Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.150
Filtrar
1.
Chem Res Toxicol ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400275

RESUMO

PURPOSE: To investigate the effects of hepatic enzyme activity variations and CYP2B6 gene polymorphisms on the in vivo and in vitro metabolism of efavirenz. MAIN METHODS: In vitro enzyme systems using rat and human liver microsomes (RLM/HLM) were established, with in vivo studies conducted on Sprague-Dawley rats. Metabolite detection was performed via LC-MS/MS. Human recombinant CYP2B6 microsomes were prepared using a baculovirus-insect cell system and ultracentrifugation, with efavirenz serving as the substrate to study enzyme kinetics. RESULTS: Isavuconazole exhibited an IC50 of 21.14 ± 0.57 µM in RLM, indicating a mixed competitive and noncompetitive mechanism, and an IC50 of 40.44 ± 4.23 µM in HLM, suggesting an anticompetitive mechanism. In rats, coadministration of efavirenz and isavuconazole significantly increased the AUC, Tmax, and Cmax of efavirenz. Co-administration of efavirenz and rifampicin significantly elevated the AUC, Tmax, and Cmax of 8-OH-efavirenz. The activity of CYP2B6.4, 6, and 7 increased significantly compared to CYP2B6.1, with relative clearance ranging from 158.34% to 212.72%. Conversely, the activity of CYP2B6.3, 8, 10, 11, 13-15, 18-21, 23-27, 31-33, and 37 was markedly reduced, ranging from 4.30% to 79.89%. CONCLUSION: Variations in liver enzyme activity and CYP2B6 genetic polymorphisms can significantly alter the metabolism of efavirenz. It provides laboratory-based data for the precise application of efavirenz and other CYP2B6 substrate drugs.

2.
Opt Lett ; 49(20): 5961-5964, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39404582

RESUMO

High-performance and wavelength-tunable random lasing has a wide application prospect. We developed an enhanced-performance and wavelength-tunable magnetically controlled random lasing system based on R6G solution doped with Fe3O4/Au nanoparticles (NPs), in which Fe3O4/Au NPs could exhibit both magnetic and plasmonic characteristics. Compared to the Fe3O4 NPs, Fe3O4/Au NPs could more effectively lower the random lasing threshold, which was 37.6% of that of the net gain medium. This is because the Fe3O4/Au NPs exhibit the plasmonic effect and larger scattering cross section than the Fe3O4 NPs. In addition, the distribution of the Fe3O4/Au NPs in the R6G solution could be effectively regulated by an external magnetic field; thus the random lasing emission modes could be tuned in real-time, and a switch between the random lasing and amplified spontaneous emission can be achieved by removing or applying the external magnetic field. This work provides a simple method to enhance the lasing properties and tune the emission wavelength simultaneously.

4.
Biochim Biophys Acta Mol Basis Dis ; 1871(1): 167542, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39419453

RESUMO

Metabolic reprogramming precedes most alterations during pathological cardiac hypertrophy and heart failure (HF). Recent studies have revealed that Phosphofructokinase, platelet (PFKP) has a wealth of metabolic and non-metabolic functions. In this study, we explored the role of PFKP in cardiac hypertrophic growth and HF. The expression level of PFKP was elevated both in pathological cardiac remodeling mouse model challenged by transverse aortic constriction (TAC) surgery and in the neonatal rat cardiomyocytes (NRCMs) stimulated by phenylephrine (PE). In global PFKP knockout (PFKP-KO) mice, cardiac hypertrophy was ameliorated under TAC surgery, while overexpression of PFKP by intravenous injection of adeno-associated virus 9 (AAV9) under the cardiac troponin T (cTnT) promoter worsened myocardial hypertrophy and fibrosis. In NRCMs, small interfering RNA (SiRNA) knockdown or adenovirus (Adv) overexpression of PFKP was employed and the intervention of PFKP showed a similar phenotype. Mechanistically, immunoprecipitation combined with liquid chromatography-tandem mass spectrometry (IP-MS/MS) analysis was used to identify the interacting proteins of PFKP. Eukaryotic translation initiation factor 2 subunit beta (EIF2S2) was identified as the downstream target of PFKP. In the PE-stimulated NRCM hypertrophy model and mouse TAC model, knocking down EIF2S2 after PFKP overexpression reduced the synthesis of new proteins and alleviated the hypertrophy phenotype. Our findings illuminate that PFKP participates in pathological cardiac hypertrophy partly by regulating protein synthesis through EIF2S2, which provides a new clue for the involvement of metabolic intermediates in signal transduction.

5.
Seizure ; 123: 1-8, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39426154

RESUMO

BACKGROUND: The CCDC22 gene plays vital roles in regulating the NF-κB pathway, an essential pathway for neuroinflammation, neurodevelopment, and epileptogenesis. Previously, variants in CCDC22 were reported to be associated with intellectual disability. This study aimed to explore the association between CCDC22 and epilepsy. METHODS: Trios-based whole-exome sequencing (WES) was performed in a cohort of patients with epilepsy of unknown cause recruited from the China Epilepsy Gene 1.0 Project. Damaging effects of variants were analysed using protein modelling. RESULTS: Hemizygous missense CCDC22 variants were identified in three unrelated cases. These variants had no hemizygous frequencies in controls. All missense variants identified in this study were predicted to be "damaging" by multiple in silico tools and to alter the hydrogen bonds with surrounding residues and/or protein stability. The three patients presented with focal epilepsy of varying severity, including one with refractory seizures and focal cortical dysplasia (FCD) and two with seizures responding to antiseizure medicine. Notably, the variant associated with the severe phenotype was located in the coiled-coil domain and predicted to alter hydrogen bonding and protein stability, whereas the two variants associated with mild epilepsy were located outside functional domains and had moderate molecular alterations. Analysis of spatiotemporal expression indicated that CCDC22 was expressed in brain subregions with three peaks in the fetal stage, infancy, and early adulthood, especially in the fetal stage, explaining the occurrence of developmental abnormities. SIGNIFICANCE: CCDC22 variants are potentially associated with X-linked focal epilepsy and FCD. The molecular subregional effects supported the occurrence of FCD.

6.
Gastroenterol Hepatol ; : 502276, 2024 Oct 17.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-39426790

RESUMO

BACKGROUND: The superiority between TAF and ETV remains unclear. Which is the best choice for patients with CHB? Thus, this meta-analysis aimed to evaluate the efficacy and safety of TAF and ETV for patients with CHB. METHODS: MEDLINE/PubMed, Cochrane Library, EMBASE, Web of Science and CNKI were searched for eligible studies from inception to January 2024 and a meta-analysis was done. RESULTS: 24 trials with a total of 6753 subjects were screened. TAF significantly improved 12- and 24-week complete virological response (CVR), 12-week biochemical response (BR) and 24-week HBeAg loss, but could not improve 48- and 96-week CVR, 24-, 48- and 96-week BR, 96-week HBeAg loss, adverse events, 48-week HBsAg decline and loss, 12-, 24- and 48-week HBeAg seroconversion, 96-week HCC incidence compared to ETV. Subgroup analysis was conducted according to race, research type and switching. Different results were obtained from different subgroups. CONCLUSIONS: TAF was superior to ETV at 12- and 24-week CVR, 12-week BR and 24-week HBeAg loss. Race and switching might affect the efficacy of TAF and ETV.

7.
STAR Protoc ; 5(4): 103404, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39427309

RESUMO

Tracking the localization and proximal interaction partners of endogenous proteins provides valuable functional insight. Here, we present a protocol for CRISPR-based endogenous protein tagging in mammalian cells. We describe steps for endogenously tagging human TSC22D2 and MAP4, including designing Cas9 and Cas12a guides for knockin, modularized repair template design and cloning, and procedures for lipid transfection and electroporation. This protocol accommodates Cas nucleases in plasmid expression or ribonucleoprotein complex (RNP) formats. This "endo-tagging" approach offers flexibility and broad applicability. For complete details on the use and execution of this protocol, please refer to Xiao et al.1.

8.
Neurochem Int ; 180: 105884, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39419179

RESUMO

Methamphetamine (METH) is a highly addictive and widely abused drug that causes complex adaptive changes in the brain's reward system, such as the nucleus accumbens (NAc). LASP1 (LIM and SH 3 domain protein 1) as an actin-binding protein, regulates synaptic plasticity. However, the role and mechanism by which NAc LASP1 contributes to METH addiction remains unclear. In this study, adult male C57BL/6J mice underwent repeated METH exposure or METH-induced conditioned place preference (CPP). Western blotting and immunohistochemistry were used to determine LASP1 expression in the NAc. Furthermore, LASP1 knockdown or overexpression using adeno-associated virus (AAV) administration via stereotactic injection into the NAc was used to observe the corresponding effects on CPP. We found that repeated METH exposure and METH-induced CPP upregulated LASP1 expression in the NAc. LASP1 silencing in the NAc reversed METH-induced CPP and reduced PSD95, NR2A, and NR2B expression, whereas LASP1 overexpression in the NAc enhanced CPP acquisition, accompanied by increased PSD95, NR2A, and NR2B expression. Our findings demonstrate an important role of NAc LASP1 in modulating METH induced drug-seeking behavior and the underlying mechanism may be related to regulate the expression of synapse-associated proteins in the NAc. These results reveal a novel molecular regulator of the actions of METH on the NAc and provide a new strategy for treating METH addiction.

9.
J Mater Chem B ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39439387

RESUMO

The antibiotic resistance of bacterial membranes poses a significant threat to global public health, highlighting the urgent need for novel therapeutic agents and strategies to combat bacterial membranes. In response, we have developed a novel macrocyclic host molecule (GCPCB) based on guanidiniocarbonyl-pyrrole (GCP) functionalized cucurbit[7]uril with an aggregation-induced luminescence effect. GCPCB exhibits high antimicrobial potency against bacterial membranes, particularly demonstrating strong antibacterial activity against Gram-positive strains of S. aureus and Gram-negative strains of E. coli. Significantly, due to the strong binding between GCP and the bacterial membrane, GCPCB can effectively eradicate the bacteria encapsulated within. Furthermore, the formation of a host-guest complex between GCPCB and berberine hydrochloride (BH) not only enhances synergistic destructive activity against both species of bacteria but also provides a potential supramolecular platform for effective bacterial membrane destruction.

10.
Sci Adv ; 10(42): eadp7727, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39413186

RESUMO

Nuclear speckles are nuclear membraneless organelles in higher eukaryotic cells playing a vital role in gene expression. Using an in situ reverse transcription-based sequencing method, we study nuclear speckle-associated human transcripts. Our data indicate the existence of three gene groups whose transcripts demonstrate different speckle localization properties: stably enriched in nuclear speckles, transiently enriched in speckles at the pre-messenger RNA stage, and not enriched. We find that stably enriched transcripts contain inefficiently excised introns and that disruption of nuclear speckles specifically affects splicing of speckle-enriched transcripts. We further reveal RNA sequence features contributing to transcript speckle localization, indicating a tight interplay between transcript speckle enrichment, genome organization, and splicing efficiency. Collectively, our data highlight a role of nuclear speckles in both co- and posttranscriptional splicing regulation. Last, we show that genes with stably enriched transcripts are over-represented among genes with heat shock-up-regulated intron retention, hinting at a connection between speckle localization and cellular stress response.


Assuntos
Núcleo Celular , Íntrons , Splicing de RNA , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Íntrons/genética , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células HeLa
11.
Neurosurg Rev ; 47(1): 763, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382734

RESUMO

Epithelioid glioblastoma (Ep-GBM) is a rare variant of glioblastoma characterized by a high recurrence rate and poor prognosis. Currently, there is no established standard treatment for Ep-GBM. Therefore, we identified 58 Ep-GBM cases to investigate these characteristics and identify the possible prognostic factors of survival. There were 30 male and 28 female patients with a median age of 39 years. Headaches and dizziness were the most common clinical symptom. The tumor is most frequently located in the temporal lobe (36.2%). The positivity rate for BRAF-V600E is 56.9% (33/58), for MGMT is 56.9% (33/58), and for INI-1 is 75% (30/40). Tumor recurrence was observed in 39 patients. The median progression-free survival (PFS) of all patients was 12.7 months, while the median overall survival (OS) was 29.1 months. Additionally, the median survival time after recurrence was 14.3 months. Both univariate and multivariate COX regression analyses revealed that individuals who received more than six cycles of adjuvant oral temozolomide experienced a longer median PFS compared to those who received fewer cycles. Characteristics associated with poorer PFS included tumor dissemination prior to initial surgery. Additionally, both analyses identified tumor dissemination, radiotherapy and adjuvant oral temozolomide as predictors of OS. Notably, for patients with recurrent Ep-GBM, reoperation was shown to significantly increase survival time after recurrence. In conclusion, the standard Stupp regimen is also applicable to patients with Ep-GBM, extending adjuvant oral temozolomide could further improve survival for Ep-GBM patients, reoperation may also prolong survival for recurrent Ep-GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Masculino , Feminino , Glioblastoma/terapia , Glioblastoma/mortalidade , Glioblastoma/patologia , Adulto , Pessoa de Meia-Idade , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Idoso , Adulto Jovem , Recidiva Local de Neoplasia , Temozolomida/uso terapêutico , Adolescente , Antineoplásicos Alquilantes/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Prognóstico
12.
Nat Commun ; 15(1): 8568, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384757

RESUMO

The organosulfur compound dimethylsulfoniopropionate (DMSP) has key roles in stress protection, global carbon and sulfur cycling, chemotaxis, and is a major source of climate-active gases. Saltmarshes are global hotspots for DMSP cycling due to Spartina cordgrasses that produce exceptionally high concentrations of DMSP. Here, in Spartina anglica, we identify the plant genes that underpin high-level DMSP synthesis: methionine S-methyltransferase (MMT), S-methylmethionine decarboxylase (SDC) and DMSP-amine oxidase (DOX). Homologs of these enzymes are common in plants, but differences in expression and catalytic efficiency explain why S. anglica accumulates such high DMSP concentrations and other plants only accumulate low concentrations. Furthermore, DMSP accumulation in S. anglica is consistent with DMSP having a role in oxidative and osmotic stress protection. Importantly, administration of DMSP by root uptake or over-expression of Spartina DMSP synthesis genes confers plant tolerance to salinity and drought offering a route for future bioengineering for sustainable crop production.


Assuntos
Poaceae , Compostos de Sulfônio , Compostos de Sulfônio/metabolismo , Poaceae/genética , Poaceae/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidade , Secas , Metiltransferases/metabolismo , Metiltransferases/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Genes de Plantas
13.
Adv Sci (Weinh) ; : e2403995, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392373

RESUMO

Bladder cancer (BLCA) is a prevalent cancer with high case-fatality rates and a substantial economic burden worldwide. Understanding its molecular underpinnings to guide clinical management is crucial. Ferroptosis, a recently described non-apoptotic form of cell death, is initiated by the lethal accumulation of iron-dependent lipid peroxidation products. Despite growing interest, the roles and vulnerabilities determining ferroptosis sensitivity in BLCA remain unclear. Re-analysis of single-cell RNA data reveals a decrease in high-ferroptosis cancer cells as BLCA advances. USP52/PAN2 is identified as a key regulator of ferroptosis in BLCA through an unbiased siRNA screen targeting 96 deubiquitylases (DUBs). Functionally, USP52 depletion impedes glutathione (GSH) synthesis by promoting xCT protein degradation, increasing lipid peroxidation and ferroptosis susceptibility, thus suppressing BLCA progression. Mechanistically, USP52 interacts with xCT and enzymatically cleaves the K48-conjugated ubiquitin chains at K4 and K12, enhancing its protein stability. Clinical BLCA samples demonstrate a positive correlation between USP52 and xCT expression, with high USP52 levels associated with aggressive disease progression and poor prognosis. In vivo, USP52 depletion combined with ferroptosis triggers imidazole ketone Erastin (IKE) synergistically restrains BLCA progression by inducing ferroptosis. These findings elucidate the role of the USP52-xCT axis in BLCA and highlight the therapeutic potential of targeting USP52 and ferroptosis inducers in BLCA.

14.
Bioorg Chem ; 153: 107877, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39396452

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Inhibitors of monoamine oxidase B (MAO-B) have shown promise in alleviating motor symptoms and reducing oxidative stress associated with PD. In this study, we report the novel use of an azastilbene-based compound library for screening human (h)MAO-B, followed by optimization of initial hits to obtain compounds with low nanomolar inhibitory potencies (compound 9, IC50 = 42 nM) against hMAO-B. To ensure specificity and minimize false positives due to non-specific hydrophobic interactions, we performed comprehensive selectivity profiling against hMAO-A, butyrylcholinesterase (hBChE) and acetylcholinesterase (hAChE) - enzymes with hydrophobic active sites that are structurally distinct from hMAO-B. Docking analysis with Glide provided valuable insights into the binding interactions between the inhibitors and hMAO-B and also explained the selectivity against hMAO-A. In the cell-based model of Parkinson's disease, one of the compounds significantly reduced rotenone-induced accumulation of reactive oxygen species. In addition, these compounds showed a protective effect against acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunction in PD model mice and reduced MPTP-induced loss of striatal tyrosine hydroxylase-positive neurons in the substantia nigra. These results make azastilbene-based compounds a promising new class of hMAO-B inhibitors with potential therapeutic applications in Parkinson's disease and related neurodegenerative disorders.

15.
Curr Res Food Sci ; 9: 100854, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39386052

RESUMO

In this study, the influence of solid-state fermentation (SSF) using probiotic Eurotium cristatum on the change of volatile organic compounds (VOCs) and α-glucosidase inhibition activity of soybeans was investigated. A total of 46 VOCs were characterized via headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), the majority of which were aldehydes (17), alcohols (10), and ketones (7). SSF by E. cristatum drastically affected the flavor characteristics of soybeans, and the levels of unpleasant beany flavor components, such as hexanal-D, 1-octen-3-ol, 1-hexanol-D, 1-hexanol-M, heptanal-M, 1-pentanol, heptanal-D, and 2-pentyl furan were all substantially decreased by 50% after 15 days of SSF, while volatiles with floral, caramel, and desirable flavors such as pentanal-D, methylpropanal, 2-propanol, and propyl acetate drastically (p < 0.05) increased by 1.1-, 19.2-, 3.6-, and 2.6-fold, respectively. Key aroma-active compounds analysis revealed that 18 VOCs (ROAV, relative odor activity value ≥ 1) play a great role in shaping the flavor characteristics of the soybean samples. After 15 days of SSF, the ROAV values of methylpropanal, 2-propanol, and propyl acetate drastically (p < 0.05) increased to 8.48, 63.88, and 11.29, respectively, which greatly contributed to the desirable flavor characteristics of fermented soybeans. Furthermore, E. cristatum greatly improved the α-glucosidase inhibitory activity of soybean by 22.4% after 15 days fermentation, which was closely correlated with the accumulated phenolic compounds during SSF. Molecular docking showed that genistein and daidzein have high binding affinity for α-glucosidase active sites, primarily driven by hydrogen bonds and hydrophobic interactions. These results demonstrated that soybeans fermented with E. cristatum substantially improved the flavor characteristics and α-glucosidase inhibitory effect, and were greatly helpful to promote the application of soybeans in food products.

16.
Food Chem ; 463(Pt 4): 141413, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39368205

RESUMO

The aim of this work was to study the lymphatic absorption characteristics of gastric hydrolysates and intestinal hydrolysates of eicosapentaenoic acid-enriched phosphoethanolamine plasmalogen (EPA-pPE) with focusing on the fate of EPA and vinyl ether bonds in the lymph fluid using lymphatic intubation and lipidomics. The results showed that the EPA peak occurred earlier in the gastric (1.5 h) and intestinal (1 h) hydrolysates than in the EPA-pPE group (3 h) with EPA peak content being 2.03 and 1.46 times higher, suggesting pre-hydrolysis contributed to lymphatic absorption. Further, duodenal injection of gastric hydrolysates sn2 EPA-lysoPE produced higher levels of EPA-LPC, PC, PE, and PG. Meanwhile, intestinal hydrolysates free EPA and sn1 lyso-pPE enriched the sn1 + 2 + 3 TG (20:5_20:5_20:5) and increased the vinyl ether bond-containing lipids, such as PE (18:0p_18:0) and PE (18:0p_20:4). This study provides insight into dietary molecular structures of EPA and plasmalogen.

17.
Asian J Surg ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39368951

RESUMO

OBJECTIVE: To delve deeper into the study of degenerative diseases, it becomes imperative to investigate whether deep-learning reconstruction (DLR) can improve the evaluation of white matter hyperintensity (WMH) on 3.0T scanners, and compare its lesion detection capabilities with conventional reconstruction (CR). METHODS: A total of 131 participants (mean age, 46 years ±17; 46 men) were included in the study. The images of these participants were evaluated by readers blinded to clinical data. Two readers independently assessed subjective image indicators on a 4-point scale. The severity of WMH was assessed by four raters using the Fazekas scale. To evaluate the relative detection capabilities of each method, we employed the Wilcoxon signed rank test to compare scores between the DLR and the CR group. Additionally, we assessed interrater reliability using weighted k statistics and intraclass correlation coefficient to test consistency among the raters. RESULTS: In terms of subjective image scoring, the DLR group exhibited significantly better scores compared to the CR group (P < 0.001). Regarding the severity of WMH, the DL group demonstrated superior performance in detecting lesions. Majority readers agreed that the DL group provided clearer visualization of the lesions compared to the conventional group. CONCLUSION: DLR exhibits notable advantages over CR, including subjective image quality, lesion detection sensitivity, and inter reader reliability.

18.
Chaos ; 34(10)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39432720

RESUMO

Complex networks describe a broad range of systems in nature and society. As a fundamental concept of graph theory, the path connecting nodes and edges plays a crucial role in network science, where the computation of shortest path lengths and numbers has garnered substantial focus. It is well known that powers of the adjacency matrix can calculate the number of walks, specifying their corresponding lengths. However, developing methodologies to quantify both the number and length of shortest paths through the adjacency matrix remains a challenge. Here, we extend powers of the adjacency matrix from walks to shortest paths. We address the all-pairs shortest path count problem and propose a fast algorithm based on powers of the adjacency matrix that counts both the number and the length of all shortest paths. Numerous experiments on synthetic and real-world networks demonstrate that our algorithm is significantly faster than the classical algorithms across various network types and sizes. Moreover, we verified that the time complexity of our proposed algorithm significantly surpasses that of the current state-of-the-art algorithms. The superior property of the algorithm allows for rapid calculation of all shortest paths within large-scale networks, offering significant potential applications in traffic flow optimization and social network analysis.

19.
World J Gastrointest Oncol ; 16(9): 3820-3831, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39350980

RESUMO

Despite the continuous developments and advancements in the treatment of gastric cancer (GC), which is one of the most prevalent types of cancer in China, the overall survival is still poor for most patients with advanced GC. In recent years, with the progress in tumor immunology research, attention has shifted toward immunotherapy as a therapeutic approach for GC. Programmed cell death protein 1 (PD-1) inhibitors, as novel immunosuppressive medications, have been widely utilized in the treatment of GC. However, many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy. To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy, to maximize the clinical activity of immunosuppressive drugs, and to elicit a lasting immune response, it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients. This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment, aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.

20.
World J Gastroenterol ; 30(36): 4057-4070, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39351249

RESUMO

BACKGROUND: Pancreatic cancer is one of the most lethal malignancies, characterized by poor prognosis and low survival rates. Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy, often failing to capture the complexity of the disease. The hypoxic tumor microenvironment has been recognized as a significant factor influencing cancer progression and resistance to treatment. This study aims to develop a prognostic model based on key hypoxia-related molecules to enhance prediction accuracy for patient outcomes and to guide more effective treatment strategies in pancreatic cancer. AIM: To develop and validate a prognostic model for predicting outcomes in patients with pancreatic cancer using key hypoxia-related molecules. METHODS: This pancreatic cancer prognostic model was developed based on the expression levels of the hypoxia-associated genes CAPN2, PLAU, and CCNA2. The results were validated in an independent dataset. This study also examined the correlations between the model risk score and various clinical features, components of the immune microenvironment, chemotherapeutic drug sensitivity, and metabolism-related pathways. Real-time quantitative PCR verification was conducted to confirm the differential expression of the target genes in hypoxic and normal pancreatic cancer cell lines. RESULTS: The prognostic model demonstrated significant predictive value, with the risk score showing a strong correlation with clinical features: It was significantly associated with tumor grade (G) (b P < 0.01), moderately associated with tumor stage (T) (a P < 0.05), and significantly correlated with residual tumor (R) status (b P < 0.01). There was also a significant negative correlation between the risk score and the half-maximal inhibitory concentration of some chemotherapeutic drugs. Furthermore, the risk score was linked to the enrichment of metabolism-related pathways in pancreatic cancer. CONCLUSION: The prognostic model based on hypoxia-related genes effectively predicts pancreatic cancer outcomes with improved accuracy over traditional factors and can guide treatment selection based on risk assessment.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Microambiente Tumoral , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/mortalidade , Humanos , Prognóstico , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Hipóxia Tumoral/genética , Valor Preditivo dos Testes , Medição de Risco/métodos , Gradação de Tumores , Perfilação da Expressão Gênica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...