deletion of platelet C-type lectin-like receptor 2 (CLEC-2) did not prevent VWF binding to platelets but specifically inhibited platelet aggregation induced by VWF binding in mice. Deletion of platelet CLEC-2 also inhibited αIIbß3 activation induced by the binding of VWF to GPIbα. Using a mouse model of TTP, which was created by infusion of anti-mouse ADAMTS13 monoclonal antibodies followed by infusion of VWF, we found that deletion of platelet CLEC-2 decreased pulmonary arterial thrombosis and the severity of thrombocytopenia. Importantly, prophylactic oral administration of aspirin, an inhibitor of platelet activation, and therapeutic treatment of the TTP mice with eptifibatide, an integrin αIIbß3 antagonist, reduced pulmonary arterial thrombosis in the TTP mouse model. Our observations demonstrate that GPIbα-mediated activation of integrin αIIbß3 plays an important role in the formation of thrombosis in TTP. These observations suggest that prevention of platelet activation with aspirin may reduce the risk for thrombosis in patients with TTP.


Assuntos
Hipertensão Pulmonar , Púrpura Trombocitopênica Trombótica , Trombose , Aspirina , Plaquetas/metabolismo , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ativação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Púrpura Trombocitopênica Trombótica/metabolismo , Trombose/etiologia , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...