Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Genes Dis ; 11(5): 101203, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39022126

RESUMO

Transcriptional factor Forkhead box M1 (FOXM1) plays an important role in pancreatic ductal adenocarcinoma (PDAC) development and progression. The molecular mechanisms underlying its dysregulation remain unclear. We identified and functionally validated the microRNAs (miRNAs) that critically regulate FOXM1 expression in PDAC. The expression levels of miRNA-23a (miR-23a-3p and -5p) were altered in PDAC cell lines and their effects on FOXM1 signaling and cell proliferation and migration and tumorigenesis were examined in vitro and in vivo using mouse PDAC models. Compared with non-tumor pancreatic tissues, PDAC tissues and cell lines exhibited significantly reduced levels of miR-23a expression. Reduced miR-23a expression and concomitant increase in FOXM1 expression were also observed in acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia, the major premalignant lesions of PDAC. Transgenic expression of miR-23a reduced the expression of FOXM1 and suppressed cell proliferation and migration in PDAC cells, whereas the inhibitors of miR-23a did the opposite. Loss or reduced levels of miR-23a increased the levels of FOXM1 expression, while increased expression of FOXM1 down-regulated miR-23a expression, suggesting that miR-23a and FOXM1 were mutual negative regulators of their expression in PDAC cells. Therefore, the miR-23a/FOXM1 signaling axis is important in PDAC initiation and progression and could serve as an interventional or therapeutic target for patients with early or late stages of PDAC.

2.
Mol Med Rep ; 30(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38994764

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive form of cancer with a low survival rate. A successful treatment strategy should not be limited to targeting cancer cells alone, but should adopt a more comprehensive approach, taking into account other influential factors. These include the extracellular matrix (ECM) and immune microenvironment, both of which are integral components of the tumor microenvironment. The present review describes the roles of pancreatic stellate cells, differentiated cancer­associated fibroblasts and the interleukin family, either independently or in combination, in the progression of precursor lesions in pancreatic intraepithelial neoplasia and PDAC. These elements contribute to ECM deposition and immunosuppression in PDAC. Therapeutic strategies that integrate interleukin and/or stromal blockade for PDAC immunomodulation and fibrogenesis have yielded inconsistent results. A deeper comprehension of the intricate interplay between fibrosis, and immune responses could pave the way for more effective treatment targets, by elucidating the mechanisms and causes of ECM fibrosis during PDAC progression.


Assuntos
Carcinoma Ductal Pancreático , Fibrose , Interleucinas , Neoplasias Pancreáticas , Células Estreladas do Pâncreas , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Microambiente Tumoral/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Interleucinas/metabolismo , Interleucinas/imunologia , Animais , Matriz Extracelular/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia
3.
Cancer Res ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885324

RESUMO

Cellular oxidative stress plays a key role in the development and progression of hepatocellular carcinoma (HCC). A better understanding of the processes that regulate reactive oxygen species (ROS) homeostasis could uncover improved strategies for treating HCC. Here, we identified WNK1 as an antioxidative factor and therapeutic target in HCC. In human HCC, WNK1 expression was increased and correlated with poor patient prognosis. WNK1 knockdown significantly inhibited cell proliferation and xenograft tumor growth. Mechanistically, WNK1 competed with NRF2 for binding to the partial Kelch domain of KEAP1, reducing NRF2 ubiquitination and promoting NRF2 accumulation and nuclear translocation to increase antioxidant response. WNK1 silencing increased H2O2-induced apoptosis and inhibited cell growth by elevating reactive oxygen species (ROS) levels, which could be rescued by treatment with the antioxidant N-acetylcysteine (NAC) and NRF2 activator tert-butylhydroquinone (tBHQ). Liver-specific WNK1 knockout mouse models of HCC substantiated that WNK1 promoted HCC development by regulating ROS levels. WNK463, an inhibitor of the WNK kinase family, suppressed HCC progression and altered the redox status. These findings suggest that WNK1 plays a critical role in HCC development and progression and that the WNK1-oxidative stress axis may be a promising therapeutic target for HCC.

4.
Mol Carcinog ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888207

RESUMO

Plakophilin 1 (PKP1) belongs to the desmosome family as an anchoring junction protein in cellular junctions. It localizes at the interface of the cell membrane and cytoplasm. Although PKP1 is a non-transmembrane protein, it may become associated with the cell membrane via transmembrane proteins such as desmocollins and desmogleins. Homozygous deletion of PKP1 results in ectodermal dysplasia-skin fragility syndrome (EDSF) and complete knockout of PKP1 in mice produces comparable symptoms to EDSF in humans, although mice do not survive more than 24 h. PKP1 is not limited to expression in desmosomal structures, but is rather widely expressed in cytoplasm and nucleus, where it assumes important cellular functions. This review will summarize distinct roles of PKP1 in the cell membrane, cytoplasm, and nucleus with an overview of relevant studies on its function in diverse types of cancer.

5.
Front Endocrinol (Lausanne) ; 15: 1408312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828409

RESUMO

Pancreatic cancer is difficult to diagnose early and progresses rapidly. Researchers have found that a cytokine called Interleukin-6 (IL-6) is involved in the entire course of pancreatic cancer, promoting its occurrence and development. From the earliest stages of pancreatic intraepithelial neoplasia to the invasion and metastasis of pancreatic cancer cells and the appearance of tumor cachexia, IL-6 drives oncogenic signal transduction pathways and immune escape that accelerate disease progression. IL-6 is considered a biomarker for pancreatic cancer diagnosis and prognosis, as well as a potential target for treatment. IL-6 antibodies are currently being explored as a hot topic in oncology. This article aims to systematically explain how IL-6 induces the deterioration of normal pancreatic cells, with the goal of finding a breakthrough in pancreatic cancer diagnosis and treatment.


Assuntos
Progressão da Doença , Interleucina-6 , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Interleucina-6/metabolismo , Animais , Transdução de Sinais , Biomarcadores Tumorais/metabolismo , Prognóstico
6.
Life Sci ; 341: 122504, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354973

RESUMO

Cingulin and its paralog paracingulin are vital components of the apical junctional complex in vertebrate epithelial and endothelial cells. They are both found in tight junctions (TJ), and paracingulin is also detectable in adherens junctions (AJ) as TJ cytoplasmic plaque proteins. Cingulin and paracingulin interact with other proteins to perform functions. They interact with cytoskeletal proteins, modulate the activity of small GTPases, such as RhoA and Rac1, and regulate gene expression. In addition, cingulin and paracingulin regulate barrier function and many pathological processes, including inflammation and tumorigenesis. In this review, we summarize the discovery and structure, expression and subcellular distribution, and molecular interactions of cingulin family proteins and discuss their role in development, physiology, and pathological processes.


Assuntos
Células Endoteliais , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Células Endoteliais/metabolismo , Relevância Clínica , Proteínas do Citoesqueleto/genética , Junções Íntimas/metabolismo , Células Epiteliais/metabolismo
7.
IUBMB Life ; 76(3): 140-160, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37728571

RESUMO

The molecular mechanisms of glioblastoma (GBM) are unclear, and the prognosis is poor. Spinster homolog 2 (SPNS2) is reportedly involved in pathological processes such as immune response, vascular development, and cancer. However, the biological function and molecular role of SPNS2 in GBM are unclear. SPNS2 is aberrantly low expressed in glioma. Survival curves, risk scores, prognostic nomograms, and univariate and multifactorial Cox regression analyses showed that SPNS2 is an independent prognostic indicator significantly associated with glioma progression and prognosis. Cell function assays and in vivo xenograft transplantation were performed that downregulation of SPNS2 promoted GBM cell growth, migration, invasion, epithelial-mesenchymal transition (EMT), anti-apoptosis, drug resistance, and stemness, while overexpression of SPNS2 had the opposite effect. Meanwhile, the functional enrichment and signaling pathways of SPNS2 in the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and RNA sequencing were analyzed by Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene set enrichment analysis (GSEA). The above results were related to the inhibition of the PTEN/PI3K/AKT pathway by SPNS2. In addition, we predicted that SPNS2 is closely associated with immune infiltration in the tumor microenvironment by four immune algorithms, ESTIMATE, TIMER, CIBERSORT, and QUANTISEQ. In particular, SPNS2 was negatively correlated with the infiltration of most immune cells, immunomodulators, and chemokines. Finally, single-cell sequencing analysis also revealed that SPNS2 was remarkably correlated with macrophages, and downregulation of SPNS2 promotes the expression of M2-like macrophages. This study provides new evidence that SPNS2 inhibits malignant progression, stemness, and immune infiltration of GBM cells through PTEN/PI3K/AKT pathway. SPNS2 may become a new diagnostic indicator and potential immunotherapeutic target for glioma.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Microambiente Tumoral/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
8.
Eur J Pharmacol ; 964: 176304, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38142851

RESUMO

Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.


Assuntos
Neoplasias , Receptores Ativados por Proliferador de Peroxissomo , Humanos , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Transdução de Sinais , Desenvolvimento de Medicamentos , Microambiente Tumoral
9.
Clin Cancer Res ; 29(24): 5183-5195, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37819952

RESUMO

PURPOSE: Stromal fibrosis limits nutritional supply and disarrays metabolism in pancreatic cancer (PDA, pancreatic ductal adenocarcinoma). Understanding of the molecular basis underlying metabolic cues would improve PDA management. The current study determined the interaction between glucose-regulated proteins 78 (GRP78) and hypoxia-inducible factor 1α (HIF-1α) and its mechanistic roles underlying PDA response to oxygen and glucose restrains. EXPERIMENTAL DESIGN: Gene expression and its association with clinicopathologic characteristics of patients with PDA and mouse models were analyzed using IHC. Protein expression and their regulation were measured by Western blot and immunoprecipitation analyses. Protein interactions were determined using gain- and loss-of-function assays and molecular methods, including chromatin immunoprecipitation, co-immunoprecipitation, and dual luciferase reporter. RESULTS: There was concomitant overexpression of both GRP78 and HIF-1α in human and mouse PDA tissues and cells. Glucose deprivation increased the expression of GRP78 and HIF-1α, particularly colocalization in nucleus. Induction of HIF-1α expression by glucose deprivation in PDA cells depended on the expression of and its own interaction with GRP78. Mechanistically, increased expression of both HIF-1α and LDHA under glucose deprivation was caused by the direct binding of GRP78 and HIF-1α protein complexes to the promoters of HIF-1α and LDHA genes and transactivation of their transcriptional activity. CONCLUSIONS: Protein complex of GRP78 and HIF-1α directly binds to HIF-1α own promoter and LDHA promoter, enhances the transcription of both HIF-1α and LDHA, whereas glucose deprivation increases GRP78 expression and further enhances HIF-1α and LDHA transcription. Therefore, crosstalk and integration of hypoxia- and hypoglycemia-responsive signaling critically impact PDA metabolic reprogramming and therapeutic resistance.


Assuntos
Carcinoma Ductal Pancreático , Chaperona BiP do Retículo Endoplasmático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Chaperona BiP do Retículo Endoplasmático/metabolismo , Glucose , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Reprogramação Metabólica/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
10.
Cell Death Dis ; 14(8): 528, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591827

RESUMO

Tumor is a representative of cell immortalization, while senescence irreversibly arrests cell proliferation. Although tumorigenesis and senescence seem contrary to each other, they have similar mechanisms in many aspects. Pancreatic ductal adenocarcinoma (PDA) is highly lethal disease, which occurs and progresses through a multi-step process. Senescence is prevalent in pancreatic premalignancy, as manifested by decreased cell proliferation and increased clearance of pre-malignant cells by immune system. However, the senescent microenvironment cooperates with multiple factors and significantly contributes to tumorigenesis. Evidently, PDA progression requires to evade the effects of cellular senescence. This review will focus on dual roles that senescence plays in PDA development and progression, the signaling effectors that critically regulate senescence in PDA, the identification and reactivation of molecular targets that control senescence program for the treatment of PDA.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Pâncreas , Neoplasias Pancreáticas/genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral , Neoplasias Pancreáticas
11.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37597850

RESUMO

BACKGROUND: Immunotherapy, including adoptive cell therapy (ACT) and immune checkpoint inhibitors (ICIs), has a limited effect in most patients with colorectal cancer (CRC), and the efficacy is further limited in patients with liver metastasis. Lack of antitumor lymphocyte infiltration could be a major cause, and there remains an urgent need for more potent and safer therapies for CRC. METHODS: In this study, the antitumoral synergism of low molecular weight heparin (LMWH) combined with immunotherapy in the microsatellite stable (MSS) highly aggressive murine model of CRC was fully evaluated. RESULTS: Dual LMWH and ACT objectively mediated the stagnation of tumor growth and inhibition of liver metastasis, neither LMWH nor ACT alone had any antitumoral activity on them. The combination of LMWH and ACT obviously increased the infiltration of intratumor CD8+ T cells, as revealed by multiplex immunohistochemistry, purified CD8+ T-cell transfer assay, and IVIM in vivo imaging. Mechanistically, evaluation of changes in the tumor microenvironment revealed that LMWH improved tumor vascular normalization and facilitated the trafficking of activated CD8+ T cells into tumors. Similarly, LMWH combined with anti-programmed cell death protein 1 (PD-1) therapy provided superior antitumor activity as compared with the single PD-1 blockade in murine CT26 tumor models. CONCLUSIONS: LMWH could enhance ACT and ICIs-based immunotherapy by increasing lymphocyte infiltration into tumors, especially cytotoxic CD8+ T cells. These results indicate that combining LMWH with an immunotherapy strategy presents a promising and safe approach for CRC treatment, especially in MSS tumors.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Heparina de Baixo Peso Molecular/farmacologia , Heparina de Baixo Peso Molecular/uso terapêutico , Linfócitos T CD8-Positivos , Imunoterapia , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral
12.
Int J Biol Sci ; 19(12): 3804-3815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564207

RESUMO

Tight junction (TJ) is the barrier of epithelial and endothelial cells to maintain paracellular substrate transport and cell polarity. As one of the TJ cytoplasmic adaptor proteins adjacent to cell membrane, zonula occludens (ZO) proteins are responsible for connecting transmembrane TJ proteins and cytoplasmic cytoskeleton, providing a binding platform for transmembrane TJ proteins to maintain the barrier function. In addition to the basic structural function, ZO proteins play important roles in signal regulation such as cell proliferation and motility, the latter including cell migration, invasion and metastasis, to influence embryonic development, tissue homeostasis, damage repair, inflammation, tumorigenesis, and cancer progression. In this review, we will focus on the signal regulating function of ZO proteins in inflammation and tumorigenesis, and discuss the limitations of previous research and future challenges in ZO protein research.

13.
Cytokine Growth Factor Rev ; 71-72: 40-53, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37291030

RESUMO

Pancreatic fibrosis is caused by excessive deposition of extracellular matrixes of collagen and fibronectin in the pancreatic tissue as a result of repeated injury often seen in patients with chronic pancreatic diseases. The most common causative conditions include inborn errors of metabolism, chemical toxicity and autoimmune disorders. Its pathophysiology is highly complex, including acinar cell injury, acinar stress response, duct dysfunction, pancreatic stellate cell activation, and persistent inflammatory response. However, the specific mechanism remains to be fully clarified. Although the current therapeutic strategies targeting pancreatic stellate cells show good efficacy in cell culture and animal models, they are not satisfactory in the clinic. Without effective intervention, pancreatic fibrosis can promote the transformation from pancreatitis to pancreatic cancer, one of the most lethal malignancies. In the normal pancreas, the acinar component accounts for 82% of the exocrine tissue. Abnormal acinar cells may activate pancreatic stellate cells directly as cellular source of fibrosis or indirectly via releasing various substances and initiate pancreatic fibrosis. A comprehensive understanding of the role of acinar cells in pancreatic fibrosis is critical for designing effective intervention strategies. In this review, we focus on the role of and mechanisms underlying pancreatic acinar injury in pancreatic fibrosis and their potential clinical significance.


Assuntos
Pancreatopatias , Pancreatite , Animais , Humanos , Células Acinares/metabolismo , Células Acinares/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatopatias/metabolismo , Pancreatopatias/patologia , Doença Crônica , Fibrose
14.
Cell Death Discov ; 9(1): 118, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031197

RESUMO

Krüppel-like transcriptional factor is important in maintaining cellular functions. Deletion of Krüppel-like transcriptional factor usually causes abnormal embryonic development and even embryonic death. KLF4 is a prominent member of this family, and embryonic deletion of KLF4 leads to alterations in skin permeability and postnatal death. In addition to its important role in embryo development, it also plays a critical role in inflammation and malignancy. It has been investigated that KLF4 has a regulatory role in a variety of cancers, including lung, breast, prostate, colorectal, pancreatic, hepatocellular, ovarian, esophageal, bladder and brain cancer. However, the role of KLF4 in tumorigenesis is complex, which may link to its unique structure with both transcriptional activation and transcriptional repression domains, and to the regulation of its upstream and downstream signaling molecules. In this review, we will summarize the structural and functional aspects of KLF4, with a focus on KLF4 as a clinical biomarker and therapeutic target in different types of tumors.

15.
Front Oncol ; 13: 1024151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874143

RESUMO

Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.

16.
J Gastroenterol Hepatol ; 38(7): 1170-1180, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36941105

RESUMO

BACKGROUND AND AIM: Gastric cancer (GC) is a common malignant neoplasm in the gastrointestinal tract, accounting for high mortality globally. Treacle ribosome biogenesis factor 1 (TCOF1) is a nucleolar protein, which has been reported to be implicated in the pathogenesis of Treacher Collins syndrome and the development of several types of human cancer. However, the role of TCOF1 in GC is not known. METHODS: Immunohistochemistry was carried out to determine TCOF1 expression in GC tissues. Immunofluorescence, co-IP, and DNA fiber assays were conducted to investigate the function of TCOF1 in GC-derived BGC-823 and SGC-7901 cell lines. RESULTS: TCOF1 expression was aberrantly increased in GC tissues compared with adjacent normal tissues. In addition, we found that TCOF1 left the nucleolus and localized to R-loops (DNA/RNA hybrids) during S phase in GC cells. Furthermore, TCOF1 interacted with DDX5 and suppressed R-loop levels. Knockdown of TCOF1 led to increased nucleoplasmic R-loops specifically during S phase, which restrained DNA replication and cell proliferation. Overexpression of R-loop eraser RNaseH1 rescued the DNA synthesis defects and decreased DNA damage caused by TCOF1 depletion. CONCLUSION: These findings demonstrate a novel role of TCOF1 in maintaining GC cell proliferation by alleviating R-loop associated DNA replication stress.


Assuntos
Estruturas R-Loop , Neoplasias Gástricas , Humanos , Fosfoproteínas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/genética , Replicação do DNA , Proliferação de Células/genética , Ribossomos/metabolismo
17.
Clin Cancer Res ; 29(13): 2525-2539, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36729148

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDA) resists immunotherapy of adoptive cell transfer (ACT) and immune checkpoint inhibitors. Understanding the mechanisms underlying this resistance will improve PDA immunotherapy. This study investigated therapeutic effects and underlying mechanisms of anticoagulants on immunotherapy in PDA. EXPERIMENTAL DESIGN: The antitumor activity of immunotherapy was evaluated in mouse models of desert, excluded, and inflamed tumors. The underlying mechanisms were investigated by analyzing immune cell infiltration by immunofluorescence imaging and tumor microcirculation by interstitial fluid pressure and coagulation status measurement. RESULTS: Combined use of heparin and ACT inhibited tumor growth and metastasis, whereas neither heparin nor ACT had any therapeutic effect. The combination of heparin and ACT significantly increased the intratumor infiltration of CD8+ T cells and M1 macrophages and reduced the infiltration of immunosuppressive M2 macrophages and FOXP3+/CD4+ regulatory T cells (Treg). Assessments of tumor microenvironment revealed that heparin promoted tumor vascular regression and normalized the remaining blood vessels, facilitating the extravasation and perivascular accumulation of activated CD8+ T cells in tumors. Mechanistically, tumor microvessel hemodynamic properties were significantly improved by heparin, which is consistent with its inhibitory effects on tumor angiogenesis. Similarly, the combination of heparin and anti-PD1 also produced a pronounced antitumor activity, whereas neither heparin nor anti-PD1 treatment had appreciable antitumor activity. CONCLUSIONS: Combined treatment of heparin and ACT or anti-PD1 produced synergistic antitumor effects, which were at least in part through tumor vascular normalization, hence increased antitumor T-cell responses due to reduced Treg infiltration and increased M1 macrophage polarization. This synergistic combination therapy warrants clinical evaluation. See related commentary by Korc, p. 2348.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Heparina/farmacologia , Anticoagulantes/farmacologia , Microcirculação/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Imunoterapia , Carcinoma Ductal Pancreático/patologia , Microambiente Tumoral/imunologia , Neoplasias Pancreáticas
18.
J Clin Med ; 12(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36675366

RESUMO

Background: The impact of hepatitis E virus (HEV) infection on cancer development has been poorly investigated. This study aimed to explore the relationship between HEV seroprevalence and cancer risks and to identify high cancer risk subgroups in HEV-exposed populations. Methods: HEV seroprevalence status was determined in cancer and non-cancer subjects. Logistic regression and sensitivity analyses were used to assess the relationship between HEV antibody seropositivity and cancer risk for 17 cancer types. Additionally, interaction analyses were applied to interpret the association of HEV seroprevalence and other cancer risk factors. Results: Of the enrolled 4948 cancer and 4948 non-cancer subjects, cancer subjects had a higher anti-HEV seropositivity than non-cancer subjects (46.36% vs. 32.50%, p < 0.01). However, this divergency varied in degrees across different cancer types. Additionally, HEV seroprevalence was associated with cancer risk in young males (OR: 1.64, 95% CI: 1.19−2.27, p < 0.01). Remarkably, a significant association between HEV seroprevalence and cancer risk was observed only in gastric cancer patients (OR: 1.82, 95% CI: 1.07−3.09, p = 0.03). Conclusions: HEV seroprevalence was associated with cancer risk selectively in gastric cancer patients and young males, suggesting that cancer screening, particularly gastric cancer, should be regularly performed in young males with a history of HEV exposure.

19.
FASEB J ; 36(10): e22538, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36065631

RESUMO

Antipsychotic agents are clinically utilized to treat schizophrenia and other mental disorders. These drugs induce neurological and metabolic side effects, but their influence on blood vessels remains largely unknown. Here, we show that haloperidol, one of the most frequently prescribed antipsychotic agents, induces vascular defects in bone marrow. Acute haloperidol treatment results in vascular dilation that is specific to hematopoietic organs. This vessel dilation is associated with disruption of hematopoiesis and hematopoietic stem/progenitor cells (HSPCs), both of which are reversible after haloperidol withdrawal. Mechanistically, haloperidol treatment blocked the secretion of vascular endothelial growth factor A (VEGF-A) from HSPCs. Genetic blockade of VEGF-A secretion from hematopoietic cells or inhibition of VEGFR2 in endothelial cells result in similar vessel dilation in bone marrow during regeneration after irradiation and transplantation. Conversely, VEGF-A gain of function rescues the bone marrow vascular defects induced by haloperidol treatment and irradiation. Our work reveals an unknown effect of antipsychotic agents on the vasculature and hematopoiesis with potential implications for drug application in clinic.


Assuntos
Antipsicóticos , Fator A de Crescimento do Endotélio Vascular , Antipsicóticos/farmacologia , Células da Medula Óssea/metabolismo , Células Endoteliais/metabolismo , Haloperidol/metabolismo , Haloperidol/farmacologia , Hematopoese/fisiologia , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Int J Biol Sci ; 18(10): 4245-4259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844783

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a high incidence of metastasis and dismal prognosis. As a member of Gas-Gap gene, RASAL2 is involved in the hydrolysis of RAS-GTP to RAS-GDP and abnormal expression in human cancers. Here we firstly described the function of RASAL2 on PDAC to enrich the knowledge of RAS family.We interestingly observed that RASAL2 expression was upregulated in PDAC at both mRNA and protein levels, and high expression of RASAL2 predicted a poor prognosis in PDAC patients. Additionally, RASAL2 promoted malignant behaviors of PDAC in vitro and in vivo. To determine the mechanistic roles of RASAL2 signaling and its potential as a therapeutic target in PDAC, we clarified that RASAL2 could accumulate the TIAM1 expression in different level through inhibiting YAP1 phosphorylation, increased TIAM1 mRNA expression and suppressed ubiquitination of TIAM1 protein. In conclusion, RASAL2 enhances YAP1/TIAM1 signaling and promotes PDAC development and progression.


Assuntos
Carcinoma Ductal Pancreático , Proteínas Ativadoras de GTPase , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/metabolismo , Fenótipo , RNA Mensageiro , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteínas de Sinalização YAP , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...