Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 233: 102568, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216113

RESUMO

The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex that can alter both DNA and RNA topology in animals. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impaired cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal short-term memory and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we generated a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, olfaction, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive and psychiatric disorders.


Assuntos
Disfunção Cognitiva , Regulação da Expressão Gênica , Animais , Humanos , Camundongos , Sequência de Aminoácidos , Neurogênese/genética , Plasticidade Neuronal/genética , Proteínas/genética , Proteínas/metabolismo
2.
Res Sq ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36909584

RESUMO

The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex in animals that can alter the topology of both DNA and RNA. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impairments in cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal shorten-memory and learning, and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we built a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive impairment and psychiatric disorders.

4.
Mov Disord ; 37(8): 1644-1653, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35723531

RESUMO

BACKGROUND: The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. OBJECTIVES: Here, we investigate whether the changes in the gut microbiome and associated metabolites are related to PD symptoms and epigenetic markers in leucocytes and neurons. METHODS: Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified genome-wide DNA methylation by targeted bisulfite sequencing. RESULTS: We show that lower fecal butyrate and reduced counts of genera Roseburia, Romboutsia, and Prevotella are related to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA regions in PD overlap with those altered in gastrointestinal (GI), autoimmune, and psychiatric diseases. CONCLUSIONS: Decreased levels of bacterially produced butyrate are related to epigenetic changes in leucocytes and neurons from PD patients and to the severity of their depressive symptoms. PD shares common butyrate-dependent epigenetic changes with certain GI and psychiatric disorders, which could be relevant for their epidemiological relation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Butiratos , Depressão/genética , Epigênese Genética , Microbioma Gastrointestinal/genética , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/microbiologia
5.
Trends Endocrinol Metab ; 33(2): 147-157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34949514

RESUMO

Two hallmarks of Parkinson's disease (PD) are the widespread deposition of misfolded alpha-synuclein (αSyn) protein in the nervous system and loss of substantia nigra dopamine neurons. Recent research has suggested that αSyn aggregates in the enteric nervous system (ENS) lead to prodromal gastrointestinal (GI) symptoms such as constipation in PD, then propagating to the brain stem and eventually triggering neurodegeneration and motor symptoms. Additionally, whether the microbiome changes in PD contribute to the primary pathogenesis or, alternatively, are consequential to either the disease process or medication is still unclear. In this review, we discuss the possible roles of αSyn and microbiome changes in the GI system in PD and consider if and how the changes interact and contribute to the disease process and symptoms.


Assuntos
Sistema Nervoso Entérico , Microbiota , Doença de Parkinson , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Trato Gastrointestinal/metabolismo , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
6.
Nat Commun ; 11(1): 3143, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561719

RESUMO

Topoisomerase 3ß (Top3ß) is the only dual-activity topoisomerase in animals that can change topology for both DNA and RNA, and facilitate transcription on DNA and translation on mRNAs. Top3ß mutations have been linked to schizophrenia, autism, epilepsy, and cognitive impairment. Here we show that Top3ß knockout mice exhibit behavioural phenotypes related to psychiatric disorders and cognitive impairment. The mice also display impairments in hippocampal neurogenesis and synaptic plasticity. Notably, the brains of the mutant mice exhibit impaired global neuronal activity-dependent transcription in response to fear conditioning stress, and the affected genes include many with known neuronal functions. Our data suggest that Top3ß is essential for normal brain function, and that defective neuronal activity-dependent transcription may be a mechanism by which Top3ß deletion causes cognitive impairment and psychiatric disorders.


Assuntos
Disfunção Cognitiva/genética , DNA Topoisomerases Tipo I/genética , Transtornos Mentais/genética , Neurogênese/genética , Plasticidade Neuronal/genética , Animais , Técnicas de Observação do Comportamento , Comportamento Animal , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Feminino , Hipocampo/citologia , Hipocampo/diagnóstico por imagem , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Mentais/diagnóstico , Transtornos Mentais/patologia , Camundongos , Camundongos Knockout , Neurônios/patologia , Técnicas Estereotáxicas , Potenciais Sinápticos/genética , Transcrição Gênica/fisiologia
7.
EMBO Rep ; 21(3): e48328, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31930681

RESUMO

Overexpressing Tau counteracts apoptosis and increases dephosphorylated ß-catenin levels, but the underlying mechanisms are elusive. Here, we show that Tau can directly and robustly acetylate ß-catenin at K49 in a concentration-, time-, and pH-dependent manner. ß-catenin K49 acetylation inhibits its phosphorylation and its ubiquitination-associated proteolysis, thus increasing ß-catenin protein levels. K49 acetylation further promotes nuclear translocation and the transcriptional activity of ß-catenin, and increases the expression of survival-promoting genes (bcl2 and survivin), counteracting apoptosis. Mutation of Tau's acetyltransferase domain or co-expressing non-acetylatable ß-catenin-K49R prevents increased ß-catenin signaling and abolishes the anti-apoptotic function of Tau. Our data reveal that Tau preserves ß-catenin by acetylating K49, and upregulated ß-catenin/survival signaling in turn mediates the anti-apoptotic effect of Tau.


Assuntos
Transdução de Sinais , beta Catenina , Proteínas tau , Acetilação , Apoptose/genética , Sobrevivência Celular/genética , Humanos , Fosforilação , beta Catenina/genética , beta Catenina/metabolismo
8.
Transl Neurodegener ; 8: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867903

RESUMO

BACKGROUND: Building brain reserves before dementia onset could represent a promising strategy to prevent Alzheimer's disease (AD), while how to initiate early cognitive stimulation is unclear. Given that the immature brain is more sensitive to environmental stimuli and that brain dynamics decrease with ageing, we reasoned that it would be effective to initiate cognitive stimulation against AD as early as the fetal period. METHODS: After conception, maternal AD transgenic mice (3 × Tg AD) were exposed to gestational environment enrichment (GEE) until the day of delivery. The cognitive capacity of the offspring was assessed by the Morris water maze and contextual fear-conditioning tests when the offspring were raised in a standard environment to 7 months of age. Western blotting, immunohistochemistry, real-time PCR, immunoprecipitation, chromatin immunoprecipitation (ChIP) assay, electrophysiology, Golgi staining, activity assays and sandwich ELISA were employed to gain insight into the mechanisms underlying the beneficial effects of GEE on embryos and 7-10-month-old adult offspring. RESULTS: We found that GEE markedly preserved synaptic plasticity and memory capacity with amelioration of hallmark pathologies in 7-10-m-old AD offspring. The beneficial effects of GEE were accompanied by global histone hyperacetylation, including those at bdnf promoter-binding regions, with robust BDNF mRNA and protein expression in both embryo and progeny hippocampus. GEE increased insulin-like growth factor 1 (IGF1) and activated its receptor (IGF1R), which phosphorylates Ca2+/calmodulin-dependent kinase IV (CaMKIV) at tyrosine sites and triggers its nuclear translocation, subsequently upregulating histone acetyltransferase (HAT) and BDNF transcription. The upregulation of IGF1 mimicked the effects of GEE, while IGF1R or HAT inhibition during pregnancy abolished the GEE-induced CaMKIV-dependent histone hyperacetylation and BDNF upregulation. CONCLUSIONS: These findings suggest that activation of IGF1R/CaMKIV/HAT/BDNF signaling by gestational environment enrichment may serve as a promising strategy to delay AD progression.

9.
Aging Cell ; 18(3): e12929, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30809933

RESUMO

Tauopathies are a class of neurodegenerative diseases that are characterized by pathological aggregation of tau protein, which is accompanied by synaptic disorders. However, the role of tau in endocytosis, a fundamental process in synaptic transmission, remains elusive. Here, we report that forced expression of human tau (hTau) in mouse cortical neurons impairs endocytosis by decreasing the level of the GTPase dynamin 1 via disruption of the miR-132-MeCP2 pathway; this process can also be detected in the brains of Alzheimer's patients and hTau mice. Our results provide evidence for a novel role of tau in the regulation of presynaptic function.


Assuntos
Dinamina I/metabolismo , Endocitose , Proteína 2 de Ligação a Metil-CpG/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Proteínas tau/genética , Doença de Alzheimer/metabolismo , Animais , Endocitose/genética , Humanos , Camundongos , Proteínas tau/metabolismo
10.
Biol Psychiatry ; 85(9): 769-781, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30718039

RESUMO

BACKGROUND: Death-associated protein kinase 1 (DAPK1) is a widely distributed serine/threonine kinase that is critical for cell death in multiple neurological disorders, including Alzheimer's disease and stroke. However, little is known about the role of DAPK1 in the pathogenesis of Parkinson's disease (PD), the second most common neurodegenerative disorder. METHODS: We used Western blot and immunohistochemistry to evaluate the alteration of DAPK1. Quantitative polymerase chain reaction and fluorescence in situ hybridization were used to analyze the expression of microRNAs in PD mice and patients with PD. Rotarod, open field, and pole tests were used to evaluate the locomotor ability. Immunofluorescence, Western blot, and filter traps were used to evaluate synucleinopathy in PD mice. RESULTS: We found that DAPK1 is posttranscriptionally upregulated by a reduction in microRNA-26a (miR-26a) caused by a loss of the transcription factor CCAAT enhancer-binding protein alpha. The overexpression of DAPK1 in PD mice is positively correlated with neuronal synucleinopathy. Suppressing miR-26a or upregulating DAPK1 results in synucleinopathy, dopaminergic neuron cell death, and motor disabilities in wild-type mice. In contrast, genetic deletion of DAPK1 in dopaminergic neurons by crossing DAT-Cre mice with DAPK1 floxed mice effectively rescues the abnormalities in mice with chronic MPTP treatment. We further showed that DAPK1 overexpression promotes PD-like phenotypes by direct phosphorylation of α-synuclein at the serine 129 site. Correspondingly, a cell-permeable competing peptide that blocks the phosphorylation of α-synuclein prevents motor disorders, synucleinopathy, and dopaminergic neuron loss in the MPTP mice. CONCLUSIONS: miR-26a/DAPK1 signaling cascades are essential in the formation of the molecular and cellular pathologies in PD.


Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , Neurônios Dopaminérgicos/metabolismo , MicroRNAs/metabolismo , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Doença de Parkinson/patologia , Transdução de Sinais , Substância Negra/metabolismo
11.
Mol Neurobiol ; 55(4): 3021-3032, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456942

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized in the early stages by loss of learning and memory. However, the mechanism underlying these symptoms remains unclear. The best correlation between cognitive decline and pathological changes is in synaptic dysfunction. Histopathological hallmarks of AD are the abnormal aggregation of Aß and Tau. Evidence suggests that Aß and Tau oligomers contribute to synaptic loss in AD. Recently, direct links between epigenetic alterations, such as dysfunction in non-coding RNAs (ncRNAs), and synaptic pathologies have emerged, raising interest in exploring the potential roles of ncRNAs in the synaptic deficits in AD. In this paper, we summarize the potential roles of Aß, Tau, and epigenetic alterations (especially by ncRNAs) in the synaptic dysfunction of AD and discuss the novel findings in this area.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Epigênese Genética , Sinapses/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Humanos , Modelos Biológicos
12.
Sci Rep ; 7(1): 5781, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720858

RESUMO

Increasing evidence suggests that glycogen synthase kinase-3ß (GSK-3ß) plays a crucial role in neurodegenerative/psychiatric disorders, while pan-neural knockout of GSK-3ß also shows detrimental effects. Currently, the function of GSK-3ß in specific type of neurons is elusive. Here, we infused AAV-CaMKII-Cre-2A-eGFP into GSK-3ßlox/lox mice to selectively delete the kinase in excitatory neurons of hippocampal dentate gyrus (DG), and studied the effects on cognitive/psychiatric behaviors and the molecular mechanisms. We found that mice with GSK-3ß deletion in DG excitatory neurons displayed spatial and fear memory defects with an anti-anxiety behavior. Further studies demonstrated that GSK-3ß deletion in DG subset inhibited hippocampal synaptic transmission and reduced levels of GluN1, GluN2A and GluN2B (NMDAR subunits), GluA1 (AMPAR subunit), PSD93 and drebrin (postsynaptic structural proteins), and synaptophysin (presynaptic protein). GSK-3ß deletion also suppressed the activity-dependent neural activation and calcium/calmodulin-dependent protein kinase II (CaMKII)/CaMKIV-cAMP response element binding protein (CREB) signaling. Our data suggest that GSK-3ß in hippocampal DG excitatory neurons is essential for maintaining synaptic plasticity and memory.


Assuntos
Giro Denteado/fisiopatologia , Quinase 3 da Glicogênio Sintase/deficiência , Transtornos da Memória/fisiopatologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Giro Denteado/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/genética , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/genética , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/genética , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Sinaptofisina/metabolismo
13.
Cell Death Dis ; 7(11): e2449, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27809304

RESUMO

Intracellular accumulation of the hyperphosphorylated tau is a pathological hallmark in the brain of Alzheimer disease. Activation of extrasynaptic NMDA receptors (E-NMDARs) induces excitatory toxicity that is involved in Alzheimer's neurodegeneration. However, the intrinsic link between E-NMDARs and the tau-induced neuronal damage remains elusive. In the present study, we showed in cultured primary cortical neurons that activation of E-NMDA receptors but not synaptic NMDA receptors dramatically increased tau mRNA and protein levels, with a simultaneous neuronal degeneration and decreased neuronal survival. Memantine, a selective antagonist of E-NMDARs, reversed E-NMDARs-induced tau overexpression. Activation of E-NMDARs in wild-type mouse brains resulted in neuron loss in hippocampus, whereas tau deletion in neuronal cultures and in the mouse brains rescued the E-NMDARs-induced neuronal death and degeneration. The E-NMDARs-induced tau overexpression was correlated with a reduced ERK phosphorylation, whereas the increased MEK activity, decreased binding and activity of ERK phosphatase to ERK, and increased ERK phosphorylation were observed in tau knockout mice. On the contrary, addition of tau proteins promoted ERK dephosphorylation in vitro. Taking together, these results indicate that tau overexpression mediates the excitatory toxicity induced by E-NMDAR activation through inhibiting ERK phosphorylation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Neurônios/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Proteínas tau/metabolismo , Animais , Morte Celular , Sobrevivência Celular , Células Cultivadas , Ativação Enzimática , Deleção de Genes , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Proteínas tau/genética
14.
Mol Neurobiol ; 53(7): 4992-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26377105

RESUMO

Olfactory dysfunction is recognized as a potential risk factor for Alzheimer's disease (AD). We have reported previously that olfactory deprivation by olfactory bulbectomy (OBX) induced Alzheimer's-like pathological changes and behavioral abnormalities. However, the acute OBX model undergoes surgical-induced brain parenchyma loss and unexpected massive hemorrhage so that it cannot fully mimic the progressive olfactory loss and neurodegeneration in AD. Here, we employed the mice loss of cyclic nucleotide-gated channel alpha 2 (Cnga2) which is critical for olfactory sensory transduction, to investigate the role of olfactory dysfunction in AD pathological process. We found that impaired learning and memory abilities, loss of dendrite spines, as well as decrement of synaptic proteins were displayed in Cnga2 knockout mice. Moreover, Aß overproduction, tau hyperphosphorylation, and somatodendritic translocation were also found in Cnga2 knockout mice. Our findings suggest that progressive olfactory loss leads to Alzheimer's-like behavior abnormities and pathological changes.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Hipocampo/metabolismo , Hipocampo/patologia , Peptídeos beta-Amiloides/biossíntese , Animais , Aprendizagem da Esquiva/fisiologia , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Camundongos Knockout , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Proteínas tau/biossíntese
15.
Mol Neurobiol ; 53(1): 391-401, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25465240

RESUMO

Olfactory dysfunction is a recognized risk factor for the pathogenesis of Alzheimer's disease (AD), while the mechanisms are still not clear. Here, we applied bilateral olfactory bulbectomy (OBX), an olfactory deprivation surgery to cause permanent anosmia, in human tau-overexpressed mice (htau mice) to investigate changes of AD-like pathologies including aggregation of abnormally phosphorylated tau and cholinergic neuron loss. We found that tau phosphorylation in hippocampus was increased at Thr-205, Ser-214, Thr-231, and Ser-396 after OBX. OBX also increased the level of sarkosyl-insoluble Tau at those epitopes and accelerated accumulation of somatodendritic tau. Moreover, OBX resulted in the elevation of calpain activity accompanied by an increased expression of the cyclin-dependent kinase 5 (cdk5) neuronal activators, p35 and p25, in hippocampus. Furthermore, OBX induces the loss of the cholinergic neurons in medial septal. Administration of cdk5 pharmacological inhibitor roscovitine into lateral ventricles suppressed tau hyperphosphorylation and mislocalization and restored the cholinergic neuron loss. These findings suggest that olfactory deprivation by OBX hastens tau pathology and cholinergic system impairment in htau mice possibly via activation of cdk5.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Quinase 5 Dependente de Ciclina/metabolismo , Bulbo Olfatório/enzimologia , Bulbo Olfatório/patologia , Proteínas tau/metabolismo , Animais , Calpaína/metabolismo , Neurônios Colinérgicos/metabolismo , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/cirurgia , Fosforilação/efeitos dos fármacos , Purinas/farmacologia , Roscovitina , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Solubilidade , Tauopatias/metabolismo , Tauopatias/patologia
17.
Mol Neurobiol ; 52(3): 1601-1617, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25367884

RESUMO

The populations with olfactory dysfunction show an increased chance for hippocampus-dependent episodic memory deficit. Although it is known that the olfactory information projects to the hippocampus through entorhinal cortex layer II, the molecular mechanisms linking olfactory deficit to the hippocampus is not understood. Using bilateral olfactory bulbectomy (OBX) as a model, we found that OBX induced memory deficits with activation of several memory-related protein kinases in the hippocampal extracts, including glycogen synthase kinase-3ß (GSK-3ß), protein kinase A (PKA), extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (PKB). The OBX rats also show suppression of long-term potentiation (LTP); reduction of synapsin I, synaptophysin, NR2A/B, and PSD95; thinner presynaptic active zone and postsynaptic density with enlarged synaptic space; decreased spine numbers and mushroom-type spines; and tau hyperphosphorylation. After injection of SB216763 for several weeks by vena caudalis, selective inhibition of GSK-3ß ameliorated the OBX-induced memory deficits with recovery of the synaptic components and tau phosphorylation. Furthermore, genetic ablation of GSK-3ß by lentivirus-packed shRNA effectively rescued the memory deficits, synaptic disorder, and tauopathy. Our data indicate that GSK-3 activation mediates the olfactory deficits to the hippocampus, and targeting GSK-3 blocks the pathological connection.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/enzimologia , Indóis/farmacologia , Maleimidas/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Córtex Olfatório/enzimologia , Animais , Glicogênio Sintase Quinase 3 beta , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Densidade Pós-Sináptica/metabolismo , Ratos Sprague-Dawley
18.
J Neurochem ; 124(3): 388-96, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23157378

RESUMO

Hyperhomocysteinemia (Hhcy) may induce memory deficits with ß-amyloid (Aß) accumulation and tau hyperphosphorylation. Simultaneous supplement of folate and vitamin B12 partially restored the plasma homocysteine level and attenuated tau hyperphosphorylation, Aß accumulation and memory impairments induced by Hhcy. However, folate and vitamin B12 treatment have no effects on Hhcy which has the methylenetetrahydrofolate reductase genotype mutation. In this study, we investigated the effects of simultaneous supplement of betaine on Alzheimer-like pathological changes and memory deficits in hyperhomocysteinemic rats after a 2-week induction by vena caudalis injection of homocysteine (Hcy). We found that supplementation of betaine could ameliorate the Hcy-induced memory deficits, enhance long-term potentiation (LTP) and increase dendritic branches numbers and the density of the dendritic spines, with up-regulation of NR1, NR2A, synaptotagmin, synaptophysin, and phosphorylated synapsin I protein levels. Supplementation of betaine also attenuated the Hcy-induced tau hyperphosphorylation at multiple AD-related sites through activation protein phosphatase-2A (PP2A) with decreased inhibitory demethylated PP2A(C) at Leu309 and phosphorylated PP2A(C) at Tyr307. In addition, supplementation of betaine also decreased Aß production with decreased presenilin-1 protein levels. Our data suggest that betaine could be a promising candidate for arresting Hcy-induced AD-like pathological changes and memory deficits.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Betaína/toxicidade , Homocisteína/toxicidade , Hiper-Homocisteinemia/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Doença de Alzheimer/sangue , Animais , Modelos Animais de Doenças , Homocisteína/sangue , Hiper-Homocisteinemia/induzido quimicamente , Lipotrópicos/farmacologia , Masculino , Transtornos da Memória/induzido quimicamente , Ratos , Ratos Sprague-Dawley
19.
J Biol Chem ; 287(14): 11174-82, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22334661

RESUMO

Hyperphosphorylated tau is the major component of neurofibrillary tangles in Alzheimer disease (AD), and the tangle distribution largely overlaps with zinc-containing glutamatergic neurons, suggesting that zinc released in synaptic terminals may play a role in tau phosphorylation. To explore this possibility, we treated cultured hippocampal slices or primary neurons with glutamate or Bic/4-AP to increase the synaptic activity with or without pretreatment of zinc chelators, and then detected the phosphorylation levels of tau. We found that glutamate or Bic/4-AP treatment caused tau hyperphosphorylation at multiple AD-related sites, including Ser-396, Ser-404, Thr-231, and Thr-205, while application of intracellular or extracellular zinc chelators, or blockade of zinc release by extracellular calcium omission almost abolished the synaptic activity-associated tau hyperphosphorylation. The zinc release and translocation of excitatory synapses in the hippocampus were detected, and zinc-induced tau hyperphosphorylation was also observed in cultured brain slices incubated with exogenously supplemented zinc. Tau hyperphosphorylation induced by synaptic activity was strongly associated with inactivation of protein phosphatase 2A (PP2A), and this inactivation can be reversed by pretreatment of zinc chelator. Together, these results suggest that synaptically released zinc promotes tau hyperphosphorylation through PP2A inhibition.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Zinco/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...