Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000588

RESUMO

Sand pear is the main cultivated pear species in China, and brown peel is a unique feature of sand pear. The formation of brown peel is related to the activity of the cork layer, of which lignin is an important component. The formation of brown peel is intimately associated with the biosynthesis and accumulation of lignin; however, the regulatory mechanism of lignin biosynthesis in pear peel remains unclear. In this study, we used a newly bred sand pear cultivar 'Xinyu' as the material to investigate the biosynthesis and accumulation of lignin at nine developmental stages using metabolomic and transcriptomic methods. Our results showed that the 30 days after flowering (DAF) to 50DAF were the key periods of lignin accumulation according to data analysis from the assays of lignin measurement, scanning electron microscope (SEM) observation, metabolomics, and transcriptomics. Through weighted gene co-expression network analysis (WGCNA), positively correlated modules with lignin were identified. A total of nine difference lignin components were identified and 148 differentially expressed genes (DEGs), including 10 structural genes (PAL1, C4H, two 4CL genes, HCT, CSE, two COMT genes, and two CCR genes) and MYB, NAC, ERF, and TCP transcription factor genes were involved in lignin metabolism. An analysis of RT-qPCR confirmed that these DEGs were involved in the biosynthesis and regulation of lignin. These findings further help us understand the mechanisms of lignin biosynthesis and provide a theoretical basis for peel color control and quality improvement in pear breeding and cultivation.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Lignina , Metaboloma , Pyrus , Transcriptoma , Lignina/biossíntese , Lignina/metabolismo , Pyrus/genética , Pyrus/metabolismo , Pyrus/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Redes e Vias Metabólicas , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Adv Sci (Weinh) ; : e2400979, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994880

RESUMO

Reconstructing the visible spectra of real objects is critical to the spectral camouflage from emerging spectral imaging. Electrochromic materials exhibit unique superiority for this goal due to their subtractive color-mixing model and structural diversity. Herein, a simulation model is proposed and a method is developed to fabricate electrochromic devices for dynamically reproducing the visible spectrum of the natural leaf. Over 20 kinds of pH-dependent leuco dyes have been synthesized/prepared through molecular engineering and offered available spectra/bands to reconstruct the spectrum of the natural leaf. More importantly, the spectral variance between the device and leaf is optimized from an initial 98.9 to an ideal 10.3 through the simulation model, which means, the similarity increased nearly nine-fold. As a promising spectrum reconstruction approach, it will promote the development of smart photoelectric materials in adaptive camouflage, spectral display, high-end encryption, and anti-counterfeiting.

3.
Sci Rep ; 14(1): 14568, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914586

RESUMO

COVID-19 has caused a worldwide pandemic, creating an urgent need for early detection methods. Breath analysis has shown great potential as a non-invasive and rapid means for COVID-19 detection. The objective of this study is to detect patients infected with SARS-CoV-2 and even the possibility to screen between different SARS-CoV-2 variants by analysis of carbonyl compounds in breath. Carbonyl compounds in exhaled breath are metabolites related to inflammation and oxidative stress induced by diseases. This study included a cohort of COVID-19 positive and negative subjects confirmed by reverse transcription polymerase chain reaction between March and December 2021. Carbonyl compounds in exhaled breath were captured using a microfabricated silicon microreactor and analyzed by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). A total of 321 subjects were enrolled in this study. Of these, 141 (85 males, 60.3%) (mean ± SD age: 52 ± 15 years) were COVID-19 (55 during the alpha wave and 86 during the delta wave) positive and 180 (90 males, 50%) (mean ± SD age: 45 ± 15 years) were negative. Panels of a total of 34 ketones and aldehydes in all breath samples were identified for detection of COVID-19 positive patients. Logistic regression models indicated high accuracy/sensitivity/specificity for alpha wave (98.4%/96.4%/100%), for delta wave (88.3%/93.0%/84.6%) and for all COVID-19 positive patients (94.7%/90.1%/98.3%). The results indicate that COVID-19 positive patients can be detected by analysis of carbonyl compounds in exhaled breath. The technology for analysis of carbonyl compounds in exhaled breath has great potential for rapid screening and detection of COVID-19 and for other infectious respiratory diseases in future pandemics.


Assuntos
Testes Respiratórios , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Testes Respiratórios/métodos , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Idoso , SARS-CoV-2/isolamento & purificação , Expiração , Aldeídos/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos
4.
Nat Commun ; 15(1): 5166, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886345

RESUMO

Boron-doped polycyclic aromatic hydrocarbons exhibit excellent optical properties, and regulating their photophysical processes is a powerful strategy to understand the luminescence mechanism and develop new materials and applications. Herein, an electrochemically responsive B-O dynamic coordination bond is proposed, and used to regulate the photophysical processes of boron-nitrogen-doped polyaromatic hydrocarbons. The formation of the B-O coordination bond under a suitable voltage is confirmed by experiments and theoretical calculations, and B-O coordination bond can be broken back to the initial state under opposite voltage. The whole process is accompanied by reversible changes in photophysical properties. Further, electrofluorochromic devices are successfully prepared based on the above electrochemically responsive coordination bond. The success and harvest of this exploration are beneficial to understand the luminescence mechanism of boron-nitrogen-doped polyaromatic hydrocarbons, and provide ideas for design of dynamic covalent bonds and broaden material types and applications.

5.
Talanta ; 276: 126197, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728800

RESUMO

Whereas the close associations of cesium ion with organochlorine compounds have been previously documented, the present report is the first attempt to exploit these interactions to create a trichloroethylene (TCE)-selective sensor. Gold monolayer-protected clusters peripherally functionalized with Cs+ ions were used to prepare a chemiresistance film on MEMS-fabricated interdigitated electrodes. Vapor sensing properties of the cesium-rich chemiresistor were determined using a panel of chlorinated hydrocarbons including TCE as well as polar and non-polar VOCs for comparison. The sensor was selective and highly sensitive toward VOCs containing a 1,2-dichloro group at concentrations as low as 0.1 ppm. The results suggest the key interaction contributing to sensor response is a bidentate, metallocycle-like coordination of the 1,2-dichloro group to the cesium cations at the sensor surface.

7.
Diagn Microbiol Infect Dis ; 109(3): 116309, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692202

RESUMO

BACKGROUND: The COVID-19 pandemic had profound global impacts on daily lives, economic stability, and healthcare systems. Diagnosis of COVID-19 infection via RT-PCR was crucial in reducing spread of disease and informing treatment management. While RT-PCR is a key diagnostic test, there is room for improvement in the development of diagnostic criteria. Identification of volatile organic compounds (VOCs) in exhaled breath provides a fast, reliable, and economically favorable alternative for disease detection. METHODS: This meta-analysis analyzed the diagnostic performance of VOC-based breath analysis in detection of COVID-19 infection. A systematic review of twenty-nine papers using the grading criteria from Newcastle-Ottawa Scale (NOS) and PRISMA guidelines was conducted. RESULTS: The cumulative results showed a sensitivity of 0.92 (95 % CI, 90 %-95 %) and a specificity of 0.90 (95 % CI 87 %-93 %). Subgroup analysis by variant demonstrated strong sensitivity to the original strain compared to the Omicron and Delta variant in detection of SARS-CoV-2 infection. An additional subgroup analysis of detection methods showed eNose technology had the highest sensitivity when compared to GC-MS, GC-IMS, and high sensitivity-MS. CONCLUSION: Overall, these results support the use of breath analysis as a new detection method of COVID-19 infection.


Assuntos
Testes Respiratórios , COVID-19 , SARS-CoV-2 , Sensibilidade e Especificidade , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Humanos , COVID-19/diagnóstico , Testes Respiratórios/métodos , SARS-CoV-2/isolamento & purificação , Teste para COVID-19/métodos , Cromatografia Gasosa-Espectrometria de Massas
8.
Proc Natl Acad Sci U S A ; 121(18): e2401060121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648475

RESUMO

Electrochromic (EC) displays with electronically regulating the transmittance of solar radiation offer the opportunity to increase the energy efficiency of the building and electronic products and improve the comfort and lifestyle of people. Despite the unique merit and vast application potential of EC technologies, long-awaited EC windows and related visual content displays have not been fully commercialized due to unsatisfactory production cost, durability, color, and complex fabrication processes. Here we develop a unique EC strategy and system based on the natural host and guest interactions to address the above issues. A completely reusable and sustainable EC device has been fabricated with potential advantages of extremely low cost, ideal user-/environment friendly property, and excellent optical modulation, which is benefited from the extracted biomass EC materials and reusable transparent electrodes involved in the system. The as-prepared EC window and nonemissive transparent display also show comprehensively excellent properties: high transmittance change (>85%), broad spectra modulation covering Ultraviolet (UV), Visible (Vis) to Infrared (IR) ranges, high durability (no attenuation under UV radiation for more than 1.5 mo), low open voltage (0.9 V), excellent reusability (>1,200 cycles) of the device's key components and reversibility (>4,000 cycles) with a large transmittance change, and pleasant multicolor. It is anticipated that unconventional exploration and design principles of dynamic host-guest interactions can provide unique insight into different energy-saving and sustainable optoelectronic applications.

9.
PeerJ ; 12: e17183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560476

RESUMO

Background: PEBP (phosphatidyl ethanolamine-binding protein) is widely found in eukaryotes including plants, animals and microorganisms. In plants, the PEBP family plays vital roles in regulating flowering time and morphogenesis and is highly associated to agronomic traits and yields of crops, which has been identified and characterized in many plant species but not well studied in Tartary buckwheat (Fagopyrum tataricum Gaertn.), an important coarse food grain with medicinal value. Methods: Genome-wide analysis of FtPEBP gene family members in Tartary buckwheat was performed using bioinformatic tools. Subcellular localization analysis was performed by confocal microscopy. The expression levels of these genes in leaf and inflorescence samples were analyzed using qRT-PCR. Results: Fourteen Fagopyrum tataricum PEBP (FtPEBP) genes were identified and divided into three sub-clades according to their phylogenetic relationships. Subcellular localization analysis of the FtPEBP proteins in tobacco leaves indicated that FT- and TFL-GFP fusion proteins were localized in both the nucleus and cytoplasm. Gene structure analysis showed that most FtPEBP genes contain four exons and three introns. FtPEBP genes are unevenly distributed in Tartary buckwheat chromosomes. Three tandem repeats were found among FtFT5/FtFT6, FtMFT1/FtMFT2 and FtTFL4/FtTFL5. Five orthologous gene pairs were detected between F. tataricum and F. esculentum. Seven light-responsive, nine hormone-related and four stress-responsive elements were detected in FtPEBPs promoters. We used real-time PCR to investigate the expression levels of FtPEBPs among two flowering-type cultivars at floral transition time. We found FtFT1/FtFT3 were highly expressed in leaf and young inflorescence of early-flowering type, whereas they were expressed at very low levels in late-flowering type cultivars. Thus, we deduced that FtFT1/FtFT3 may be positive regulators for flowering and yield of Tartary buckwheat. These results lay an important foundation for further studies on the functions of FtPEBP genes which may be utilized for yield improvement.


Assuntos
Fagopyrum , Filogenia , Fagopyrum/genética , Proteínas de Plantas/genética , Genoma de Planta , Etanolaminas/metabolismo
10.
Front Plant Sci ; 15: 1374925, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606078

RESUMO

Bud sport is a common and stable somatic variation in perennial fruit trees, and often leads to significant modification of fruit traits and affects the breeding value. To investigate the impact of bud sport on the main metabolites in the fruit of white-fleshed loquat, we conducted a multi-omics analysis of loquat fruits at different developmental stages of a white-fleshed bud sport mutant of Dongting loquat (TBW) and its wild type (TBY). The findings from the detection of main fruit quality indices and metabolites suggested that bud sport resulted in a reduction in the accumulation of carotenoids, fructose, titratable acid and terpenoids at the mature stage of TBW, while leading to the accumulation of flavonoids, phenolic acids, amino acids and lipids. The comparably low content of titratable acid further enhances the balanced and pleasent taste profile of TBW. Expression patterns of differentially expressed genes involved in fructose metabolism exhibited a significant increase in the expression level of S6PDH (EVM0006243, EVM0044405) prior to fruit maturation. The comparison of protein sequences and promoter region of S6PDH between TBY and TBW revealed no structural variations that would impact gene function or expression, indicating that transcription factors may be responsible for the rapid up-regulation of S6PDH before maturation. Furthermore, correlation analysis helped to construct a comprehensive regulatory network of fructose metabolism in loquat, including 23 transcription factors, six structural genes, and nine saccharides. Based on the regulatory network and existing studies, it could be inferred that transcription factors such as ERF, NAC, MYB, GRAS, and bZIP may promote fructose accumulation in loquat flesh by positively regulating S6PDH. These findings improve our understanding of the nutritional value and breeding potential of white-fleshed loquat bud sport mutant, as well as serve as a foundation for exploring the genes and transcription factors that regulate fructose metabolism in loquat.

11.
Enzyme Microb Technol ; 175: 110410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340378

RESUMO

Prunin of desirable bioactivity and bioavailability can be transformed from plant-derived naringin by the key enzyme α-L-rhamnosidase. However, the production was limited by unsatisfactory properties of α-L-rhamnosidase such as thermostability and organic solvent tolerance. In this study, biochemical characteristics, and hydrolysis capacity of a novel α-L-rhamnosidase from Spirochaeta thermophila (St-Rha) were investigated, which was the first characterized α-L-rhamnosidase for Spirochaeta genus. St-Rha showed a higher substrate specificity towards naringin and exhibited excellent thermostability and methanol tolerance. The Km of St-Rha in the methanol cosolvent system was decreased 7.2-fold comparing that in the aqueous phase system, while kcat/Km value of St-Rha was enhanced 9.3-fold. Meanwhile, a preliminary conformational study was implemented through comparative molecular dynamics simulation analysis to explore the mechanism underlying the methanol tolerance of St-Rha for the first time. Furthermore, the catalytic ability of St-Rha for prunin preparation in the 20% methanol cosolvent system was explored, and 200 g/L naringin was transformed into 125.5 g/L prunin for 24 h reaction with a corresponding space-time yield of 5.2 g/L/h. These results indicated that St-Rha was a novel α-L-rhamnosidase suitable for hydrolyzing naringin in the methanol cosolvent system and provided a better alternative for improving the efficient production yield of prunin.


Assuntos
Florizina/análogos & derivados , Spirochaeta , Metanol , Glicosídeo Hidrolases/química , Solventes
12.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(1): 31-36, 2024 Jan 15.
Artigo em Chinês | MEDLINE | ID: mdl-38269456

RESUMO

OBJECTIVES: To study the efficacy of bronchoalveolar lavage (BAL) combined with prone positioning in children with Mycoplasma pneumoniae pneumonia (MPP) and atelectasis and its effect on pulmonary function. METHODS: A prospective study was conducted on 94 children with MPP and atelectasis who were hospitalized in Ordos Central Hospital of Inner Mongolia from November 2020 to May 2023. The children were randomly divided into a treatment group and a control group, with 47 children in each group. The children in the treatment group were given conventional treatment, BAL, and prone positioning, and those in the control group were given conventional treatment and BAL. The two groups were compared in terms of fever, pulmonary signs, length of hospital stay, lung recruitment, and improvement in pulmonary function. RESULTS: Compared with the control group, the treatment group had significantly shorter time to improvement in pulmonary signs and length of hospital stay and a significantly higher rate of lung recruitment on day 7 of hospitalization, on the day of discharge, and at 1 week after discharge (P<0.05). Compared with the control group, the treatment group had significantly higher levels of forced vital capacity (FVC) as a percentage of the predicted value, forced expiratory volume (FEV) in 1 second as a percentage of the predicted value, ratio of FEV in 1 second to FVC, forced expiratory flow at 50% of FVC as a percentage of the predicted value, forced expiratory flow at 75% of FVC as a percentage of the predicted value, and maximal mid-expiratory flow as a percentage of the predicted value on the day of discharge and at 1 week after discharge (P<0.05). There was no significant difference in the time for body temperature to return to normal between the two groups (P>0.05). CONCLUSIONS: In the treatment of children with MPP and atelectasis, BAL combined with prone positioning can help to shorten the time to improvement in pulmonary signs and the length of hospital stay and promote lung recruitment and improvement in pulmonary function.


Assuntos
Pneumonia por Mycoplasma , Atelectasia Pulmonar , Criança , Humanos , Estudos Prospectivos , Mycoplasma pneumoniae , Decúbito Ventral , Atelectasia Pulmonar/terapia , Pneumonia por Mycoplasma/terapia , Lavagem Broncoalveolar , Dimercaprol
13.
Respir Med ; 222: 107534, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244700

RESUMO

BACKGROUND: Pathophysiological conditions underlying pulmonary fibrosis remain poorly understood. Exhaled breath volatile organic compounds (VOCs) have shown promise for lung disease diagnosis and classification. In particular, carbonyls are a byproduct of oxidative stress, associated with fibrosis in the lungs. To explore the potential of exhaled carbonyl VOCs to reflect underlying pathophysiological conditions in pulmonary fibrosis, this proof-of-concept study tested the hypothesis that volatile and low abundance carbonyl compounds could be linked to diagnosis and associated disease severity. METHODS: Exhaled breath samples were collected from outpatients with a diagnosis of Idiopathic Pulmonary Fibrosis (IPF) or Connective Tissue related Interstitial Lung Disease (CTD-ILD) with stable lung function for 3 months before enrollment, as measured by pulmonary function testing (PFT) DLCO (%), FVC (%) and FEV1 (%). A novel microreactor was used to capture carbonyl compounds in the breath as direct output products. A machine learning workflow was implemented with the captured carbonyl compounds as input features for classification of diagnosis and disease severity based on PFT (DLCO and FVC normal/mild vs. moderate/severe; FEV1 normal/mild/moderate vs. moderately severe/severe). RESULTS: The proposed approach classified diagnosis with AUROC=0.877 ± 0.047 in the validation subsets. The AUROC was 0.820 ± 0.064, 0.898 ± 0.040, and 0.873 ± 0.051 for disease severity based on DLCO, FEV1, and FVC measurements, respectively. Eleven key carbonyl VOCs were identified with the potential to differentiate diagnosis and to classify severity. CONCLUSIONS: Exhaled breath carbonyl compounds can be linked to pulmonary function and fibrotic ILD diagnosis, moving towards improved pathophysiological understanding of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Compostos Orgânicos Voláteis , Humanos , Pulmão , Fibrose Pulmonar Idiopática/diagnóstico , Testes de Função Respiratória , Testes Respiratórios
14.
Chin Med J (Engl) ; 137(1): 105-114, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38178324

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a type of highly invasive breast cancer with a poor prognosis. According to new research, long noncoding RNAs (lncRNAs) play a significant role in the progression of cancer. Although the role of lncRNAs in breast cancer has been well reported, few studies have focused on TNBC. This study aimed to explore the biological function and clinical significance of forkhead box C1 promoter upstream transcript (FOXCUT) in triple-negative breast cancer. METHODS: Based on a bioinformatic analysis of the cancer genome atlas (TCGA) database, we detected that the lncRNA FOXCUT was overexpressed in TNBC tissues, which was further validated in an external cohort of tissues from the General Surgery Department of the First Affiliated Hospital of Nanjing Medical University. The functions of FOXCUT in proliferation, migration, and invasion were detected in vitro or in vivo. Luciferase assays and RNA immunoprecipitation (RIP) were performed to reveal that FOXCUT acted as a competitive endogenous RNA (ceRNA) for the microRNA miR-24-3p and consequently inhibited the degradation of p38. RESULTS: lncRNA FOXCUT was markedly highly expressed in breast cancer, which was associated with poor prognosis in some cases. Knockdown of FOXCUT significantly inhibited cancer growth and metastasis in vitro or in vivo. Mechanistically, FOXCUT competitively bounded to miR-24-3p to prevent the degradation of p38, which might act as an oncogene in breast cancer. CONCLUSION: Collectively, this research revealed a novel FOXCUT/miR-24-3p/p38 axis that affected breast cancer progression and suggested that the lncRNA FOXCUT could be a diagnostic marker and therapeutic target for breast cancer.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
15.
Anticancer Drugs ; 35(4): 371-376, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241197

RESUMO

To investigate the effects of tamoxifen (TAM) and toremifene (TOR) on hepatic function and serum lipid levels in breast cancer patients receiving adjuvant endocrine therapy. The clinical data of 597 early breast cancer patients treated at the First Affiliated Hospital of Nanjing Medical University between January 2016 and December 2022 were collected. All the patients received standard adjuvant endocrine therapy with TAM or TOR after chemotherapy. Hepatic function and serum lipid data of all patients before and at 6 months and 1, 2, and 3 years after the treatment were collected retrospectively and analyzed statistically. There: no negative effect on hepatic function was observed in patients treated with either TAM or TOR. The triglyceride levels in both groups increased during treatment, and the effect of TAM on improving total cholesterol levels was stronger. Total cholesterol levels were not affected by time or treatment regimen. The low-density lipoprotein cholesterol levels decreased in both groups, and the effect was similar between groups. TAM can decrease the high-density lipoprotein cholesterol levels, whereas TOR can increase the high-density lipoprotein cholesterol levels, and there was a significant difference between groups. In the postoperative adjuvant endocrine therapy, TOR and TAM will not negatively impact the hepatic function of breast cancer patients, and TOR is better than TAM in the management of serum lipids; therefore, it may be a better choice for clinical medication.


Assuntos
Neoplasias da Mama , Toremifeno , Humanos , Feminino , Toremifeno/uso terapêutico , Toremifeno/farmacologia , Tamoxifeno/farmacologia , Estudos Retrospectivos , Antineoplásicos Hormonais/efeitos adversos , Quimioterapia Adjuvante , Adjuvantes Imunológicos , Lipídeos/uso terapêutico , Colesterol , Lipoproteínas HDL/uso terapêutico
16.
Br J Radiol ; 97(1153): 228-236, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263817

RESUMO

OBJECTIVE: To establish a nomogram for predicting the pathologic complete response (pCR) in breast cancer (BC) patients after NAC by applying magnetic resonance imaging (MRI) and ultrasound (US). METHODS: A total of 607 LABC women who underwent NAC before surgery between January 2016 and June 2022 were retrospectively enrolled, and then were randomly divided into the training (n = 425) and test set (n = 182) with the ratio of 7:3. MRI and US variables were collected before and after NAC, as well as the clinicopathologic features. Univariate and multivariate logistic regression analyses were applied to confirm the potentially associated predictors of pCR. Finally, a nomogram was developed in the training set with its performance evaluated by the area under the receiver operating characteristics curve (ROC) and validated in the test set. RESULTS: Of the 607 patients, 108 (25.4%) achieved pCR. Hormone receptor negativity (odds ratio [OR], 0.3; P < .001), human epidermal growth factor receptor 2 positivity (OR, 2.7; P = .001), small tumour size at post-NAC US (OR, 1.0; P = .031), tumour size reduction ≥50% at MRI (OR, 9.8; P < .001), absence of enhancement in the tumour bed at post-NAC MRI (OR, 8.1; P = .003), and the increase of ADC value after NAC (OR, 0.3; P = .035) were all significantly associated with pCR. Incorporating the above variables, the nomogram showed a satisfactory performance with an AUC of 0.884. CONCLUSION: A nomogram including clinicopathologic variables and MRI and US characteristics shows preferable performance in predicting pCR. ADVANCES IN KNOWLEDGE: A nomogram incorporating MRI and US with clinicopathologic variables was developed to provide a brief and concise approach in predicting pCR to assist clinicians in making treatment decisions early.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Imageamento por Ressonância Magnética , Terapia Neoadjuvante , Nomogramas , Estudos Retrospectivos
17.
Int J Environ Health Res ; 34(2): 1156-1167, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37158781

RESUMO

A retrospective analysis of birth data hospital-based obtained from 14 monitoring areas in the Huaihe River Basin from 2009 to 2019 was conducted. Trend in the total prevalence of birth defects (BDs) and subgroups were analyzed using the Joinpoint Regression model. The incidence of BDs increased gradually from 118.87 per 10,000 in 2009 to 241.18 per 10,000 in 2019 (AAPC = 5.91, P < 0.001). Congenital heart diseases were the most common subtype of BDs. The proportion of maternal age younger than 25 decreased but the age 25-40 years increased significantly (AAPC<20=-5.58; AAPC20-24=-6.38; AAPC25-29 = 5.15; AAPC30-35 = 7.07; AAPC35-40 = 8.27; All P < 0.05). Compared with the one-child policy period, the risk of BDs was greater for groups among maternal age younger than 40 years during the partial and universal two-child policy period (P < 0.001). The incidence of BDs and the proportion of women with advanced maternal age in Huaihe River Basin is increasing. There was an interaction between changes in birth policy and the mother's age on the risk of BDs.


Assuntos
Políticas , Humanos , Feminino , Adulto , Estudos Transversais , Estudos Retrospectivos , Idade Materna , China/epidemiologia
18.
Sci Total Environ ; 912: 169438, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38135082

RESUMO

Shewanella putrefaciens (S. putrefaciens) is one of the main microorganisms in soil bioreactors, which mainly immobilizes uranium through reduction and mineralization processes. However, the effects of elements such as phosphorus and ZVI, which may be present in the actual environment, on the mineralization and reduction processes are still not clearly understood and the environment is mostly in the absence of oxygen. In this study, we ensure that all experiments are performed in an anaerobic glove box, and we elucidate through a combination of macroscopic experimental findings and microscopic characterization that the presence of inorganic phosphates enhances the mineralization of uranyl ions on the surface of S. putrefaciens, while zero-valent iron (ZVI) facilitates the immobilization of uranium by promoting the reduction of uranium by S. putrefaciens. Interestingly, when inorganic phosphates and ZVI co-exist, both the mineralization and reduction of uranium on the bacterial surface are simultaneously enhanced. However, these two substances exhibit a certain degree of antagonism in terms of uranium immobilization by S. putrefaciens. Furthermore, it is found that the influence of pH on the mineralization and reduction of uranyl ions is far more significant than that of inorganic phosphates and ZVI. This study contributes to a better understanding of the environmental fate of uranium in real-world settings and provides valuable theoretical support for the bioremediation and risk assessment of uranium contamination.


Assuntos
Shewanella putrefaciens , Urânio , Ferro/química , Urânio/química , Fosfatos , Anaerobiose , Íons
19.
J Comput Assist Tomogr ; 47(6): 959-966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37948372

RESUMO

OBJECTIVE: This study aimed to perform an assessment of brain microstructure in children with autism aged 2 to 5 years using relaxation times acquired by synthetic magnetic resonance imaging. MATERIALS AND METHODS: Thirty-four children with autism spectrum disorder (ASD) (ASD group) and 17 children with global developmental delay (GDD) (GDD group) were enrolled, and synthetic magnetic resonance imaging was performed to obtain T1 and T2 relaxation times. The differences in brain relaxation times between the 2 groups of children were compared, and the correlation between significantly changed T1/T2 and clinical neuropsychological scores in the ASD group was analyzed. RESULTS: Compared with the GDD group, shortened T1 relaxation times in the ASD group were distributed in the genu of corpus callosum (GCC) ( P = 0.003), splenium of corpus callosum ( P = 0.002), and right thalamus (TH) ( P = 0.014), whereas shortened T2 relaxation times in the ASD group were distributed in GCC ( P = 0.011), left parietal white matter ( P = 0.035), and bilateral TH (right, P = 0.014; left, P = 0.016). In the ASD group, the T2 of the left parietal white matter is positively correlated with gross motor (developmental quotient [DQ] 2) and personal-social behavior (DQ5), respectively ( r = 0.377, P = 0.028; r = 0.392, P = 0.022); the T2 of the GCC was positively correlated with DQ5 ( r = 0.404, P = 0.018); and the T2 of the left TH is positively correlated with DQ2 and DQ5, respectively ( r = 0.433, P = 0.009; r = 0.377, P = 0.028). All significantly changed relaxation values were not significantly correlated with Childhood Autism Rating Scale scores. CONCLUSIONS: The shortened relaxometry times in the brain of children with ASD may be associated with the increased myelin content and decreased water content in the brain of children with ASD in comparison with GDD, contributing the understanding of the pathophysiology of ASD. Therefore, the T1 and T2 relaxometry may be used as promising imaging markers for ASD diagnosis.


Assuntos
Transtorno do Espectro Autista , Encefalopatias , Substância Branca , Humanos , Pré-Escolar , Criança , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia
20.
J Breath Res ; 18(1)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37875100

RESUMO

A 23-subject feasibility study is reported to assess how UV absorbance measurements on exhaled breath samples collected from silicon microreactors can be used to detect COVID-19. The silicon microreactor technology chemoselectively preconcentrates exhaled carbonyl volatile organic compounds and subsequent methanol elution provides samples for analysis. The underlying scientific rationale that viral infection will induce an increase in exhaled carbonyls appears to be supported by the results of the feasibility study. The data indicate statistically significant differences in measured UV absorbance values between healthy and symptomatic COVID-19 positive subjects in the wavelength range from 235 nm to 305 nm. Factors such as subject age were noted as potential confounding variables.


Assuntos
COVID-19 , Compostos Orgânicos Voláteis , Humanos , Estudos de Viabilidade , Silício , Testes Respiratórios/métodos , Análise Espectral , Expiração , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...