Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
1.
Diagn Pathol ; 19(1): 122, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244586

RESUMO

BACKGROUND: Post-transplant lymphoproliferative disorders (PTLD) are rare but severe complications that occur after solid organ or allogeneic hematopoietic stem cell transplantations (allo-HSCT), with rapid progression and high mortality. Primary central nervous system (CNS)-PTLD are rarely recognized histo-pathologically. In addition, the diagnostic value of the Epstein-Barr virus (EBV) DNA copies in CNS-PTLD remains poorly understood. OBJECTIVES: We herein report a case of monomorphic EBV-associated CNS-PTLD (diffuse large B-cell lymphoma, DLBCL) after allo-HSCT and perform a meta-analysis to assess the efficacy of PTLD treatment strategies in recent years. METHODS: We present the case report covering clinical manifestations, diagnosis, treatment, and outcomes of a patient with primary CNS-PTLD. Additionally, we include a systematic review and meta-analysis of the clinical characteristics of 431 patients with PTLD after allo-HSCT. We evaluate the main treatment options and outcomes of PTLD management, including rituximab, chemotherapies, and autologous or human leukocyte antigen (HLA)-matched EBV-specific cytotoxic T lymphocyte infusion (EBV-CTLs)/donor lymphocyte infusion (DLI). RESULTS: The meta-analysis revealed an overall response rate of 69.0% for rituximab alone (95% CI: 0.47-0.84), 45.0% for rituximab plus chemotherapies (95% CI: 0.15-0.80), and 91.0% for rituximab plus EBV-CTLs/DLI (95% CI: 0.83-0.96). The complete response (CR) rate after treatments for PTLD was 67.0% (95% CI: 0.56-0.77). Moreover, the 6-month and 1-year overall survival (OS) rate was 64.0% (95% CI: 0.31-0.87) and 49.0% (95% CI: 0.31-0.68), respectively. CONCLUSIONS: This case highlighted the urgent need for effective, low-toxic treatment regimens for CNS-PTLD. Our meta-analysis suggested that rituximab combined with EBV-CTLs/DLI could be a favorable strategy for the management of PTLD after allo-HSCT.


Assuntos
Infecções por Vírus Epstein-Barr , Transplante de Células-Tronco Hematopoéticas , Transtornos Linfoproliferativos , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Infecções por Vírus Epstein-Barr/complicações , Transtornos Linfoproliferativos/etiologia , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/terapia , Herpesvirus Humano 4/isolamento & purificação , Herpesvirus Humano 4/genética , Transplante Homólogo/efeitos adversos , Masculino , Linfoma Difuso de Grandes Células B/virologia , Linfoma Difuso de Grandes Células B/terapia , Adulto , Feminino , Rituximab/uso terapêutico , Pessoa de Meia-Idade
2.
Geriatr Nurs ; 60: 121-127, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241690

RESUMO

Inpatient falls are common adverse events especially for patients with hematologic malignancies. A fall-risk prediction model for patients with hematologic malignancies are still needed. Here we conducted a multicenter study that prospectively included 516 hospitalized patients with hematologic malignancies, and developed a nomogram for fall risk prediction. Patients were divided into the modeling group (n = 389) and the validation group (n = 127). A questionnaire containing sociodemographic factors, general health factors, disease-related factors, medication factors, and physical activity factors was administered to all patients. Logistic regression analysis revealed that peripheral neuropathy, pain intensity, Morse fall scale score, chemotherapy courses, and myelosuppression days were risk factors for falls in patients with hematologic malignancies. The nomogram model had a sensitivity of 0.790 and specificity of 0.800. The calibration curves demonstrated acceptable agreement between the predicted and observed outcomes. Therefore, the nomogram model has promising accuracy in predicting fall risk in patients with hematologic malignancies.

3.
Proc Natl Acad Sci U S A ; 121(34): e2404199121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39136985

RESUMO

Low phosphate (Pi) availability decreases photosynthesis, with phosphate limitation of photosynthesis occurring particularly during grain filling of cereal crops; however, effective genetic solutions remain to be established. We previously discovered that rice phosphate transporter OsPHO1;2 controls seed (sink) development through Pi reallocation during grain filling. Here, we find that OsPHO1;2 regulates Pi homeostasis and thus photosynthesis in leaves (source). Loss-of-function of OsPHO1;2 decreased Pi levels in leaves, leading to decreased photosynthetic electron transport activity, CO2 assimilation rate, and early occurrence of phosphate-limited photosynthesis. Interestingly, ectopic expression of OsPHO1;2 greatly increased Pi availability, and thereby, increased photosynthetic rate in leaves during grain filling, contributing to increased yield. This was supported by the effect of foliar Pi application. Moreover, analysis of core rice germplasm resources revealed that higher OsPHO1;2 expression was associated with enhanced photosynthesis and yield potential compared to those with lower expression. These findings reveal that phosphate-limitation of photosynthesis can be relieved via a genetic approach, and the OsPHO1;2 gene can be employed to reinforce crop breeding strategies for achieving higher photosynthetic efficiency.


Assuntos
Oryza , Fosfatos , Fotossíntese , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Fosfatos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Plantas Geneticamente Modificadas
4.
Front Plant Sci ; 15: 1322261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148616

RESUMO

The dramatic decrease in atmospheric CO2 concentration during Oligocene was proposed as directly linked to C4 evolution. However, it remains unclear how the decreased CO2 concentration directly facilitate C4 evolution, besides its role as a selection pressure. We conducted a systematic transcriptomics and metabolomics analysis under short-term low CO2 condition and found that Arabidopsis grown under this condition showed 1) increased expression of most genes encoding C4-related enzymes and transporters; 2) increased expression of genes involved in photorespiration and pathways related to carbon skeleton generation for ammonium refixation; 3) increased expression of genes directly involved in ammonium refixation. Furthermore, we found that in vitro treatment of leaves with NH4 + induced a similar pattern of changes in C4 related genes and genes involved in ammonium refixation. These data support the view that Arabidopsis grown under short-term low CO2 conditions rewired its metabolism to supply carbon skeleton for ammonium recycling, during which process the expression of C4 genes were up-regulated as a result of a hitchhiking process. This study provides new insights into the adaptation of the C3 model plant Arabidopsis under low CO2 conditions and suggests that low CO2 can facilitate the evolution of C4 photosynthesis beyond the commonly assumed role of being a selection pressure.

5.
Stem Cell Res Ther ; 15(1): 214, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020385

RESUMO

Sciatic nerve injury (SNI) is a common type of peripheral nerve injury typically resulting from trauma, such as contusion, sharp force injuries, drug injections, pelvic fractures, or hip dislocations. It leads to both sensory and motor dysfunctions, characterized by pain, numbness, loss of sensation, muscle atrophy, reduced muscle tone, and limb paralysis. These symptoms can significantly diminish a patient's quality of life. Following SNI, Wallerian degeneration occurs, which activates various signaling pathways, inflammatory factors, and epigenetic regulators. Despite the availability of several surgical and nonsurgical treatments, their effectiveness remains suboptimal. Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm, originating from the endoplasmic reticulum. They play a crucial role in facilitating intercellular communication and have emerged as highly promising vehicles for drug delivery. Increasing evidence supports the significant potential of exosomes in repairing SNI. This review delves into the pathological progression of SNI, techniques for generating exosomes, the molecular mechanisms behind SNI recovery with exosomes, the effectiveness of combining exosomes with other approaches for SNI repair, and the changes and future outlook for utilizing exosomes in SNI recovery.


Assuntos
Exossomos , Nervo Isquiático , Exossomos/metabolismo , Exossomos/transplante , Humanos , Animais , Nervo Isquiático/lesões , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/metabolismo , Regeneração Nervosa
6.
Biochem Biophys Res Commun ; 724: 150140, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38852506

RESUMO

Sepsis is a severe inflammatory disease characterized by cytokine storm, often accompanied by disseminated intravascular coagulation (DIC). PANoptosis is a novel form of cell death triggered by cytokine storms, characterized by a cascade reaction of pyroptosis, apoptosis, and necroptosis. It exists in septic platelets and is closely associated with the onset and progression of DIC. However, there remains an unmet need for drugs targeting PANoptosis. The anti-PANoptosis effect of myricetin was predicted using network pharmacology and confirmed through molecular docking. In vitro platelet activation models demonstrated that myricetin significantly attenuated platelet particle release, integrin activation, adhesion, spreading, clot retraction, and aggregation. Moreover, in a sepsis model, myricetin reduced inflammatory infiltration in lung tissue and platelet activation while improving DIC. Additionally, whole blood sequencing samples from sepsis patients and healthy individuals were analyzed to elucidate the up-regulation of the PANoptosis targets. Our findings demonstrate the inhibitory effect of myricetin on septic platelet PANoptosis, indicating its potential as a novel anti-cellular PANoptosis candidate and therapeutic agent for septic DIC. Furthermore, our study establishes a foundation for utilizing network pharmacology in the discovery of new drugs to treat various diseases.


Assuntos
Plaquetas , Coagulação Intravascular Disseminada , Flavonoides , Sepse , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Sepse/tratamento farmacológico , Sepse/sangue , Humanos , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Coagulação Intravascular Disseminada/tratamento farmacológico , Coagulação Intravascular Disseminada/etiologia , Coagulação Intravascular Disseminada/patologia , Coagulação Intravascular Disseminada/sangue , Animais , Masculino , Simulação de Acoplamento Molecular , Ativação Plaquetária/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos , Piroptose/efeitos dos fármacos
7.
J Genet Genomics ; 51(8): 790-800, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38734136

RESUMO

Crop phenomics enables the collection of diverse plant traits for a large number of samples along different time scales, representing a greater data collection throughput compared with traditional measurements. Most modern crop phenomics use different sensors to collect reflective, emitted, and fluorescence signals, etc., from plant organs at different spatial and temporal resolutions. Such multi-modal, high-dimensional data not only accelerates basic research on crop physiology, genetics, and whole plant systems modeling, but also supports the optimization of field agronomic practices, internal environments of plant factories, and ultimately crop breeding. Major challenges and opportunities facing the current crop phenomics research community include developing community consensus or standards for data collection, management, sharing, and processing, developing capabilities to measure physiological parameters, and enabling farmers and breeders to effectively use phenomics in the field to directly support agricultural production.


Assuntos
Produtos Agrícolas , Fenômica , Melhoramento Vegetal , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Agricultura , Fenótipo
8.
Dig Liver Dis ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744556

RESUMO

OBJECTIVE: The primary purpose of the study was to explore the clinical efficacy of the novel snare assisted endoscopic resection of extraluminal growing gastric gastrointestinal stromal tumors (gastric GISTs) using external traction, and the secondary purpose was to compare the novel snare assisted endoscopic resection of extraluminal GISTs with the standard laparoscopic procedure. METHODS: We retrospectively analyzed the patients who underwent novel external traction assisted endoscopic resection or laparoscopic resection for their extraluminal gastric GIST ≤5 cm in diameter. RESULTS: A total of 111 patients (27 in the endoscopic group and 84 in the laparoscopic group) were included in this study. There was no significant difference in tumor diameter and complication rate between the two groups. The overall procedure time was slightly higher in the endoscopic group compared to the laparoscopic group (P = 0.034). However, postoperative hospitalization time (P < 0.001) and postoperative fasting time (P = 0.005) were shorter in the endoscopic group compared to the laparoscopic group. CONCLUSION: Snare external traction-assisted endoscopic resection of extraluminal growing gastric GISTs is safe and effective, and it provides a new adjunctive method for endoscopic resection of GIST.

9.
Plant Cell ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701340

RESUMO

Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase CO2 concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.

10.
J Sci Food Agric ; 104(11): 6947-6956, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38597282

RESUMO

BACKGROUND: Peach gum (PG) is an exudate of the peach tree (Prunus persica of the Rosaceae family), which consists primarily of polysaccharides with a large molecular weight and branching structure. Consequently, PG can only swell in water and does not dissolve easily, which severely limits its application. Current conventional extraction methods for PG polysaccharide (PGPS) are time consuming and inefficient. This study investigated the impact of ultrasonic-assisted extraction (UAE) on PGPS structure and conformation, and their relationship to hypoglycemic activity in vitro. RESULTS: In comparison with conventional aqueous extraction, UAE enhanced PGPS yielded from 28.07-32.83% to 80.37-84.90% (w/w) in 2 h. It drastically decreased the molecular size and conformational parameters of PGPS, including weight-average molecular weight (Mw), number-average molecular weight (Mn), z-average radius of gyration (Rg), hydrodynamic radius (Rh) and instrinsic viscosity ([η]) values. Peach gum polysaccharide conformation converted extended molecules to flexible random coil chains or compact spheres with no obvious primary structure alteration. Furthermore, UAE altered the flow behavior of PGPS solution from that of a non-Newtonian fluid to that of a Newtonian fluid. As a result, PGPS treated with UAE displayed weaker inhibitory activity than untreated PGPS, mostly because UAE weakens the binding strength of PGPS to α-glucosidase. However, this negative effect of UAE on PGPS activity was compensated by the increased solubility of polysaccharide. This enabled PGPS to achieve a wider range of doses. CONCLUSION: Ultrasonic-assisted extraction is capable of degrading PGPS efficiently while preserving its primary structure, resulting in a Newtonian fluid solution. The degraded PGPS conformations displayed a consistent correlation with their inhibitory effect on α-glucosidase activity. © 2024 Society of Chemical Industry.


Assuntos
Hipoglicemiantes , Peso Molecular , Gomas Vegetais , Polissacarídeos , Prunus persica , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Prunus persica/química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Gomas Vegetais/química , Gomas Vegetais/isolamento & purificação , Viscosidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Ultrassom , Fracionamento Químico/métodos
11.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612598

RESUMO

Severe acute pancreatitis (SAP), a widespread inflammatory condition impacting the abdomen with a high mortality rate, poses challenges due to its unclear pathogenesis and the absence of effective treatment options. Isorhamnetin (ISO), a naturally occurring flavonoid, demonstrates robust antioxidant and anti-inflammatory properties intricately linked to the modulation of mitochondrial function. However, the specific protective impact of ISO on SAP remains to be fully elucidated. In this study, we demonstrated that ISO treatment significantly alleviated pancreatic damage and reduced serum lipase and amylase levels in the mouse model of SAP induced by sodium taurocholate (STC) or L-arginine. Utilizing an in vitro SAP cell model, we found that ISO co-administration markedly prevented STC-induced pancreatic acinar cell necrosis, primarily by inhibiting mitochondrial ROS generation, preserving ATP production, maintaining mitochondrial membrane potential, and preventing the oxidative damage and release of mitochondrial DNA. Mechanistically, our investigation identified that high-temperature requirement A2 (HtrA2) may play a central regulatory role in mediating the protective effect of ISO on mitochondrial dysfunction in STC-injured acinar cells. Furthermore, through an integrated approach involving bioinformatics analysis, molecular docking analysis, and experimental validation, we uncovered that ISO may directly impede the histone demethylation activity of KDM5B, leading to the restoration of pancreatic HtrA2 expression and thereby preserving mitochondrial function in pancreatic acinar cells following STC treatment. In conclusion, this study not only sheds new light on the intricate molecular complexities associated with mitochondrial dysfunction during the progression of SAP but also underscores the promising value of ISO as a natural therapeutic option for SAP.


Assuntos
Doenças Mitocondriais , Pancreatite , Quercetina/análogos & derivados , Animais , Camundongos , Pancreatite/tratamento farmacológico , Doença Aguda , Simulação de Acoplamento Molecular , Mitocôndrias , Transdução de Sinais
12.
Methods Mol Biol ; 2790: 213-226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649573

RESUMO

Canopy photosynthesis (Ac), rather than leaf photosynthesis, is critical to gaining higher biomass production in the field because the daily or seasonal integrals of Ac correlate with the daily or seasonal integrals of biomass production. The canopy photosynthesis and transpiration measurement system (CAPTS) was developed to enable measurement of canopy photosynthetic CO2 uptake, transpiration, and respiration rates. CAPTS continuously records the CO2 concentration, water vapor concentration, air temperature, air pressure, air relative humidity, and photosynthetic photon flux density (PPFD) inside the chamber, which can be used to derive CO2 and H2O fluxes of a canopy covered by the chamber. This system can also be used to measure the fluxes of greenhouse gases when integrating with CH4 and N2O analyzers. Here, we describe the protocol for using CAPTS to perform experiments on rice (Oryza sativa L.) in paddy field, wheat (Triticum aestivum L.) in upland field, and tobacco (Nicotiana tabacum L.) in pots.


Assuntos
Dióxido de Carbono , Oryza , Fotossíntese , Folhas de Planta , Transpiração Vegetal , Fotossíntese/fisiologia , Transpiração Vegetal/fisiologia , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Oryza/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Nicotiana/fisiologia , Nicotiana/metabolismo , Nicotiana/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Triticum/metabolismo , Água/metabolismo
13.
Brain Res ; 1836: 148956, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657888

RESUMO

Recent advancements in neuroimaging have illustrated that anterior cruciate ligament (ACL) injuries could impact the central nervous system (CNS), causing neuroplastic changes in the brain beyond the traditionally understood biomechanical consequences. While most of previous functional magnetic resonance imaging (fMRI) studies have focused on localized cortical activity changes post-injury, emerging research has suggested disruptions in functional connectivity across the brain. However, these prior investigations, albeit pioneering, have been constrained by two limitations: a reliance on small-sample participant cohorts, often limited to two to three patients, potentially limiting the generalizability of findings, and an adherence to region of interest based analysis, which may overlook broader network interactions. To address these limitations, our study employed resting-state fMRI to assess whole-brain functional connectivity in 15 ACL-injured patients, comparing them to matched controls using two distinct network analysis methods. Using Network-Based Statistics, we identified widespread reductions in connectivity that spanned across multiple brain regions. Further modular connectivity analysis showed significant decreases in inter-modular connectivity between the sensorimotor and cerebellar modules, and intra-modular connectivity within the default-mode network in ACL-injured patients. Our results thus highlight a shift from localized disruptions to network-wide dysfunctions, suggesting that ACL injuries induce widespread CNS changes. This enhanced understanding has the potential to stimulate the development of strategies aiming to restore functional connectivity and improve recovery outcomes.


Assuntos
Lesões do Ligamento Cruzado Anterior , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Adulto , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Conectoma/métodos , Adolescente , Mapeamento Encefálico/métodos
15.
Bioorg Chem ; 146: 107286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537336

RESUMO

Pulmonary fibrosis (PF) poses a significant challenge with limited treatment options and a high mortality rate of approximately 45 %. Qingkailing Granule (QKL), derived from the Angong Niuhuang Pill, shows promise in addressing pulmonary conditions. Using a comprehensive approach, combining network pharmacology analysis with experimental validation, this study explores the therapeutic effects and mechanisms of QKL against PF for the first time. In vivo, QKL reduced collagen deposition and suppressed proinflammatory cytokines in a bleomycin-induced PF mouse model. In vitro studies demonstrated QKL's efficacy in protecting cells from bleomycin-induced injury and reducing collagen accumulation and cell migration in TGF-ß1-induced pulmonary fibrosis cell models. Network pharmacology analysis revealed potential mechanisms, confirmed by western blotting, involving the modulation of PI3K/AKT and SRC/STAT3 signaling pathways. Molecular docking simulations highlighted interactions between QKL's active compounds and key proteins, showing inhibitory effects on epithelial damage and fibrosis. Collectively, these findings underscore the therapeutic potential of QKL in alleviating pulmonary inflammation and fibrosis through the downregulation of PI3K/AKT and SRC/STAT3 signaling pathways, with a pivotal role attributed to its active compounds.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Colágeno/metabolismo , Colágeno/farmacologia , Colágeno/uso terapêutico , Fibrose , Bleomicina/efeitos adversos
16.
Toxicol Appl Pharmacol ; 484: 116871, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423217

RESUMO

Salvia miltiorrhiza Bunge. (DS), as an important traditional Chinese medicine (TCM), has a long history of usage for promoting blood circulation and removing blood stasis. Modern studies have shown that the chemical components of DS have many biological activities such as cardiovascular protection, anti-arrhythmia, anti-atherosclerosis, improvement of microcirculation, protection of myocardium, inhibition and removal of platelet aggregation. Nevertheless, the action mechanism of DS as well its active compounds on platelet activation has not been fully uncovered. This study aimed to find out the potential targets and mechanisms of DS in the modulation of platelet activation and thrombosis, using network pharmacology and biological experimental. These compounds with anti-thrombotic activity in DS, cryptotanshinone (CPT), isoeugenol (ISO) and tanshinone IIA (TSA), together with the corresponding targets being Src, Akt and RhoA are screened by network pharmacology. We confirmed that ISO, CPT and TSA dose-dependently inhibited platelet activation in vitro, mainly by inhibiting agonist-induced clot retraction, aggregation and P-selectin and ATP release. The western blot findings indicated that ISO, CPT, and TSA led to reduced levels of p-Akt and p-ERK in activated platelets. Additionally, ISO and TSA were observed to decrease p-cSrc expression while increasing RhoA expression. ISO, CPT, and TSA demonstrated a potential to restrict the advancement of carotid arterial thrombosis in vivo. We confirm that ISO, CPT and TSA are the key anti-thrombotic active compounds in DS. These active compounds exhibit unique inhibitory effects on platelet activation and thrombus formation by modulating the Akt/ERK and cSrc/RhoA signaling pathways.


Assuntos
Salvia miltiorrhiza , Trombose , Salvia miltiorrhiza/química , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt/farmacologia , Ativação Plaquetária , Trombose/tratamento farmacológico
18.
Pak J Med Sci ; 40(3Part-II): 467-472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356806

RESUMO

Objective: To explore the changes of serum-related indexes at different time points, so as to identify the critical time of converting from simple premature thelarche (PT) to idiopathic central precocious puberty (ICPP). Methods: This is a retrospective study. The subjects of the study were 50 girls with PT who were admitted to the Children's Hospital of Hebei Province from January 2019 to September 2020. The enrolled 50 children were divided into the conversion group(n=12) and the non-conversion group(n=38) according to whether PT was converted into ICPP during follow-up. Furthermore, the levels of serum-related indexes and uterine and ovarian volumes were compared after the diagnosis of PT. Results: The IGF-1 and IGFBP-3 levels of children in the conversion group began to change significantly from six months after the diagnosis, with statistically significant differences when compared with the levels of children at the initial diagnosis, three months and those of the non-conversion group at the same time points (p<0.05). The levels of vitamin-D, DHEA and leptin began to change significantly at nine months after the diagnosis (p<0.05). Besides, uterine and ovarian volumes in the conversion group began to increase significantly six months after the diagnosis, with statistically significant differences when compared with those in the non-conversion group (p<0.05). Conclusion: Findings in our study suggest that regular monitoring of vitamin-D, IGF-1, IGFBP-3, DHEA and leptin levels, and uterine and ovarian volumes can predict the conversion from PT to ICPP at an early stage.

19.
Plant Physiol ; 195(1): 291-305, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38377473

RESUMO

As a complex trait, C4 photosynthesis has multiple independent origins in evolution. Phylogenetic evidence and theoretical analysis suggest that C2 photosynthesis, which is driven by glycine decarboxylation in the bundle sheath cell, may function as a bridge from C3 to C4 photosynthesis. However, the exact molecular mechanism underlying the transition between C2 photosynthesis to C4 photosynthesis remains elusive. Here, we provide evidence suggesting a role of higher α-ketoglutarate (AKG) concentration during this transition. Metabolomic data of 12 Flaveria species, including multiple photosynthetic types, show that AKG concentration initially increased in the C3-C4 intermediate with a further increase in C4 species. Petiole feeding of AKG increases the concentrations of C4-related metabolites in C3-C4 and C4 species but not the activity of C4-related enzymes. Sequence analysis shows that glutamate synthase (Fd-GOGAT), which catalyzes the generation of glutamate using AKG, was under strong positive selection during the evolution of C4 photosynthesis. Simulations with a constraint-based model for C3-C4 intermediate further show that decreasing the activity of Fd-GOGAT facilitated the transition from a C2-dominant to a C4-dominant CO2 concentrating mechanism. All these results provide insight into the mechanistic switch from C3-C4 intermediate to C4 photosynthesis.


Assuntos
Flaveria , Ácidos Cetoglutáricos , Fotossíntese , Fotossíntese/genética , Ácidos Cetoglutáricos/metabolismo , Flaveria/genética , Flaveria/metabolismo , Filogenia , Carbono/metabolismo , Dióxido de Carbono/metabolismo
20.
Plant Physiol ; 194(4): 2400-2421, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38180123

RESUMO

Light-induced de-etiolation is an important aspect of seedling photomorphogenesis. GOLDEN2 LIKE (GLK) transcriptional regulators are involved in chloroplast development, but to what extent they participate in photomorphogenesis is not clear. Here, we show that ELONGATED HYPOCOTYL5 (HY5) binds to GLK promoters to activate their expression, and also interacts with GLK proteins in Arabidopsis (Arabidopsis thaliana). The chlorophyll content in the de-etiolating Arabidopsis seedlings of the hy5 glk2 double mutants was lower than that in the hy5 single mutant. GLKs inhibited hypocotyl elongation, and the phenotype could superimpose on the hy5 phenotype. Correspondingly, GLK2 regulated the expression of photosynthesis and cell elongation genes partially independent of HY5. Before exposure to light, DE-ETIOLATED 1 (DET1) affected accumulation of GLK proteins. The enhanced etioplast development and photosystem gene expression observed in the det1 mutant were attenuated in the det1 glk2 double mutant. Our study reveals that GLKs act downstream of HY5, or additive to HY5, and are likely quantitatively adjusted by DET1, to orchestrate multiple developmental traits during the light-induced skotomorphogenesis-to-photomorphogenesis transition in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo , Luz , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plântula/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...