RESUMO
Coronavirus 3C-like protease (CoV 3CLpro) is essential for viral replication, providing an attractive target for monitoring the evolution of CoV and developing anti-CoV drugs. Here, the substrate-binding modes of 3CLpros from four CoV genera are analyzed and found that the S2 pocket in 3CLpro is highly conserved within each genus but differs between genera. Functionally, the S2 pocket, in conjunction with S4 and S1' pockets, governs the genus-specific substrate selectivity of 3CLpro. Resurrected ancestral 3CLpros from four CoV genera validate the genus-specific divergence of S2 pocket. Drawing upon the genus-specific S2 pocket as evolutionary marker, eight newly identified 3CLpros uncover the ancestral state of modern 3CLpro and elucidate the possible evolutionary process for CoV. It is also demonstrated that the S2 pocket is highly correlated with the genus-specific inhibitory potency of PF-07321332 (an FDA-approved drug against COVID-19) on different CoV 3CLpros. This study on 3CLpro provides novel insights to inform evolutionary mechanisms for CoV and develop genera-specific or broad-spectrum drugs against CoVs.
RESUMO
Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus with zoonotic potential. PDCoV spillovers were recently detected in Haitian children with acute undifferentiated febrile illness, underscoring the urgent need to develop anti-PDCoV therapeutics. Coronavirus 3C-like protease (CoV 3CLpro) is essential for viral replication, and therefore provides an attractive target for drugs directed against CoV. Here, we initially evaluated the anti-PDCoV effect of Nirmatrelvir (PF-07321332), an FDA-approved anti-SARS-CoV-2 drug targeting viral 3CLpro. Regrettably, a very limited anti-PDCoV effect was achieved. By analyzing the binding modes of Nirmatrelvir with PDCoV 3CLpro and SARS-CoV-2 3CLpro, we demonstrated that the S2 pocket of 3CLpro is the primary factor underlying the differential inhibitory potency of Nirmatrelvir against different CoV 3CLpros. Based on the specific characteristics of the S2 pocket of PDCoV 3CLpro, four derivatives of Nirmatrelvir (compounds T1-T4) with substituted P2 moieties were synthesized. Compound T1, with an isobutyl at the P2 site, displayed improved anti-PDCoV activity invitro (cell infection model) and invivo (embryonated chicken egg infection model), and therefore is a potential candidate drug to combat PDCoV. Together, our results identify the substrate-binding mode and substrate specificity of PDCoV 3CLpro, providing insight into the optimization of Nirmatrelvir as an antiviral therapeutic agent against PDCoV.
RESUMO
Porcine epidemic diarrhea (PED) has caused serious economic losses to the swine livestock industry. Due to the rapid variation in the PEDV) genome, especially the spike (S) protein, the cross-protection ability of antibodies between different vaccine strains is weakened. Hence, the rapid development of safe, broad-spectrum and highly effective attenuated PEDV vaccine still needs further research. Here, we found that the replacement of the S2 subunit had little effect on S protein immunogenicity. Moreover, the chimeric virus (YN-S2DR13), the S protein of the YN strain was replaced by the DR13 S2 subunit, which lost its trypsin tropism and increased its propagation ability (approximately 1 titer) in Vero cells. Then, the pathogenesis of YN-S2DR13 was evaluated in neonatal piglets. Importantly, quantitative real-time PCR, histopathology, and immunohistochemistry confirmed that the virulence of YN-S2DR13 was significantly reduced compared with that of YN. Immunization with YN-S2DR13 induced neutralizing antibodies against both YN and DR13 in weaned piglets. In vitro passaging data also showed that YN-S2DR13 had good genetic stability. Collectively, these results suggest that YN-S2DR13 has significant advantages as a novel vaccine candidate, including a capacity for viral propagation to high titers with no trypsin requirement and the potential to provide protection against both PEDV G1 and G2 strains infections. Our results also suggests that S2 subunit replacement using reverse genetics can be a rapid strategy for the rational design of live attenuated vaccines for PEDV. IMPORTANCE: Emerging highly virulent porcine epidemic diarrhea virus (PEDV) G2 strains has caused substantial economic losses worldwide. Vaccination with a live attenuated vaccine is a promising method to prevent and control PED because it can induce a strong immune response (including T- and B-cell immunity). Previous studies have demonstrated that the S2 subunit of the PEDV spike (S) protein is the determinant of PEDV trypsin independence. Here, we evaluated the pathogenicity, tissue tropism, and immunogenicity of the chimeric virus (YN-S2DR13) via animal experiments. We demonstrated that YN-S2DR13 strain, as a trypsin independent strain, increased intracellular proliferation capacity, significantly reduced virulence, and induced broad-spectrum neutralization protection against PEDV G1 and G2 strains. In vitro passaging data also validated the stability of YN-S2DR13. Our results showed that generating a chimeric PEDV strain that is trypsin-independent by replacing the S2 subunit is a promising approach for designing a live attenuated vaccine for PEDV in the future.
RESUMO
To withstand complex microbial challenges, the mammalian gut largely depends on the secretion of diverse antimicrobial proteins. Type III interferons (IFNλs) are ordinarily considered inducible antiviral cytokines involved in intestinal immunity. Unlike other IFNλs, we found that newly identified IFNλ4 is an intestinal antibacterial protein. Large amounts of natural IFNλ4 are present in the secretory layer of the intestinal tracts of healthy piglets, which suggests that IFNλ4 is in direct physiological contact with microbial pathogens. We also identified two biochemical functions of mammalian IFNλ4, the induction of bacterial agglutination and direct microbial killing, which are not functions of the other IFNλs. Further mechanistic investigations revealed that after binding to the carbohydrate fraction of lipopolysaccharide, mammalian IFNλ4 self-assembles into bacteria-surrounding nanoparticles that agglutinate bacteria, and that its unique cationic amphiphilic molecular structure facilitates the destruction of bacterial membranes. Our data reveal features of IFNλ4 distinct from those of previously reported IFNλs and suggest that noncanonical IFNλ4 is deeply involved in intestinal immunity, beyond simply cytokine signaling.
Assuntos
Interferons , Animais , Suínos , Interferons/metabolismo , Interferons/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lipopolissacarídeos , Interferon lambda , Peptídeos Antimicrobianos/metabolismoRESUMO
BACKGROUND: Migraine is a neurological disorder characterized by complex, widespread, and sudden attacks with an unclear pathogenesis, particularly in chronic migraine (CM). Specific brain regions, including the insula, amygdala, thalamus, and cingulate, medial prefrontal, and anterior cingulate cortex, are commonly activated by pain stimuli in patients with CM and animal models. This study employs fluorescence microscopy optical sectioning tomography (fMOST) technology and AAV-PHP.eB whole-brain expression to map activation patterns of brain regions in CM mice, thus enhancing the understanding of CM pathogenesis and suggesting potential treatment targets. METHODS: By repeatedly administering nitroglycerin (NTG) to induce migraine-like pain in mice, a chronic migraine model (CMM) was established. Olcegepant (OLC) was then used as treatment and its effects on mechanical pain hypersensitivity and brain region activation were observed. All mice underwent mechanical withdrawal threshold, light-aversive, and elevated plus maze tests. Viral injections were administered to the mice one month prior to modelling, and brain samples were collected 2 h after the final NTG/vehicle control injection for whole-brain imaging using fMOST. RESULTS: In the NTG-induced CMM, mechanical pain threshold decreased, photophobia, and anxiety-like behavior were observed, and OLC was found to improve these manifestations. fMOST whole-brain imaging results suggest that the isocortex-cerebral cortex plate region, including somatomotor areas (MO), somatosensory areas (SS), and main olfactory bulb (MOB), appears to be the most sensitive area of activation in CM (P < 0.05). Other brain regions such as the inferior colliculus (IC) and intermediate reticular nucleus (IRN) were also exhibited significant activation (P < 0.05). The improvement in migraine-like symptoms observed with OLC treatment may be related to its effects on these brain regions, particularly SS, MO, ansiform lobule (AN), IC, spinal nucleus of the trigeminal, caudal part (Sp5c), IRN, and parvicellular reticular nucleus (PARN) (P < 0.05). CONCLUSIONS: fMOST whole-brain imaging reveals c-Fos + cells in numerous brain regions. OLC improves migraine-like symptoms by modulating brain activity in some brain regions. This study demonstrates the activation of the specific brain areas in NTG-induced CMM and suggests some regions as a potential treatment mechanism according to OLC.
Assuntos
Encéfalo , Modelos Animais de Doenças , Transtornos de Enxaqueca , Nitroglicerina , Animais , Nitroglicerina/toxicidade , Nitroglicerina/farmacologia , Nitroglicerina/administração & dosagem , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/tratamento farmacológico , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Camundongos Endogâmicos C57BL , Mapeamento Encefálico , Vasodilatadores/farmacologia , Vasodilatadores/administração & dosagem , Limiar da Dor/efeitos dos fármacosRESUMO
Interactions between double-stranded RNA (dsRNA) and proteins play an important role in cellular homeostasis by regulating the editing, stability, and splicing of intracellular RNA. The identification of dsRNA-binding proteins (dsRBPs) is key; however, it has long been challenging to purify dsRBPs from cells. In this study, we developed a novel method, dsRBPC (dsRNA-binding protein capture), to purify cellular dsRBPs based on classic phase separation purification procedures. A global dsRNA-binding proteome of LLC-PK1 cells was obtained, and we identified 1326 dsRBPs, including 1303 putative novel dsRBPs. Functional analyses suggested that these enriched dsRBPs are mainly associated with rRNA processing, RNA splicing, transcriptional regulation, and nucleocytoplasmic transport. We also found that the ARM (armadillo/beta-catenin-like repeats) motif is a previously unknown dsRNA-binding domain, as demonstrated by biochemical experiments. Collectively, this study provides a useful approach for dsRBP identification and the discovery of a global dsRNA-binding proteome to comprehensively map the dsRNA - protein interaction network.
Assuntos
RNA de Cadeia Dupla , Proteínas de Ligação a RNA , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Animais , Proteoma/metabolismo , Ligação Proteica , Suínos , Linhagem Celular , Splicing de RNA , Separação de FasesRESUMO
Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus with zoonotic potential. The coronavirus spike (S) glycoprotein, especially the S1 subunit, mediates viral entry by binding to cellular receptors. However, the functional receptor of PDCoV remains poorly understood. In this study, we used the soluble PDCoV S1 protein as bait to capture the S1-binding cellular transmembrane proteins in combined immunoprecipitation and mass spectrometry analyses. A single guide RNA screen identified d-glucuronyl C5-epimerase (GLCE), a heparan sulfate-modifying enzyme, as a proviral host factor for PDCoV infection. GLCE knockout significantly inhibited the attachment and internalization stages of PDCoV infection. We also demonstrated the interaction between GLCE and PDCoV S with coimmunoprecipitation in both an overexpression system and PDCoV-infected cells. GLCE could be localized to the cell membrane, and an anti-GLCE antibody suppressed PDCoV infection. Although GLCE expression alone did not render nonpermissive cells susceptible to PDCoV infection, GLCE promoted the binding of PDCoV S to porcine amino peptidase N (pAPN), acting synergistically with pAPN to enhance PDCoV infection. In conclusion, our results demonstrate that GLCE is a novel cell-surface factor facilitating PDCoV entry and provide new insights into PDCoV infection. IMPORTANCE: The identification of viral receptors is of great significance, potentially extending our understanding of viral infection and pathogenesis. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus with the potential for cross-species transmission. However, the receptors or coreceptors of PDCoV are still poorly understood. The present study confirms that d-glucuronyl C5-epimerase (GLCE) is a positive regulator of PDCoV infection, promoting viral attachment and internalization. The anti-GLCE antibody suppressed PDCoV infection. Mechanically, GLCE interacts with PDCoV S and promotes the binding of PDCoV S to porcine amino peptidase N (pAPN), acting synergistically with pAPN to enhance PDCoV infection. This work identifies GLCE as a novel cell-surface factor facilitating PDCoV entry and paves the way for further insights into the mechanisms of PDCoV infection.
Assuntos
Deltacoronavirus , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Suínos , Deltacoronavirus/metabolismo , Humanos , Carboidratos Epimerases/metabolismo , Carboidratos Epimerases/genética , Ligação Proteica , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Doenças dos Suínos/virologia , Doenças dos Suínos/metabolismo , Linhagem Celular , Receptores Virais/metabolismo , Ligação Viral , Células HEK293 , Membrana Celular/metabolismo , Membrana Celular/virologiaRESUMO
Porcine reproductive and respiratory syndrome (PRRS), which poses substantial threats to the global pig industry, is primarily characterized by interstitial pneumonia. Cluster of differentiation 163 (CD163) is the essential receptor for PRRSV infection. Metalloproteinase-mediated cleavage of CD163 leads to the shedding of soluble CD163 (sCD163), thereby inhibiting PRRSV proliferation. However, the exact cleavage site in CD163 and the potential role of sCD163 in inflammatory responses during PRRSV infection remain unclear. Herein, we found that PRRSV infection increased sCD163 levels, as demonstrated in primary alveolar macrophages (PAMs), immortalized PAM (IPAM) cell lines, and sera from PRRSV-infected piglets. With LC-MS/MS, Arg-1041/Ser-1042 was identified as the cleavage site in porcine CD163, and an IPAM cell line with precise mutation at the cleavage site was constructed. Using the precisely mutated IPAM cells, we found that exogenous addition of sCD163 protein promoted inflammatory responses, while mutation at the CD163 cleavage site suppressed inflammatory responses. Consistently, inhibition of sCD163 using its neutralizing antibodies reduced PRRSV infection-triggered inflammatory responses. Importantly, sCD163 promoted cell polarization from M2 to M1 phenotype, which in turn facilitated inflammatory responses. Taken together, our findings identify sCD163 as a novel proinflammatory mediator and provide valuable insights into the mechanisms underlying the induction of inflammatory responses by PRRSV infection.
Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Inflamação , Macrófagos Alveolares , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Receptores de Superfície Celular , Animais , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos CD/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Macrófagos Alveolares/virologia , Macrófagos Alveolares/imunologia , Inflamação/virologia , Linhagem CelularRESUMO
Porcine reproductive and respiratory syndrome virus (PRRSV) presents a significant threat to the global swine industry. The development of highly effective subunit nanovaccines is a promising strategy for preventing PRRSV variant infections. In this study, two different types of ferritin (Ft) nanovaccines targeting the major glycoprotein GP5, named GP5m-Ft and (Bp-IVp)3-Ft, were constructed and evaluated as vaccine candidates for PRRSV. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) demonstrated that both purified GP5m-Ft and (Bp-IVp)3-Ft proteins could self-assemble into nanospheres. A comparison of the immunogenicity of GP5m-Ft and (Bp-IVp)3-Ft with an inactivated PRRSV vaccine in BALB/c mice revealed that mice immunized with GP5m-Ft exhibited the highest ELISA antibody levels, neutralizing antibody titers, the lymphocyte proliferation index, and IFN-γ levels. Furthermore, vaccination with the GP5m-Ft nanoparticle effectively protected piglets against a highly pathogenic PRRSV challenge. These findings suggest that GP5m-Ft is a promising vaccine candidate for controlling PRRS.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Ferritinas , Camundongos Endogâmicos BALB C , Nanopartículas , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas do Envelope Viral , Vacinas Virais , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Ferritinas/imunologia , Suínos , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Nanopartículas/química , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Feminino , Interferon gama/metabolismo , NanovacinasRESUMO
Since it was first reported in 2013, the NADC30-like PRRSV has been epidemic in China. Hubei Province is known as China's key hog-exporting region. To understand the prevalence and genetic variation of PRRSV, herein, we detected and analyzed 317 lung tissue samples from pigs with respiratory disease in Hubei Province, and demonstrated that the NADC30-like strain was the second-most predominant strain during 2017-2018, following the highly pathogenic PRRSV (HP-PRRSV). Additionally, we isolated a new NADC30-like PRRSV strain, named CHN-HB-2018, which could be stably passaged in Marc-145 cells. Genetic characterization analysis showed that compared with the NADC30 strain, the CHN-HB-2018 strain had several amino acid variations in glycoprotein (GP) 3, GP5, and nonstructural protein 2 (NSP2). Moreover, the CHN-HB-2018 strain showed a unique 5-amino acid (aa) deletion in NSP2, which has not previously been reported. Gene recombination analysis identified the CHN-HB-2018 strain as a potentially recombinant PRRSV of the NADC30-like strain and HP-PRRSV. Animal experiments indicated that the CHN-HB-2018 strain has a mild pathogenicity, with no mortality and only mild fever observed in piglets. This study contributes to defining the evolutionary characteristics of PRRSV and its molecular epidemiology in Hubei Province, and provides a potential candidate strain for PRRSV vaccine development.
Assuntos
Filogenia , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , Animais , Suínos , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , China/epidemiologia , Virulência , Genoma Viral , Recombinação Genética , Variação Genética , Pulmão/virologia , Pulmão/patologiaRESUMO
Coronavirus (CoV) 3C-like protease (3CLpro) is essential for viral replication and is involved in immune escape by proteolyzing host proteins. Deep profiling the 3CLpro substrates in the host proteome extends our understanding of viral pathogenesis and facilitates antiviral drug discovery. Here, 3CLpro from porcine epidemic diarrhea virus (PEDV), an enteropathogenic CoV, was used as a model which to identify the potential 3CLpro cleavage motifs in all porcine proteins. We characterized the selectivity of PEDV 3CLpro at sites P5-P4'. We then compiled the 3CLpro substrate preferences into a position-specific scoring matrix and developed a 3CLpro profiling strategy to delineate the protein substrate landscape of CoV 3CLpro. We identified 1,398 potential targets in the porcine proteome containing at least one putative cleavage site and experimentally validated the reliability of the substrate degradome. The PEDV 3CLpro-targeted pathways are involved in mRNA processing, translation, and key effectors of autophagy and the immune system. We also demonstrated that PEDV 3CLpro suppresses the type 1 interferon (IFN-I) cascade via the proteolysis of multiple signaling adaptors in the retinoic acid-inducible gene I (RIG-I) signaling pathway. Our composite method is reproducible and accurate, with an unprecedented depth of coverage for substrate motifs. The 3CLpro substrate degradome establishes a comprehensive substrate atlas that will accelerate the investigation of CoV pathogenicity and the development of anti-CoV drugs.IMPORTANCECoronaviruses (CoVs) are major pathogens that infect humans and animals. The 3C-like protease (3CLpro) encoded by CoV not only cleaves the CoV polyproteins but also degrades host proteins and is considered an attractive target for the development of anti-CoV drugs. However, the comprehensive characterization of an atlas of CoV 3CLpro substrates is a long-standing challenge. Using porcine epidemic diarrhea virus (PEDV) 3CLpro as a model, we developed a method that accurately predicts the substrates of 3CLpro and comprehensively maps the substrate degradome of PEDV 3CLpro. Interestingly, we found that 3CLpro may simultaneously degrade multiple molecules responsible for a specific function. For instance, it cleaves at least four adaptors in the RIG-I signaling pathway to suppress type 1 interferon production. These findings highlight the complexity of the 3CLpro substrate degradome and provide new insights to facilitate the development of anti-CoV drugs.
Assuntos
Proteases 3C de Coronavírus , Vírus da Diarreia Epidêmica Suína , Animais , Humanos , Proteases 3C de Coronavírus/metabolismo , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Células HEK293 , Interferon Tipo I/metabolismo , Proteólise , Proteoma/metabolismo , Especificidade por Substrato , Suínos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Replicação ViralRESUMO
BACKGROUND: Migraine stands as a prevalent primary headache disorder, with prior research highlighting the significant involvement of oxidative stress and inflammatory pathways in its pathogenesis and chronicity. Existing evidence indicates the capacity of Dl-3-n-butylphthalide (NBP) to mitigate oxidative stress and inflammation, thereby conferring neuroprotective benefits in many central nervous system diseases. However, the specific therapeutic implications of NBP in the context of migraine remain to be elucidated. METHODS: We established a C57BL/6 mouse model of chronic migraine (CM) using recurrent intraperitoneal injections of nitroglycerin (NTG, 10 mg/kg), and prophylactic treatment was simulated by administering NBP (30 mg/kg, 60 mg/kg, 120 mg/kg) by gavage prior to each NTG injection. Mechanical threshold was assessed using von Frey fibers, and photophobia and anxious behaviours were assessed using a light/dark box and elevated plus maze. Expression of c-Fos, calcitonin gene-related peptide (CGRP), Nucleus factor erythroid 2-related factor 2 (Nrf2) and related pathway proteins in the spinal trigeminal nucleus caudalis (SP5C) were detected by Western blotting (WB) or immunofluorescence (IF). The expression of IL-1ß, IL-6, TNF-α, Superoxide dismutase (SOD) and malondialdehyde (MDA) in SP5C and CGRP in plasma were detected by ELISA. A reactive oxygen species (ROS) probe was used to detect the expression of ROS in the SP5C. RESULTS: At the end of the modelling period, chronic migraine mice showed significantly reduced mechanical nociceptive thresholds, as well as photophobic and anxious behaviours. Pretreatment with NBP attenuated nociceptive sensitization, photophobia, and anxiety in the model mice, reduced expression levels of c-Fos and CGRP in the SP5C and activated Nrf2 and its downstream proteins HO-1 and NQO-1. By measuring the associated cytokines, we also found that NBP reduced levels of oxidative stress and inflammation. Most importantly, the therapeutic effect of NBP was significantly reduced after the administration of ML385 to inhibit Nrf2. CONCLUSIONS: Our data suggest that NBP may alleviate migraine by activating the Nrf2 pathway to reduce oxidative stress and inflammation in migraine mouse models, confirming that it may be a potential drug for the treatment of migraine.
Assuntos
Benzofuranos , Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Doenças Neuroinflamatórias , Espécies Reativas de Oxigênio , Fotofobia , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Nitroglicerina/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismoRESUMO
Orf virus (ORFV), a member of the genus Parapoxvirus, possesses an excellent immune activation capability, which makes it a promising immunomodulation agent. In this study, we evaluated ORFV as a novel adjuvant to enhance the immune response of mice to a subunit vaccine using porcine circovirus type 2 (PCV2) capsid (Cap) protein as a model. Our results showed that both inactivated and live attenuated ORFV activated mouse bone marrow-derived dendritic cells and increased expression of immune-related cytokines interleukin (IL)-1ß, IL-6, and TNF-α. Enhanced humoral and cellular immune responses were induced in mice immunized with PCV2 Cap protein combined with inactivated or live attenuated ORFV adjuvant compared with the aluminum adjuvant. Increased secretion of Th1 and Th2 cytokines by splenic lymphocytes in immunized mice further indicated that the ORFV adjuvant promoted a mixed Th1/Th2 immune response. Moreover, addition of the ORFV adjuvant to the PCV2 subunit vaccine significantly reduced the viral load in the spleen and lungs of PCV2-challenged mice and prevented pathological changes in lungs. This study demonstrates that ORFV enhances the immunogenicity of a PCV2 subunit vaccine by improving the adaptive immune response, suggesting the potential application of ORFV as a novel adjuvant.
Assuntos
Adjuvantes Imunológicos , Infecções por Circoviridae , Circovirus , Citocinas , Vírus do Orf , Vacinas de Subunidades Antigênicas , Vacinas Virais , Animais , Circovirus/imunologia , Camundongos , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/virologia , Adjuvantes Imunológicos/administração & dosagem , Citocinas/imunologia , Vírus do Orf/imunologia , Proteínas do Capsídeo/imunologia , Feminino , Imunidade Celular , Células Dendríticas/imunologia , Carga Viral , Anticorpos Antivirais/sangue , Imunidade Humoral , Suínos , Adjuvantes de Vacinas , Camundongos Endogâmicos BALB C , Células Th1/imunologiaRESUMO
The Warburg effect, also referred as aerobic glycolysis, is a common metabolic program during viral infection. Through targeted metabolomics combined with biochemical experiments and various cell models, we investigated the central carbon metabolism (CCM) profiles of cells infected with porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. We found that PDCoV infection required glycolysis but decreased glycolytic flux, exhibiting a non-Warburg effect characterized by pyruvic acid accumulation. Mechanistically, PDCoV enhanced pyruvate kinase activity to promote pyruvic acid anabolism, a process that generates pyruvic acid with concomitant ATP production. PDCoV also hijacked pyruvic acid catabolism to increase biosynthesis of non-essential amino acids (NEAAs), suggesting that pyruvic acid is an essential hub for PDCoV to scavenge host energy and metabolites. Furthermore, PDCoV facilitated glutaminolysis to promote the synthesis of NEAA and pyrimidines for optimal proliferation. Our work supports a novel CCM model after viral infection and provides potential anti-PDCoV drug targets.
Assuntos
Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Suínos , Animais , Coronavirus/metabolismo , Ácido Pirúvico/metabolismo , Doenças dos Suínos/metabolismo , Doenças dos Suínos/patologia , Infecções por Coronavirus/patologiaRESUMO
Coinfection with multiple viruses is a common phenomenon in clinical settings and is a crucial driver of viral evolution. Although numerous studies have demonstrated viral recombination arising from coinfections of different strains of a specific species, the role of coinfections of different species or genera during viral evolution is rarely investigated. Here, we analyzed coinfections of and recombination events between four different swine enteric coronaviruses that infect the jejunum and ileum in pigs, including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), and a deltacoronavirus, porcine deltacoronavirus (PDCoV). Various coinfection patterns were observed in 4,468 fecal and intestinal tissue samples collected from pigs in a 4-year survey. PEDV/PDCoV was the most frequent coinfection. However, recombination analyses have only detected events involving PEDV/TGEV and SADS-CoV/TGEV, indicating that inter-species recombination among coronaviruses is most likely to occur within the same genus. We also analyzed recombination events within the newly identified genus Deltacoronavirus and found that sparrows have played a unique host role in the recombination history of the deltacoronaviruses. The emerging virus PDCoV, which can infect humans, has a different recombination history. In summary, our study demonstrates that swine enteric coronaviruses are a valuable model for investigating the relationship between viral coinfection and recombination, which provide new insights into both inter- and intraspecies recombination events among swine enteric coronaviruses, and extend our understanding of the relationship between coronavirus coinfection and recombination.
Assuntos
Alphacoronavirus , Coinfecção , Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Humanos , Suínos , Animais , Coinfecção/veterinária , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Gastroenterite Transmissível/genética , Recombinação GenéticaRESUMO
BACKGROUND: Energy metabolism disorders and neurogenic inflammation play important roles in the central sensitization to chronic migraine (CM). AMP-activated protein kinase (AMPK) is an intracellular energy sensor, and its activation regulates inflammation and reduces neuropathic pain. However, studies on the involvement of AMPK in the regulation of CM are currently lacking. Therefore, this study aimed to explore the mechanism underlying the involvement of AMPK in the central sensitization to CM. METHODS: Mice with recurrent nitroglycerin (NTG)-induced CM were used to detect the expression of AMPK protein in the trigeminal nucleus caudalis (TNC). Following intraperitoneal injection of the AMPK activator 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) and inhibitor compound C, the mechanical pain threshold, activity level, and pain-like behaviors in the mice were measured. The expression of calcitonin gene-related peptide (CGRP) and cytokines, M1/M2 microglia, and NF-κB pathway activation were detected after the intervention. RESULTS: Repeated NTG injections resulted in a gradual decrease in AMPK protein expression, and the negative regulation of AMPK by increased ubiquitin-like plant homeodomain and RING finger domain 1 (UHRF1) expression may counteract AMPK activation by increasing ADP/ATP. AICAR can reduce the hyperalgesia and pain-like behaviors of CM mice, improve the activity of mice, reduce the expression of CGRP, IL-1ß, IL-6, and TNF-α in the TNC region, and increase the expression of IL-4 and IL-10. Moreover, AMPK in TNC was mainly located in microglia. AICAR could reduce the expression of inducible NO synthase (iNOS) in M1 microglia and increase the expression of Arginase 1 (Arg1) in M2 microglia by inhibiting the activation of NF-κB pathway. CONCLUSIONS: AMPK was involved in the central sensitization of CM, and the activation of AMPK reduced neuroinflammation in NTG-induced CM mice. AMPK may provide new insights into interventions for energy metabolism disorders and neurogenic inflammation in migraine.
Assuntos
Transtornos de Enxaqueca , Nitroglicerina , Camundongos , Animais , Nitroglicerina/efeitos adversos , Microglia/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , NF-kappa B/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sensibilização do Sistema Nervoso Central/fisiologia , Inflamação Neurogênica/metabolismo , Dor/metabolismo , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismoRESUMO
BACKGROUND: Diarrheal diseases caused by viral agents have led to a great morbidity, mortality, and economic loss in global pig industry. Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and group A porcine rotavirus (RVA) are main causative agents of swine viral diarrhea with similar clinical signs on Chinese farms and their co-infection is also common. However, it is still lack of a convenient method to detect these four agents. METHODS: A TaqMan multiplex qPCR method was developed to detect PEDV, TGEV, PDCoV, and RVA, simultaneously. This method was then applied to investigate 7,342 swine fecal samples or rectal swabs, as well as 1,246 swine intestinal samples collected from 2075 farms in China in 2022. RESULTS: Minimum detection limits of this method were 3 copies/µL for PEDV, 4 copies/µL for TGEV, 8 copies/µL for RVA, and 8 copies/µL for PDCoV, suggesting a good sensitivity. No signals were observed by using this method detecting other viral agents commonly prevalent in pigs, which is suggestive of a good specificity. Application of this method on investigating clinical samples demonstrated a relatively high positive rate for PEDV (22.21%, 1907/8588) and RVA (44.00%, 3779/8588). In addition, co-infection between PEDV and RVA was observed on 360 investigated farms, accounting for 17.35% (360/2075) of the farms where co-infection events were screened. CONCLUSIONS: A TaqMan multiplex qPCR method targeting PEDV, TGEV, PDCoV, and RVA was developed in this study. This method demonstrated a good specificity and sensitivity on investigating these four common viruses responsible for viral diarrhea on Chinese pig farms, which represents a convenient method for the monitoring and differential diagnosis of swine viral diarrhea.
RESUMO
Porcine reproductive and respiratory syndrome (PRRS), which has posed substantial threats to the swine industry worldwide, is primarily characterized by interstitial pneumonia. A disintegrin and metalloproteinase 17 (ADAM17) is a multifunctional sheddase involved in various inflammatory diseases. Herein, our study showed that PRRS virus (PRRSV) infection elevated ADAM17 activity, as demonstrated in primary porcine alveolar macrophages (PAMs), an immortalized PAM cell line (IPAM cells), and the lung tissues of PRRSV-infected piglets. We found that PRRSV infection promoted ADAM17 translocation from the endoplasmic reticulum to the Golgi by enhancing its interaction with inactive rhomboid protein 2 (iRhom2), a newly identified ADAM17 regulator, which in turn elevated ADAM17 activity. By screening for PRRSV-encoded structural proteins, viral envelope (E) and nucleocapsid (N) proteins were identified as the predominant ADAM17 activators. E and N proteins bind with both ADAM17 and iRhom2 to form ternary protein complexes, ultimately strengthening their interactions. Additionally, we demonstrated, using an ADAM17-knockout cell line, that ADAM17 augmented the shedding of soluble TNF-α, a pivotal inflammatory mediator. We also discovered that ADAM17-mediated cleavage of porcine TNF-α occurred between Arg-78 and Ser-79. By constructing a precision mutant cell line with Arg-78-Glu/Ser-79-Glu substitution mutations in TNF-α, we further revealed that the ADAM17-mediated production of soluble TNF-α contributed to the induction of inflammatory responses by PRRSV and its E and N proteins. Taken together, our results elucidate the mechanism by which PRRSV infection activates the iRhom2/ADAM17/TNF-α axis to enhance inflammatory responses, providing valuable insights into the elucidation of PRRSV pathogenesis.
Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Suínos , Animais , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Pulmão , Macrófagos AlveolaresRESUMO
The microtubule (MT) is a highly dynamic polymer that functions in various cellular processes through MT hyperacetylation. Thus, many viruses have evolved mechanisms to hijack the MT network of the cytoskeleton to allow intracellular replication of viral genomic material. Coronavirus non-structural protein 8 (nsp8), a component of the viral replication transcriptional complex, is essential for viral survival. Here, we found that nsp8 of porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with a zoonotic potential, inhibits interferon (IFN)-ß production by targeting melanoma differentiation gene 5 (MDA5), the main pattern recognition receptor for coronaviruses in the cytoplasm. Mechanistically, PDCoV nsp8 interacted with MDA5 and induced autophagy to degrade MDA5 in wild-type cells, but not in autophagy-related (ATG)5 or ATG7 knockout cells. Further screening for autophagic degradation receptors revealed that nsp8 interacts with sequestosome 1/p62 and promotes p62-mediated selective autophagy to degrade MDA5. Importantly, PDCoV nsp8 induced hyperacetylation of MTs, which in turn triggered selective autophagic degradation of MDA5 and subsequent inhibition of IFN-ß production. Overall, our study uncovers a novel mechanism employed by PDCoV nsp8 to evade host innate immune defenses. These findings offer new insights into the interplay among viruses, IFNs, and MTs, providing a promising target to develop anti-viral drugs against PDCoV.IMPORTANCECoronavirus nsp8, a component of the viral replication transcriptional complex, is well conserved and plays a crucial role in viral replication. Exploration of the role mechanism of nsp8 is conducive to the understanding of viral pathogenesis and development of anti-viral strategies against coronavirus. Here, we found that nsp8 of PDCoV, an emerging enteropathogenic coronavirus with a zoonotic potential, is an interferon antagonist. Further studies showed that PDCoV nsp8 interacted with MDA5 and sequestosome 1/p62, promoting p62-mediated selective autophagy to degrade MDA5. We further found that PDCoV nsp8 could induce hyperacetylation of MT, therefore triggering selective autophagic degradation of MDA5 and inhibiting IFN-ß production. These findings reveal a novel immune evasion strategy used by PDCoV nsp8 and provide insights into potential therapeutic interventions.
Assuntos
Infecções por Coronavirus , Deltacoronavirus , Doenças dos Suínos , Animais , Autofagia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Deltacoronavirus/metabolismo , Interferons/metabolismo , Microtúbulos/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Suínos , Doenças dos Suínos/virologiaRESUMO
HDAC6, a structurally and functionally unique member of the histone deacetylase (HDAC) family, is an important host factor that restricts viral infection. The broad-spectrum antiviral activity of HDAC6 makes it a potent antiviral agent. Previously, we found that HDAC6 functions to antagonize porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. However, the final outcome is typically a productive infection that materializes as cells succumb to viral infection, indicating that the virus has evolved sophisticated mechanisms to combat the antiviral effect of HDAC6. Here, we demonstrate that PDCoV nonstructural protein 5 (nsp5) can cleave HDAC6 at glutamine 519 (Q519), and cleavage of HDAC6 was also detected in the context of PDCoV infection. More importantly, the anti-PDCoV activity of HDAC6 was damaged by nsp5 cleavage. Mechanistically, the cleaved HDAC6 fragments (amino acids 1-519 and 520-1159) lost the ability to degrade PDCoV nsp8 due to their impaired deacetylase activity. Furthermore, nsp5-mediated cleavage impaired the ability of HDAC6 to activate RIG-I-mediated interferon responses. We also tested three other swine enteric coronaviruses (transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome-coronavirus) and found that all these coronaviruses have adopted similar mechanisms to cleave HDAC6 in both an overexpression system and virus-infected cells, suggesting that cleavage of HDAC6 is a common strategy utilized by swine enteric coronaviruses to antagonize the host's antiviral capacity. Together, these data illustrate how swine enteric coronaviruses antagonize the antiviral function of HDAC6 to maintain their infection, providing new insights to the interaction between virus and host.IMPORTANCEViral infections and host defenses are in constant opposition. Once viruses combat or evade host restriction, productive infection is achieved. HDAC6 is a broad-spectrum antiviral protein that has been demonstrated to inhibit many viruses, including porcine deltacoronavirus (PDCoV). However, whether HDAC6 is reciprocally targeted and disabled by viruses remains unclear. In this study, we used PDCoV as a model and found that HDAC6 is targeted and cleaved by nsp5, a viral 3C-like protease. The cleaved HDAC6 loses its deacetylase activity as well as its ability to degrade viral proteins and activate interferon responses. Furthermore, this cleavage mechanism is shared among other swine enteric coronaviruses. These findings shed light on the intricate interplay between viruses and HDAC6, highlighting the strategies employed by viruses to evade host antiviral defenses.