Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.175
Filtrar
1.
J Med Chem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946306

RESUMO

GPR84 is a promising therapeutic target and biomarker for a range of diseases. In this study, we reported the discovery of BINOL phosphate (BINOP) derivatives as GPR84 antagonists. By investigating the structure-activity relationship, we identified 15S as a novel GPR84 antagonist. 15S exhibits low nanomolar potency and high selectivity for GPR84, while its enantiomer 15R is less active. Next, we rationally designed and synthesized a series of GPR84 fluorogenic probes by conjugating Nile red and compound 15S. The leading hybrid, probe F8, not only retained GPR84 activity but also exhibited low nonspecific binding and a turn-on fluorescent signal in an apolar environment. F8 enabled visualization and detection of GPR84 in GPR84-overexpressing HEK293 cells and lipopolysaccharide-stimulated neutrophils. Furthermore, we demonstrated that F8 can detect upregulated GPR84 protein levels in mice models of inflammatory bowel disease and acute lung injury. Thus, compound F8 represents a promising tool for studying GPR84 functions.

2.
Phys Rev Lett ; 132(24): 243403, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949354

RESUMO

A unitary Fermi gas in an isotropic harmonic trap is predicted to show scale and conformal symmetry that have important consequences in its thermodynamic and dynamical properties. By experimentally realizing a unitary Fermi gas in an isotropic harmonic trap, we demonstrate its universal expansion dynamics along each direction and at different temperatures. We show that as a consequence of SO(2,1) symmetry, the measured release energy is equal to that of the trapping energy. We further observe the breathing mode with an oscillation frequency twice the trapping frequency and a small damping rate, providing the evidence of SO(2,1) symmetry. In addition, away from resonance when scale invariance is broken, we determine the effective exponent γ that relates the chemical potential and average density along the BEC-BCS crossover, which qualitatively agrees with the mean field predictions. This Letter opens the possibility of studying nonequilibrium dynamics in a conformal invariant system in the future.

3.
Acta Pharmacol Sin ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871922

RESUMO

Oligodendrocytes (OLs) are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). Demyelination is a common feature of many neurological diseases such as multiple sclerosis (MS) and leukodystrophies. Although spontaneous remyelination can happen after myelin injury, nevertheless, it is often insufficient and may lead to aggravated neurodegeneration and neurological disabilities. Our previous study has discovered that MEK/ERK pathway negatively regulates OPC-to-OL differentiation and remyelination in mouse models. To facilitate possible clinical evaluation, here we investigate several MEK inhibitors which have been approved by FDA for cancer therapies in both mouse and human OPC-to-OL differentiation systems. Trametinib, the first FDA approved MEK inhibitor, displays the best effect in stimulating OL generation in vitro among the four MEK inhibitors examined. Trametinib also significantly enhances remyelination in both MOG-induced EAE model and LPC-induced focal demyelination model. More exciting, trametinib facilitates the generation of MBP+ OLs from human embryonic stem cells (ESCs)-derived OPCs. Mechanism study indicates that trametinib promotes OL generation by reducing E2F1 nuclear translocation and subsequent transcriptional activity. In summary, our studies indicate a similar inhibitory role of MEK/ERK in human and mouse OL generation. Targeting the MEK/ERK pathway might help to develop new therapies or repurpose existing drugs for demyelinating diseases.

4.
Chemosphere ; 361: 142516, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850691

RESUMO

Activated siderite, endowed with excellent properties, was simply prepared by co-grinding with Fe sulfate to enhance its high reducing ability for Cr(VI). Batch experiments were conducted to investigate the main affecting parameters, such as material ratio, pH, temperature, etc. The removal of Cr(VI) by activated siderite was completed within 4 h of the reaction. The activated siderite maintained a high removal effect of Cr(VI) within a wide pH range (3-9). Various analytical methods, including XRD, SEM/EDS, XPS, etc., were employed to characterize the samples and discover variations before and after the reaction. The Fe (Ⅱ) in activated siderite becomes highly active, and it can even be released from the solid phase in the mildly acidic liquid phase to efficiently reduce Cr(VI) and mitigate its toxicity. These findings introduce an innovative approach for activating various minerals widely distributed in nature to promote the recovery of the ecological system.


Assuntos
Cromo , Compostos Férricos , Oxirredução , Cromo/química , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Ferro/química , Compostos Ferrosos/química , Minerais/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Carbonatos
5.
Phytomedicine ; 132: 155840, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38941817

RESUMO

BACKGROUND: Hypoxic pulmonary vascular remodeling (HPVR) is a key pathological feature of hypoxic pulmonary hypertension (HPH). Oxygen-sensitive potassium (K+) channels in pulmonary artery smooth muscle cells (PASMCs) play a crucial role in HPVR. Luteolin (Lut) is a plant-derived flavonoid compound with variety of pharmacological actions. Our previous study found Lut alleviated HPVR in HPH rat. PURPOSE: To elucidate the mechanism by which Lut mitigated HPVR, focusing on oxygen-sensitive voltage-dependent potassium channel 1.5 (Kv1.5). METHODS: HPH rat model was established using hypobaric chamber to simulate 5000 m altitude. Isolated perfused/ventilated rat lung, isolated pulmonary arteriole ring was utilized to investigate the impact of Lut on K+ channels activity. Kv1.5 level in lung tissue and pulmonary arteriole of HPH rat was assessed. CyclinD1, CDK4, PCNA, Bax, Bcl-2, cleaved caspase-3 levels in lung tissue of HPH rat were tested. The effect of Lut on Kv1.5, cytoplasmic free calcium concentration ([Ca2+]cyt), CyclinD1, CDK4, PCNA, Bax/Bcl-2 was examined in PASMCs under hypoxia, with DPO-1 as a Kv1.5 specific inhibitor. The binding affinity between Lut and Kv1.5 in PASMCs was detected by drug affinity responsive target stability (DARTS). The overexpression of KCNA5 gene (encoding Kv1.5) in HEK293T cells was utilized to confirm the interaction between Lut and Kv1.5. Furthermore, the impact of Lut on mitochondrial structure, SOD, GSH, GSH-Px, MDA and HIF-1α levels were evaluated in lung tissue of HPH rat and PASMCs under hypoxia. RESULTS: Lut dilated pulmonary artery by directly activating Kv and Ca2+-activated K+ channels (KCa) in smooth muscle. Kv1.5 level in lung tissue and pulmonary arteriole of HPH rat was upregulated by Lut. Lut downregulated CyclinD1, CDK4, PCNA while upregulating Bax/Bcl-2/caspase-3 axis in lung tissue of HPH rat. Lut decreased [Ca2+]cyt, reduced CDK4, CyclinD1, PCNA, increased Bax/Bcl-2 ratio, in PASMCs under hypoxia, by upregulating Kv1.5. The binding affinity and the interaction between Lut and Kv1.5 was verified in PASMCs and in HEK293T cells. Lut also decreased [Ca2+]cyt and inhibited proliferation via targeting Kv1.5 of HEK293T cells under hypoxia. Furthermore, Lut protected mitochondrial structure, increased SOD, GSH, GSH-Px, decreased MDA, in lung tissue of HPH rat. Lut downregulated HIF-1α level in both lung tissue of HPH rat and PASMCs under hypoxia. CONCLUSION: Lut alleviated HPVR by promoting vasodilation of pulmonary artery, reducing cellular proliferation, and inducing apoptosis through upregulating of Kv1.5 in PASMCs.

6.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930955

RESUMO

The CRISPR-Cas9 system has emerged as the most prevalent gene editing technology due to its simplicity, high efficiency, and low cost. However, the homology-directed repair (HDR)-mediated gene knock-in in this system suffers from low efficiency, which limits its application in animal model preparation, gene therapy, and agricultural genetic improvement. Here, we report the design and optimization of a simple and efficient reporter-based assay to visualize and quantify HDR efficiency. Through random screening of a small molecule compound library, two groups of compounds, including the topoisomerase inhibitors and PIM1 kinase inhibitors, have been identified to promote HDR. Two representative compounds, etoposide and quercetagetin, also significantly enhance the efficiency of CRISPR-Cas9 and HDR-mediated gene knock-in in mouse embryos. Our study not only provides an assay to screen compounds that may facilitate HDR but also identifies useful tool compounds to facilitate the construction of genetically modified animal models with the CRISPR-Cas9 system.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Edição de Genes/métodos , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores da Topoisomerase/farmacologia , Humanos , Reparo de DNA por Recombinação/efeitos dos fármacos , Técnicas de Introdução de Genes
7.
Acta Pharmacol Sin ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890526

RESUMO

Cardiomyocytes are terminal differentiated cells and have limited ability to proliferate or regenerate. Condition like myocardial infarction causes massive death of cardiomyocytes and is the leading cause of death. Previous studies have demonstrated that cardiac fibroblasts can be induced to transdifferentiate into cardiomyocytes in vitro and in vivo by forced expression of cardiac transcription factors and microRNAs. Our previous study have demonstrated that full chemical cocktails could also induce fibroblast to cardiomyocyte transdifferentiation both in vitro and in vivo. With the development of tissue clearing techniques, it is possible to visualize the reprogramming at the whole-organ level. In this study, we investigated the effect of the chemical cocktail CRFVPTM in inducing in situ fibroblast to cardiomyocyte transdifferentiation with two strains of genetic tracing mice, and the reprogramming was observed at whole-heart level with CUBIC tissue clearing technique and 3D imaging. In addition, single-cell RNA sequencing (scRNA-seq) confirmed the generation of cardiomyocytes from cardiac fibroblasts which carries the tracing marker. Our study confirms the use of small molecule cocktails in inducing in situ fibroblast to cardiomyocyte reprogramming at the whole-heart level and proof-of-conceptly providing a new source of naturally incorporated cardiomyocytes to help heart regeneration.

8.
Front Psychol ; 15: 1383904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873525

RESUMO

Perceptual difficulty with an unfamiliar accent can dissipate within short time scales (e.g., within minutes), reflecting rapid adaptation effects. At the same time, long-term familiarity with an accent is also known to yield stable perceptual benefits. However, whether the long-term effects reflect sustained, cumulative progression from shorter-term adaptation remains unknown. To fill this gap, we developed a web-based, repeated exposure-test paradigm. In this paradigm, short test blocks alternate with exposure blocks, and this exposure-test sequence is repeated multiple times. This design allows for the testing of adaptive speech perception both (a) within the first moments of encountering an unfamiliar accent and (b) over longer time scales such as days and weeks. In addition, we used a Bayesian ideal observer approach to select natural speech stimuli that increase the statistical power to detect adaptation. The current report presents results from a first application of this paradigm, investigating changes in the recognition accuracy of Mandarin-accented speech by native English listeners over five sessions spanning 3 weeks. We found that the recognition of an accent feature (a syllable-final /d/, as in feed, sounding/t/-like) improved steadily over the three-week period. Unexpectedly, however, the improvement was seen with or without exposure to the accent. We discuss possible reasons for this result and implications for conducting future longitudinal studies with repeated exposure and testing.

9.
Adv Healthc Mater ; : e2400930, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847291

RESUMO

Electrohydrodynamic (EHD) direct-writing has recently gained attention as a highly promising additive manufacturing strategy for fabricating intricate micro/nanoscale architectures. This technique is particularly well-suited for mimicking the extracellular matrix (ECM) present in biological tissue, which serves a vital function in facilitating cell colonization, migration, and growth. The integration of EHD direct-writing with other techniques has been employed to enhance the biological performance of scaffolds, and significant advancements have been made in the development of tailored scaffold architectures and constituents to meet the specific requirements of various biomedical applications. Here we offer a comprehensive overview of EHD direct-writing, including its underlying principles, demonstrated materials systems, and biomedical applications. A brief chronology of EHD direct-writing is provided, along with an examination of the observed phenomena that occur during the printing process. The impact of biomaterial selection and architectural topographic cues on biological performance is also highlighted. Finally, the major limitations associated with EHD direct-writing are discussed. This article is protected by copyright. All rights reserved.

10.
BMC Genomics ; 25(1): 546, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824587

RESUMO

BACKGROUND: Purple flowering stalk (Brassica rapa var. purpuraria) is a widely cultivated plant with high nutritional and medicinal value and exhibiting strong adaptability during growing. Mitochondrial (mt) play important role in plant cells for energy production, developing with an independent genetic system. Therefore, it is meaningful to assemble and annotate the functions for the mt genome of plants independently. Though there have been several reports referring the mt genome of in Brassica species, the genome of mt in B. rapa var. purpuraria and its functional gene variations when compared to its closely related species has not yet been addressed. RESULTS: The mt genome of B. rapa var. purpuraria was assembled through the Illumina and Nanopore sequencing platforms, which revealed a length of 219,775 bp with a typical circular structure. The base composition of the whole B. rapa var. purpuraria mt genome revealed A (27.45%), T (27.31%), C (22.91%), and G (22.32%). 59 functional genes, composing of 33 protein-coding genes (PCGs), 23 tRNA genes, and 3 rRNA genes, were annotated. The sequence repeats, codon usage, RNA editing, nucleotide diversity and gene transfer between the cp genome and mt genome were examined in the B. rapa var. purpuraria mt genome. Phylogenetic analysis show that B. rapa var. Purpuraria was closely related to B. rapa subsp. Oleifera and B. juncea. Ka/Ks analysis reflected that most of the PCGs in the B. rapa var. Purpuraria were negatively selected, illustrating that those mt genes were conserved during evolution. CONCLUSIONS: The results of our findings provide valuable information on the B.rapa var. Purpuraria genome, which might facilitate molecular breeding, genetic variation and evolutionary researches for Brassica species in the future.


Assuntos
Brassica rapa , Genoma Mitocondrial , Filogenia , Brassica rapa/genética , Anotação de Sequência Molecular , Genoma de Planta , RNA de Transferência/genética , Composição de Bases
11.
Acta Biomater ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838903

RESUMO

Limited success has been achieved in ferroptosis-induced cancer treatment due to the challenges related to low production of toxic reactive oxygen species (ROS) and inherent ROS resistance in cancer cells. To address this issue, a self-assembled nanodrug have been investigated that enhances ferroptosis therapy by increasing ROS production and reducing ROS inhibition. The nanodrug is constructed by allowing doxorubicin (DOX) to interact with Fe2+ through coordination interactions, forming a stable DOX-Fe2+ chelate, and this chelate further interacts with sorafenib (SRF), resulting in a stable and uniform nanoparticle. In tumor cells, overexpressed glutathione (GSH) triggers the disassembly of nanodrug, thereby activating the drug release. Interestingly, the released DOX not only activates nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) to produce abundant H2O2 production for enhanced ROS production, but also acts as a chemotherapeutics agent, synergizing with ferroptosis. To enhance tumor selectivity and improve the blood clearance, the nanodrug is coated with a related cancer cell membrane, which enhances the selective inhibition of tumor growth and metastasis in a B16F10 mice model. Our findings provide valuable insights into the rational design of self-assembled nanodrug for enhanced ferroptosis therapy in cancer treatment. STATEMENT OF SIGNIFICANCE: Ferroptosis is a non-apoptotic form of cell death induced by the iron-regulated lipid peroxides (LPOs), offering a promising potential for effective and safe anti-cancer treatment. However, two significant challenges hinder its clinical application: 1) The easily oxidized nature of Fe2+ and the low concentration of H2O2 leads to a low efficiency of intracellular Fenton reaction, resulting in poor therapeutic efficacy; 2) The instinctive ROS resistance of cancer cells induce drug resistance. Therefore, we developed a simple and high-efficiency nanodrug composed of self-assembling by Fe2+ sources, H2O2 inducer and ROS resistance inhibitors. This nanodrug can effectively deliver the Fe2+ sources into tumor tissue, enhance intracellular concentration of H2O2, and reduce ROS resistance, achieving a high-efficiency, precise and safe ferroptosis therapy.

12.
Materials (Basel) ; 17(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893986

RESUMO

Secondary cooling electromagnetic stirring (S-EMS) significantly impacts the internal quality of continuous casting slabs. In order to investigate the effects of S-EMS modes on segregation in slabs, a three-dimensional numerical model of the full-scale flow field, solidification, and mass transfer was established. A comparative analysis was conducted between continuous electromagnetic stirring and alternate stirring modes regarding their impacts on steel flow, solidification, and carbon segregation. The results indicated that adopting the alternate stirring mode was more advantageous for achieving uniform flow fields and reducing the disparity in solidification endpoints, thus mitigating carbon segregation. Specifically, the central carbon segregation index under continuous stirring at 320 A was 1.236, with an average of 1.247, while under alternate stirring, the central carbon segregation index decreased to 1.222 with an average of 1.227.

13.
Clin Res Hepatol Gastroenterol ; 48(7): 102392, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897557

RESUMO

OBJECTIVE: To evaluate the efficacy of rituximab (RTX)-containing therapy as first-line as well as rescue treatment for giant cell hepatitis with autoimmune hemolytic anemia (GCH-AHA). METHODS: This retrospective study recruited patients diagnosed with GCH-AHA and treated with conventional immunosuppressor regimens consisting of prednisone or RTX-containing regimes consisting of RTX and prednisone, with or without another immunosuppressor. The primary outcomes were the complete remission (CR) rate and time-period required for CR. The secondary outcomes included relapses and adverse events. RESULTS: Twenty patients (8 females and 12 males; age range 1-26 months), 15 receiving conventional regimens and 5 receiving RTX-containing regimens, were included. The CR rates were 73.3 % (11/15) and 100 % (5/5) in the conventional and RTX-containing groups, respectively. The time-period required for CR was significantly shorter in the RTX-containing group than in the conventional group (6 (3-8) versus 14 (5-25) months, P = 0.015). Relapses occurred in 30.8 % (4/13) of patients in the conventional group; all achieved CR after adding RTX. Relapses occurred in 40.0 % (2/5) of patients in the RTX-containing group; both achieved CR after adding intravenous immune globulins or tacrolimus. Transient low immunoglobulin and infections were recorded in both groups. Treatment withdrawal was achieved in 73.3 % (11/15) and 60.0 % (3/5) of patients receiving conventional and RTX-containing regimens after 36 (2-101) and 22 (4-41) months, respectively. Two patients in conventional group died of disease progression and infection. CONCLUSIONS: RTX-containing first-line therapy achieves CR of GCH-AHA more quickly than the conventional therapy. RTX is efficacious when added to rescue therapy.

14.
Cell Discov ; 10(1): 58, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38830850

RESUMO

The neuropeptide 26RFa, a member of the RF-amide peptide family, activates the pyroglutamylated RF-amide peptide receptor (QRFPR), a class A GPCR. The 26RFa/QRFPR system plays critical roles in energy homeostasis, making QRFPR an attractive drug target for treating obesity, diabetes, and eating disorders. However, the lack of structural information has hindered our understanding of the peptide recognition and regulatory mechanism of QRFPR, impeding drug design efforts. In this study, we determined the cryo-EM structure of the Gq-coupled QRFPR bound to 26RFa. The structure reveals a unique assembly mode of the extracellular region of the receptor and the N-terminus of the peptide, and elucidates the recognition mechanism of the C-terminal heptapeptide of 26RFa by the transmembrane binding pocket of QRFPR. The study also clarifies the similarities and distinctions in the binding pattern of the RF-amide moiety in five RF-amide peptides and the RY-amide segment in neuropeptide Y. These findings deepen our understanding of the RF-amide peptide recognition, aiding in the rational design of drugs targeting QRFPR and other RF-amide peptide receptors.

15.
Neurochem Int ; 178: 105786, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38843952

RESUMO

Our previous study has identified that glutamate in the red nucleus (RN) facilitates the development of neuropathic pain through metabotropic glutamate receptors (mGluR). Here, we further explored the actions and possible molecular mechanisms of red nucleus mGluR Ⅰ (mGluR1 and mGluR5) in the development of neuropathic pain induced by spared nerve injury (SNI). Our data indicated that both mGluR1 and mGluR5 were constitutively expressed in the RN of normal rats. Two weeks after SNI, the expressions of mGluR1 and mGluR5 were significantly boosted in the RN contralateral to the nerve injury. Administration of mGluR1 antagonist LY367385 or mGluR5 antagonist MTEP to the RN contralateral to the nerve injury at 2 weeks post-SNI significantly ameliorated SNI-induced neuropathic pain. However, unilateral administration of mGluRⅠ agonist DHPG to the RN of normal rats provoked a significant mechanical allodynia, this effect could be blocked by LY367385 or MTEP. Further studies indicated that the expressions of TNF-α and IL-1ß in the RN were also elevated at 2 weeks post-SNI. Administration of mGluR1 antagonist LY367385 or mGluR5 antagonist MTEP to the RN at 2 weeks post-SNI significantly inhibited the elevations of TNF-α and IL-1ß. However, administration of mGluR Ⅰ agonist DHPG to the RN of normal rats significantly enhanced the expressions of TNF-α and IL-1ß, these effects were blocked by LY367385 or MTEP. These results suggest that activation of red nucleus mGluR1 and mGluR5 facilitate the development of neuropathic pain by stimulating the expressions of TNF-α and IL-1ß. mGluR Ⅰ maybe potential targets for drug development and clinical treatment of neuropathic pain.

16.
Front Psychiatry ; 15: 1372386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881549

RESUMO

Background: Emerging evidence links cellular senescence to the pathogenesis of major depressive disorder (MDD), a life-threatening and debilitating mental illness. However, the roles of cellular senescence-related genes in MDD are largely unknown and were investigated in this study using a comprehensive analysis. Methods: Peripheral blood microarray sequencing data were downloaded from Gene Expression Omnibus (GEO) database and retrieved cellular senescence-related genes from CellAge database. A weighted gene co-expression network analysis was used to screen MDD-associated genes. Protein-protein interactions (PPI) were predicted based on STRING data, and four topological algorithms were used to identify hub genes from the PPI network. Immune infiltration was evaluated using CIBERSORT, followed by a correlation analysis between hub genes and immune cells. Results: A total of 84 cell senescence-related genes were differentially expressed in patients with MDD compared to healthy control participants. Among the 84 genes, 20 were identified to be associated with the MDD disease phenotype, and these genes were mainly involved in hormone-related signaling pathways (such as estrogen, steroid hormone, and corticosteroid) and immune and inflammatory pathways. Three genes, namely, JUN, CTSD, and CALR, which were downregulated in MDD, were identified as the hub genes. The expression of hub genes significantly moderate correlated with multiple immune cells, such as Tregs, NK cells, and CD4+ T cells, and the abundance of these immune cells markedly differed in MDD samples. Multiple microRNAs, transcription factors, and small-molecule drugs targeting hub genes were predicted to explore their molecular regulatory mechanisms and potential therapeutic value in MDD. Conclusion: JUN, CTSD, and CALR were identified as potential diagnostic markers of MDD and may be involved in the immunoinflammatory mechanism of MDD.

17.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2597-2606, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812160

RESUMO

This study aimed to investigate the role of macrophage polarization in the treatment of liver fibrosis by Fuzheng Huayu Tablets(FZHY) through single-cell, transcriptome sequencing and in vitro and in vivo experiments. Liver fibrosis-related datasets, transcriptomic datasets, and single-cell sequencing datasets were obtained from the Gene Expression Omnibus(GEO) database to screen differential genes. Liver fibrosis-related genes were obtained from GeneCards, DisGeNET, NCBI, PharmgKB, TTD and OMIM databases. Macrophage polarization-related genes were obtained from the GeneCards database. The above three gene sets were intersected to construct a protein-protein interaction(PPI) network. Cytoscape software was used to screen core proteins, and the expression pattern of core proteins was visualized by single-cell sequencing. A mouse model of liver fibrosis was constructed using carbon tetrachloride(CCl_4). Hematoxylin-eosin(HE) staining and Masson staining were used to observe the pathological morphology of liver tissues. The expressions of α-smooth muscle actin(α-SMA) and transforming growth factor-ß1(TGF-ß1) were detected by immunohistochemistry. The levels of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were detected by colorimetry. The le-vels of inflammatory factors in serum were detected by the enzyme-linked immunosorbent assay(ELISA). Furthermore, the expressions of α-SMA, TGF-ß1, cluster of differentiation 86(CD86) and thrombospondin 1(THBS1) in liver tissues were detected by Western blot(WB). Lipopolysaccharide(LPS) was used to stimulate RAW264.7 cells to construct the M1 macrophage polarization model. The cell counting kit-8(CCK-8) method was used to detect cell viability. WB was used to detect the protein expressions of CD86 and THBS1 in cells, and the messenger ribonucleic acid(mRNA) expression levels of tumor necrosis factor-α(TNF-α) and interleukin(IL)-1ß by real-time fluorescent quantitative reverse transcription polymerase chain reaction(RT-qPCR). The results showed that a total of 26 potential genes related to the polarization of liver fibrosis macrophages were obtained, and 10 core proteins related to the polarization of liver fibrosis macrophages such as THBS1, lumican(LUM) and fibulin-5(FBLN5) were screened. Single-cell data analysis indicated that THBS1, ranking highest, may be expressed by M1 macrophages. Animal experiments demonstrated that FZHY reduced inflammatory cell infiltration and collagen deposition in CCl_4-induced mouse liver, relieved liver injury and inflammation levels, and inhibited the expressions of α-SMA, TGF-ß1, CD86, and THBS1 proteins. Cell experiments revealed that FZHY significantly reduced intracellular expression of CD86 and THBS1 proteins and mRNA levels of TNF-α and IL-1ß. In conclusion, FZHY may ameliorate liver fibrosis by inhibiting THBS1 protein expression, suppressing M1 macrophage polarization, and reducing inflammation.


Assuntos
Medicamentos de Ervas Chinesas , Cirrose Hepática , Transcriptoma , Animais , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Transcriptoma/efeitos dos fármacos , Masculino , Análise de Célula Única , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
18.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2247-2261, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812239

RESUMO

This study employed microcirculation visualization and metabolomics methods to explore the effect and possible mechanism of Dalbergia cochinchinensis in ameliorating coronary microvascular dysfunction(CMD) induced by microsphere embolization in rats. Sixty SPF-grade male SD rats were randomized into sham, model, and low-, medium-, and high-dose [1.5, 3.0, and 6.0 g·kg~(-1)·d~(-1), respectively] D. cochinchinensis water extract groups. The rats in sham and model groups were administrated with equal volume of normal saline by gavage once a day for 7 consecutive days. The rat model of CMD was prepared by injecting polyethylene microspheres into the left ventricle, while the sham group was injected with an equal amount of normal saline. A blood flow meter was used to measure blood flow, and a blood rheometer to measure blood viscosity and fibrinogen content. An automatic biochemical analyzer and reagent kits were used to measure the serum levels of myocardial enzymes, glucose, and nitric oxide(NO). Hematoxylin-eosin(HE) staining was used to observe the pathological changes of myocardial tissue. DiI C12/C18 perfusion was used to infuse coronary microvessels, and the structural and morphological changes were observed using a confocal laser scanning microscope. AngioTool was used to analyze the vascular area, density, radius, and mean E lacunarity in the microsphere embolization area, and vascular blood flow resistance was calculated based on Poiseuille's law. Non-targeted metabolomics based on high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed screen potential biomarkers and differential metabolites regulated by D. cochinchinensis and the involved metabolic pathways were enriched. The pharmacodynamic results showed that compared with the model group, D. cochinchinensis significantly increased mean blood flow, reduced plasma fibrinogen content, lowered the levels of myocardial enzymes such as creatine kinase(CK), creatine kinase-MB(CK-MB), and lactate dehydrogenase(LDH), alleviate myocardial injury, and protect damaged myocardium. In addition, D. cochinchinensis significantly increased serum NO content, promoted vascular smooth muscle relaxation, dilated blood vessels, lowered serum glucose(GLU) level, improved myocardial energy metabolism, and alleviated pathological changes in myocardial fibrosis and inflammatory cell infiltration. The results of coronary microcirculation perfusion showed that D. cochinchinensis improved the vascular morphology, increased the vascular area, density, and radius, reduced vascular mean E lacunarity and blood flow resistance, and alleviated vascular endothelial damage in CMD rats. The results of metabolomics identified 45 differential metabolites between sham and model groups, and D. cochinchinensis recovered the levels 25 differential metabolites, which were involved in 8 pathways including arachidonic acid metabolism, arginine biosynthesis, and sphingolipids metabolism. D. cochinchinensis can ameliorate coronary microcirculation dysfunction caused by microsphere embolization in rats, and it may alleviate the pathological changes of CMD rats by regulating inflammatory reaction, endothelial damage, and phospholipid metabolism.


Assuntos
Dalbergia , Medicamentos de Ervas Chinesas , Metabolômica , Microcirculação , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Microcirculação/efeitos dos fármacos , Dalbergia/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Miocárdio/metabolismo , Vasos Coronários/fisiopatologia , Humanos
19.
Bioorg Chem ; 149: 107499, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815476

RESUMO

Janus Kinase 3 (JAK3) is important for the signaling transduction of cytokines in immune cells and is identified as potential target for treatment of rheumatoid arthritis (RA). Recently, we designed and synthesized two JAK3 inhibitors J1b and J1f, which featured with high selectivity but mild bioactivity. Therefore, in present study the structure was optimized to increase the potency. As shown in the results, most of the compounds synthesized showed stronger inhibitory activities against JAK3 in contrast to the lead compounds, among which 9a was the most promising candidate because it had the most potent effect in ameliorating carrageenan-induced inflammation of mice and exhibited low acute in vivo toxicity (MTD > 2 g/kg). Further analysis revealed that 9a was highly selective to JAK3 (IC50 = 0.29 nM) with only minimal effect on other JAK members (>3300-fold) and those kinases bearing a thiol in a position analogous to that of Cys909 in JAK3 (>150-fold). Meanwhile, the selectivity of JAK3 was also confirmed by PBMC stimulation assay, in which 9a irreversibly bound to JAK3 and robustly inhibited the signaling transduction with mild suppression on other JAKs. Moreover, it was showed that 9a could remarkably inhibited the proliferation of lymphocytes in response to concanavalin A and significantly mitigate disease severity in collagen induced arthritis. Therefore, present data indicate that compound 9a is a selective JAK3 inhibitor and could be a promising candidate for clinical treatment of RA.


Assuntos
Artrite Reumatoide , Janus Quinase 3 , Inibidores de Proteínas Quinases , Pirimidinas , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Artrite Reumatoide/tratamento farmacológico , Animais , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Humanos , Relação Estrutura-Atividade , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Pirróis/química , Pirróis/farmacologia , Pirróis/síntese química , Carragenina , Masculino , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Antirreumáticos/farmacologia , Antirreumáticos/química , Antirreumáticos/síntese química , Simulação de Acoplamento Molecular
20.
Bioorg Med Chem ; 107: 117761, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795571

RESUMO

Small-molecule glucagon-like peptide-1 receptor (GLP-1R) agonists are recognized as promising therapeutics for type 2 diabetes mellitus (T2DM) and obesity. Danuglipron, an investigational small-molecule agonist, has demonstrated high efficacy in clinical trials. However, further development of danuglipron is challenged by a high rate of gastrointestinal adverse events. While these effects may be target-related, it is plausible that the carboxylic acid group present in danuglipron may also play a role in these outcomes by affecting the pharmacokinetic properties and dosing regimen of danuglipron, as well as by exerting direct gastrointestinal irritation. Therefore, this study aims to replace the problematic carboxylic acid group by exploring the internal binding cavity of danuglipron bound to GLP-1R using a water molecule displacement strategy. A series of novel triazole-containing compounds have been designed and synthesized during the structure-activity relationship (SAR) study. These efforts resulted in the discovery of compound 2j with high potency (EC50 = 0.065 nM). Moreover, docking simulations revealed that compound 2j directly interacts with the residue Glu387 within the internal cavity of GLP-1R, effectively displacing the structural water previously bound to Glu387. Subsequent in vitro and in vivo experiments demonstrated that compound 2j had comparable efficacy to danuglipron in enhancing insulin secretion and improving glycemic control. Collectively, this study offers a practicable approach for the discovery of novel small-molecule GLP-1R agonists based on danuglipron, and compound 2j may serve as a lead compound to further exploit the unoccupied internal cavity of danuglipron's binding pocket.


Assuntos
Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon/química , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Simulação de Acoplamento Molecular , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...