Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 723
Filtrar
1.
Sci Total Environ ; 951: 175487, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153616

RESUMO

Fluoroquinolones (FQs), a class of broad-spectrum antibiotics widely used to treat human and animal diseases globally, have limited adsorption and are often excreted unchanged or as metabolites. These compounds enter the soil environment through feces, urban wastewater, or discharge of biological solids. The fluorine atoms in FQs impart high electronegativity, chemical stability, and resistance to microbial degradation, allowing them to potentially enter food chains. The persistence of FQs in soils raises questions about their impacts on plant growth, an aspect not yet conclusively determined. We reviewed whether, like other organic compounds, FQs are actively absorbed by plants, resulting in bioaccumulation and posing threats to human health. The influx of FQs has led to antibiotic resistance in soil microbes by exerting selective pressure and contributing to multidrug-resistant bacteria. Therefore, the environmental risks of FQs warrant further attention. This work provides a comprehensive review of the fate and behavior of FQs at the plant-environment interface, their migration and transport from the environment into plants, and associated toxicity. Current limitations in research are discussed and prospects for future investigations outlined. Thus, understanding antibiotic behavior in plants and translocation within tissues is not only crucial for ecosystem health (plant health), but also assessing potential human health risks. In addition, it can offer insights into the fate of emerging soil pollutants in plant-soil systems.

2.
Water Res ; 265: 122217, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39128335

RESUMO

Phenols are the widely detected contaminants in the aquatic environment. Pyrogenic carbon (PyC) can mediate phenols degradation, but the specific properties of PyC or phenols influencing this reaction remain unknown. The present study investigated the kinetic process and mechanism of removal of various phenols by different PyC in aqueous phase system. To avoid the impact of the accumulated degradation byproducts on the overall reaction, we conducted a short-term experiment, quantified adsorption and degradation, and obtained reaction rate constants using a two-compartment first-order kinetics model. The adsorption rate constants (ka) of phenols by PyC were 10-220 times higher than degradation rate constants (kd), and they were positively correlated. Interestingly, no correlation was found between kd and common PyC properties, including functional groups, electron transfer capacities, and surface properties. Phenols were primarily attacked by •OH in the adsorbed phase. But neither the instantly trapped •OH, nor the accumulated •OH could explain phenol degradation. Chemical redox titration revealed that the electron transfer parameters, such as the electron donating rate constant (kED) of PyC, correlated well with kd (r>0.87, P < 0.05) of phenols. Analysis of 13 phenols showed that Egap and ELUMO negatively correlated with their kd, confirming the importance of the electronic properties of phenols to their degradation kinetics. This study highlights the importance of PyC electron transfer kinetics parameters for phenols degradation and manipulation of PyC electron transfer rate may accelerate organic pollutant removal, which contributes to a deeper understanding of the environmental behavior and application of PyC systems.

3.
Sci Total Environ ; 947: 174505, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971252

RESUMO

Nanobiotechnology is a potentially safe and sustainable strategy for both agricultural production and soil remediation, yet the potential of nanomaterials (NMs) application to remediate heavy metal(loid)-contaminated soils is still unclear. A meta-analysis with approximately 6000 observations was conducted to quantify the effects of NMs on safe crop production in soils contaminated with heavy metal(loid) (HM), and a machine learning approach was used to identify the major contributing features. Applying NMs can elevate the crop shoot (18.2 %, 15.4-21.2 %) and grain biomass (30.7 %, 26.9-34.9 %), and decrease the shoot and grain HM concentration by 31.8 % (28.9-34.5 %) and 46.8 % (43.7-49.8 %), respectively. Iron-NMs showed a greater potential to inhibit crop HM uptake compared to other types of NMs. Our result further demonstrates that NMs application substantially reduces the potential health risk of HM in crop grains by human health risk assessment. The NMs-induced reduction in HM accumulation was associated with decreasing HM bioavailability, as well as increased soil pH and organic matter. A random forest model demonstrates that soil pH and total HM concentration are the two significant features affecting shoot HM accumulation. This analysis of the literature highlights the significant potential of NMs application in promoting safe agricultural production in HM-contaminated agricultural lands.


Assuntos
Produtos Agrícolas , Metais Pesados , Poluentes do Solo , Solo , Poluentes do Solo/análise , Metais Pesados/análise , Solo/química , Produção Agrícola/métodos , Recuperação e Remediação Ambiental/métodos , Nanoestruturas , Agricultura/métodos
4.
Inorg Chem ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972034

RESUMO

Fe oxide or Fe0-based materials display weak removal capacity for Pb(II), especially in the presence of Cd(II), and the electronic-scale mechanisms are not reported. In this study, Fe3C(220) modified black carbon (BC) [Fe3C(220)@BC] with high adsorption and selectivity for Pb(II) from industrial wastewater with Cd(II) was developed. The quantitative experiment suggested that Fe species accounted for 80.5-100 and 18.4-33.8% of Pb(II) and Cd(II) removal, respectively. Based on X-ray absorption near-edge structure analysis, 57.3% of adsorbed Pb2+ was reduced to Pb0; however, 61.6% of Cd2+ existed on Fe3C@BC. Density functional theory simulation unraveled that Cd(II) adsorption was attributed to the cation-π interaction with BC, whereas that of Pb(II) was ascribed to the stronger interactions with different Fe phases following the order: Fe3C(220) > Fe0(110) > Fe3O4(311). Crystal orbital bond index and Hamilton population analyses were innovatively applied in the adsorption system and displayed a unique discovery: the stronger Pb(II) adsorption on Fe phases was mediated by a combination of covalent and ionic bonding, whereas ionic bonding was mainly accounted for Cd(II) adsorption. These findings open a new chapter in understanding the functions of different Fe phases in mediating the fate and transport of heavy metals in both natural and engineered systems.

5.
Environ Sci Technol ; 58(28): 12430-12440, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38968084

RESUMO

Soil organic carbon (SOC) is pivotal for both agricultural activities and climate change mitigation, and biochar stands as a promising tool for bolstering SOC and curtailing soil carbon dioxide (CO2) emissions. However, the involvement of biochar in SOC dynamics and the underlying interactions among biochar, soil microbes, iron minerals, and fresh organic matter (FOM, such as plant debris) remain largely unknown, especially in agricultural soils after long-term biochar amendment. We therefore introduced FOM to soils with and without a decade-long history of biochar amendment, performed soil microcosm incubations, and evaluated carbon and iron dynamics as well as microbial properties. Biochar amendment resulted in 2-fold SOC accrual over a decade and attenuated FOM-induced CO2 emissions by approximately 11% during a 56-day incubation through diverse pathways. Notably, biochar facilitated microbially driven iron reduction and subsequent Fenton-like reactions, potentially having enhanced microbial extracellular electron transfer and the carbon use efficiency in the long run. Throughout iron cycling processes, physical protection by minerals could contribute to both microbial carbon accumulation and plant debris preservation, alongside direct adsorption and occlusion of SOC by biochar particles. Furthermore, soil slurry experiments, with sterilization and ferrous iron stimulation controls, confirmed the role of microbes in hydroxyl radical generation and biotic carbon sequestration in biochar-amended soils. Overall, our study sheds light on the intricate biotic and abiotic mechanisms governing carbon dynamics in long-term biochar-amended upland soils.


Assuntos
Carbono , Ferro , Microbiologia do Solo , Solo , Solo/química , Ferro/química , Ferro/metabolismo , Carvão Vegetal/química , Dióxido de Carbono/metabolismo
6.
J Hazard Mater ; 477: 135290, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39047563

RESUMO

The rapid expansion of fast fashion has significantly increased microplastic fiber (MPF) release during laundry practices, accounting for approximately one-third of primary microplastics entering the ocean. Currently, a significant gap exists in global-scale research on the release of MPFs from washing textiles. This study introduces an innovative empirical model to assess the spatial distribution of MPF emissions. The model estimates an annual global emission of 5.69 million tons of MPFs from laundry. Of this total, machine washing accounts for the majority (93.7 %), with hand washing contributing the remaining 6.3 %. As the primary source of MPF pollution, Asia's emissions reach 3.71 million tons, far exceeding those of North America (1.18 million tons) and Europe (0.45 million tons). The primary issue is that wastewater management efficiency varies significantly worldwide. In Asia, there is persistently high discharge of MPFs into natural waters, and the removal efficiency of wastewater treatment plants is still comparatively low. In contrast, the United States and many European countries exhibit better MPF retention. The global nature of this challenge mandates international collaboration for comprehensive environmental conservation. Our study provides the first high-resolution global distribution map of MPF emissions and discharge into natural waters, establishing a data foundation for global and regional management of microplastics originating from household laundry sources.

7.
ACS Nano ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952034

RESUMO

Nanotechnology has demonstrated significant potential to improve agricultural production and increase crop tolerance to abiotic stress including exposure to heavy metals. The present study investigated the mechanisms by which aloe vera extract gel-biosynthesized (AVGE) selenium nanoparticles (Se NPs) alleviated cadmium (Cd)-induced toxicity to rice (Oryza sativa L.). AVGE Se NPs, chemically synthesized bare Se NPs, and NaSeO3 as an ionic control were applied to Cd-stressed rice seedlings via root exposure in both hydroponic and soil systems. Upon exposure to AVGE Se NPs at 15 mg Se/L, the fresh root biomass was significantly increased by 100.7% and 19.5% as compared to Cd control and conventional bare Se NPs. Transcriptional analyses highlighted that AVGE Se NPs activated stress signaling and defense related pathways, including glutathione metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction. Specifically, exposure to AVGE Se NPs upregulated the expression of genes associated with the gibberellic acid (GA) biosynthesis by and 4.79- and 3.29-fold as compared to the Cd-alone treatment and the untreated control, respectively. Importantly, AVGE Se NPs restored the composition of the endophyte community and recruit of beneficial species under Cd exposure; the relative abundance of Azospirillum was significantly increased in roots, shoots, and the rhizosphere soil by 0.73-, 4.58- and 0.37-fold, respectively, relative to the Cd-alone treatment. Collectively, these findings highlight the significant potential of AVGE Se NPs to enhance plant growth and to minimize the Cd-induced toxicity in rice and provide a promising nanoenabled strategy to enhance food safety upon crop cultivation in contaminated agricultural soils.

8.
Chemosphere ; 362: 142718, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945219

RESUMO

Plastic pollution in aquatic ecosystems is increasing and plastic particles may adsorb and transport a diverse array of contaminants, thereby increasing their bioavailability to biota. This investigation aimed to evaluate the effects of varying polyethylene microplastics (PE MPs) and naphthalene (NAPH) concentrations on the survival and feeding rates of the model organism, Artemia salina, as well as NAPH adsorption to microplastics at different salinity levels (17, 75, 35.5 and 52.75 g L-1) under selected climate change scenarios. Survival (48 h) and feeding rates (6 h) of A. salina were also monitored, revealing that the presence of higher PE and NAPH concentrations lead to decreased survival rates while also increasing the number and size of microplastic particles in the saline solutions. Higher PE concentrations negatively affected A. salina feeding rates and NAPH concentrations were positively correlated with particle number and size, as well as with NAPH and PE adsorption rates in solution. Our findings demonstrate that the co-occurrence of microplastics and NAPH in aquatic environments can result in detrimental zooplankton survival and feeding rate effects. Furthermore, this interaction may contribute to the accumulation of these contaminants in the environment, highlighting the need to simultaneously monitor and mitigate the presence of microplastics and organic pollutants, like NAPH, in aquatic environments.


Assuntos
Artemia , Microplásticos , Naftalenos , Polietileno , Salinidade , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Polietileno/toxicidade , Polietileno/química , Poluentes Químicos da Água/toxicidade , Artemia/efeitos dos fármacos , Adsorção , Naftalenos/toxicidade , Naftalenos/química
9.
Sci Bull (Beijing) ; 69(15): 2357-2361, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38902176
10.
ACS Nano ; 18(27): 18071-18084, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38924759

RESUMO

Concern over nano- and microplastic contamination of terrestrial ecosystems has been increasing. However, little is known about the effect of nano- and microplastics on the response of terrestrial ecosystems already under biotic stress. Here, nano- and microplastics at 150-500 mg·kg-1 were exposed to tomatoes (Solanum lycopersicum L.), and the results demonstrate that the presence of nano- and microplastics increased the occurrence of bacterial wilt caused by Ralstonia solanacearum in tomatoes as a function of contaminant concentration, surface modification, and size. Our work shows that nanoplastics (30 nm, 250 mg·kg-1) increased the disease incidence by 2.19-fold. The disease severities in amino- and carboxyl-modified nanoplastic treatments were 30.4 and 21.7% higher than that in unmodified nanoplastic treatment, respectively. The severity of disease under the influence of different-sized nano- and microplastic treatments followed the order 30 > 100 nm > 1 > 50 µm. Mechanistically, nanoplastics disrupted the structure of the tomato rhizosphere soil bacterial community and suppressed the induced systemic resistance in tomato; nanoplastics in planta decreased the salicylic acid and jasmonic acid content in tomatoes, thus inhibiting systemic acquired resistance; and microplastics increased the soil water retention, leading to increased pathogen abundance in the rhizosphere. Additionally, the leachates from nano- and microplastics had no effect on disease occurrence or the growth of tomatoes. Our findings highlight a potential risk of nano- and microplastic contamination to agriculture sustainability and food security.


Assuntos
Microplásticos , Nanopartículas , Doenças das Plantas , Ralstonia solanacearum , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/efeitos dos fármacos , Doenças das Plantas/microbiologia , Nanopartículas/química , Ralstonia solanacearum/efeitos dos fármacos , Rizosfera , Tamanho da Partícula , Poluentes do Solo/toxicidade
11.
Sci Total Environ ; 945: 173930, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879027

RESUMO

Biodegradable microplastics (MPs) have been released into agricultural soils and inevitably undergo various aging processes. Straw return is a popular agricultural management strategy in many countries. However, the effect of straw return on the aging process of biodegradable MPs in flooded paddy soil, which is crucial for studying the characteristics, fate, and environmental implications of biodegradable MPs, remains unclear. Here, we constructed a 180-day microcosm incubation to elucidate the aging mechanism of polylactic acid (PLA)-MPs in straw-enriched paddy soil. This study elucidated that the prominent aging characteristic of PLA-MPs occurred in the straw-enriched paddy soil, accompanied by increased chrominance (76.64-182.3 %), hydrophilicity (2.92-22.07 %), roughness (33.12-58.01 %), and biofilm formation (42.12-100.3 %) for the PLA-MPs, especially with 2 % (w/w) straw return treatment (P < 0.05). A 2 % straw return treatment has significantly impacted ester CO group changes in PLA-MPs, altered the MPs-attached soil bacterial communities composition, strengthened bacterial network structure, and increased soil proteinase K activity. The findings of this work demonstrated that flooded, straw-enriched paddy soil accelerated PLA-MPs aging affected by soil-water chemistry, soil microbe, and soil enzymatic. This study helps to deepen our understanding of the aging process of PLA-MPs in straw return paddy soil. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) are emerging contaminants in the global soil and terrestrial ecosystems. Biodegradable MPs are more likely to be formed and released into agricultural soils during aging. Straw return is a popular agricultural management strategy in many countries. Considering the wide use of plastic film, sewage sludge, plastic-coated fertilizer, and organic fertilizer in agricultural ecosystems, it is crucial to pay attention to the aging process of biodegradable MPs in straw-enriched paddy soil, which has not been adequately emphasized. This aspect has been overlooked in previous studies and threatens ecosystems. This study demonstrated that straw-enriched paddy soil accelerated polylactic acid (PLA)-MPs aging influenced by the dissolved organic matter, microorganisms, and enzyme activity associated with straw decomposition.


Assuntos
Agricultura , Biodegradação Ambiental , Microplásticos , Poluentes do Solo , Solo , Microplásticos/análise , Solo/química , Poluentes do Solo/análise , Agricultura/métodos , Microbiologia do Solo , Poliésteres , Oryza
12.
J Hazard Mater ; 475: 134866, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870856

RESUMO

The microplastics and organic additives formed in routine use of plastic takeaway food containers may pose significant health risks. Thus, we collected plastic containers made of polystyrene, polypropylene, polyethylene terephthalate, polylactic acid and simulated two thermal usages, including hot water (I) and microwave treatments (M). Nile Red fluorescence staining was developed to improve accurate counting of microplastics with the aid of TEM and DLS analysis. The quantity of MPs released from thermal treatments was determined ranging from 285.7 thousand items/cm2 to 681.5 thousand items/cm2 in containers loaded with hot water with the following order: IPS>IPP>IPET>IPLA, while microwave treatment showed lower values ranging from 171.9 thousand items/cm2 to 301.6 thousand items/cm2. In vitro toxicity test using human intestinal epithelial Caco-2 cells indicated decrease of cell viability in raw leachate, resuspended MPs and supernatants, which might further lead to cell membrane rupture, ROS production, and decreased mitochondrial membrane potential. Moreover, the leachate inhibited the expression of key genes in the electron transport chain (ETC) process, disrupted energy metabolism. For the first time, we isolate the actually released microplastics and organic substances for in vitro toxicity testing, and demonstrate their potential impacts to human intestine. SYNOPSIS: Plastic take-out containers may release microplastics and organic substances during daily usage, both of which can cause individual and combined cytotoxic effects on human colon adenocarcinoma cells Caco-2.


Assuntos
Sobrevivência Celular , Embalagem de Alimentos , Microplásticos , Plásticos , Humanos , Microplásticos/toxicidade , Células CACO-2 , Plásticos/toxicidade , Plásticos/química , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Micro-Ondas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Temperatura Alta
13.
Environ Sci Technol ; 58(24): 10764-10775, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843113

RESUMO

The abrasion of synthetic textile fibers is a significant factor in the generation of environmental microplastic fibers (MPFs). The extent to which polymer sponges designed specifically for surface cleaning have a tendency to release MPFs during normal use remains unknown. Here, the tribological behaviors of melamine cleaning sponges (also known as "magic erasers") with different strut densities against metal surfaces of different roughness were investigated using a reciprocating abrader. The MPFs formed by sponge wear under various conditions were characterized in terms of their morphology, composition, and quantity. They were mainly composed of poly(melamine-formaldehyde) polymer with linear or branched fiber morphologies (10-405 µm in length), which were formed through deformation and fracture of the struts within open cells of the sponges, facilitated by friction-induced polymer decomposition. The rate and capability of MPF production generally increased with increasing roughness of the metal surface and density of the struts, respectively. The sponge wear could release 6.5 million MPFs/g, which could suggest a global overall emission of 4.9 trillion MPFs due to sponge consumption. Our study reveals a hitherto unrecognized source of the environmental MPF contamination and highlights the need to evaluate exposure risks associated with these new forms of MPFs.


Assuntos
Microplásticos , Polímeros/química , Têxteis
14.
Sci Total Environ ; 944: 173962, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38876352

RESUMO

The vast application and deep integration of plastic commodity with our human lives raise a great concern about the ubiquitous microplastics (MPs) in nature, yet the environmental behavior of MPs remain unclear. As a main type and candidate of MPs, pristine polypropylene MPs (PP-MP-Pris), as well as the influence of ultraviolet (UV) irradiation on the degree of aging and surface characteristics, were characterized quantitatively by Fourier infrared spectroscopy, scanning electron microscopy, contact angle meter, automatic specific surface area and pore analyzer and laser particle analyzer, with natural aged PP-MPs (PP-MP-Age) as comparison. The carbonyl index (CI) of UV aged PP-MPs (PP-MP-U) was increased with extension of exposure time, while biofilm with abundant functional groups and the maximum CI value were the characteristics of PP-MP-Age. Moreover, the adsorption capacity of PP-MP-U for crystal violet (CV) was increased and reached the maximum after 30 days, while that of PP-MP-Age was weakened, probably due to the enhanced hydrophilicity and the shedding of calcium carbonate (CaCO3) during the natural aging process, which was demonstrated by hydrochloric acid treatment, indicating the vital involvement of CaCO3. Moreover, the better fitting to PSO kinetics and Freundlich isotherm models indicated that the multilayered and non-homogeneous surface adsorption was acted as the rate-controlling step. Furthermore, the positive values of ΔGθ, ΔHθ and ΔSθ indicated that the adsorption was a non-spontaneous, endothermic process with increased degree of the freedom on the interface of PP-MPs and CV solution. The presence of divalent salts inhibited CV adsorption, demonstrating that electrostatic attraction played a major role in CV capture. The hydrophobic interaction, micropore filling, hydrogen bonding, and π - π conjugation were possible involved. This study is of great significance for better understanding the complex pollution of MPs and its potential environmental risks in the future.

15.
Sci Total Environ ; 944: 173605, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38879020

RESUMO

The utilization of carbon dots (CDs) in agriculture to enhance plant growth has gained significant attention, but the data remains fractionated. Systematically integrating existing data is needed to identify the factors driving the interactions between CDs and plants and strategically guide future research. Articles reporting on CDs and their effects on plants were searched based on inclusion and exclusion criteria, resulting in the collection of 71 articles comprising a total of 2564 data points. The meta-analysis reveals that the soil and foliar application of red-emitting bio-derived CDs at a low concentration (<10 ppm) leads to the most beneficial effects on plant growth. Random forest and gradient boosting algorithms revealed that the size and dose of CDs were important factors in predicting plant responses across multiple aspects (CDs properties, plant properties, environmental factors, and experimental conditions). Specifically, smaller sizes are more favorable to growth indicators (GI) below 6 nm, nutrient and quality (NuQ) at 3-6 nm, photosynthesis (PSN) below 7 nm, and antioxidant responses (AR) below 5 nm. Overall, our analysis of existing data suggests that CDs applications can significantly improve plant responses (GI, NuQ, PSN, and AR) by 10-39 %. To unlock the full potential of CDs, customized synthesis techniques should be employed to meet the specific requirements of different crops and climate condition. For example, we recommend the synthesis of small CDs (<7 nm) with emission peak values falling within the range of 405-475 and 610-670 nm to enhance plant growth. The global prediction of plant responses to CDs application in future scenarios have shown significant improvements ranging from 17 to 58 %, suggesting that CDs have widespread applicability. This novel understanding of the impact of CDs on plant response provides valuable insights for optimizing the application of these nanomaterials in agriculture.


Assuntos
Agricultura , Carbono , Agricultura/métodos , Pontos Quânticos , Desenvolvimento Vegetal/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos
16.
Mar Pollut Bull ; 204: 116521, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805976

RESUMO

The omnipresence of microplastics (MPs) around the world has attracted extensive attention in the past decade with more focuses on the interactions of standard MPs without additives in regular shapes and individual pollutant, whereas the actual MPs containing various additives in irregular shapes and complex pollutants are often co-occurrence in the environments. In this paper, the adsorption performance of disposable polypropylene (PP) cups-based MPs subjected to ultraviolet irradiation was investigated in unitary and binary water matrices. The surface characteristics were analyzed and the experimental data of adsorption were fitted by various kinetic and isotherm models, and the results indicated that more cracks and oxygen-containing functional groups with decreased hydrophobicity were produced with aging, and electrostatic attraction and hydrogen bonding dominated methylene blue (MB) and tetracycline (TC) capture in the individual system. Moreover, pseudo-second order kinetic model better described the adsorption processes. In the binary system, the co-existence of TC promoted MB uptake, while the presence of MB inhibited TC capture. In addition, TC adsorption was enhanced by Ca2+, maybe due to its complexation effect, while the presence of mono- and divalent inorganic salts inhibited MB capture. This research provides useful insights for the fate of PP-MPs and organic pollutants in the complex environments.


Assuntos
Azul de Metileno , Microplásticos , Polipropilenos , Tetraciclina , Poluentes Químicos da Água , Azul de Metileno/química , Adsorção , Tetraciclina/química , Poluentes Químicos da Água/química , Polipropilenos/química , Microplásticos/química , Cinética
17.
Water Res ; 258: 121758, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761592

RESUMO

Fast quantification is the primary challenge in monitoring microplastic fiber (MPF) pollution in water. The process of quantifying the number of MPFs in water typically involves filtration, imaging on a filter membrane, and manual counting. However, this routine workflow has limitations in terms of speed and accuracy. Here, we present an alternative analysis strategy based on our high-resolution lensless shadow microscope (LSM) for rapid imaging of MPFs on a chip and modified deep learning algorithms for automatic counting. Our LSM system was equipped with wide field-of-view submicron-pixel imaging sensors (>1 cm2; ∼500 nm/pixel) and could simultaneously capture the projection image of >3-µm microplastic spheres within 90 s. The algorithms enabled accurate classification and detection of the number and length of >10-µm linear and branched MPFs derived from melamine cleaning sponges in each image (∼0.4 gigapixels) within 60 s. Importantly, neither MPF morphology (dispersed or aggregated) nor environmental matrix had a notable impact on the automatic recognition of the MPFs by the algorithms. This new strategy had a detection limit of 10 particles/mL and significantly reduced the time of MPF imaging and counting from several hours with membrane-based methods to just a few minutes per sample. The strategy could be employed to monitor water pollution caused by microplastics if an efficient sample separation and a comprehensive sample image database were available.


Assuntos
Monitoramento Ambiental , Microplásticos , Microscopia , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Microscopia/métodos , Algoritmos , Água/química
18.
Water Res ; 259: 121831, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810346

RESUMO

Heteroaggregation between nanoplastics (NPs) and titanium dioxide nanoparticles (TiO2NPs) determines their environmental fates and ecological risks in aquatic environments. However, the co-photoaging scenario of NPs and TiO2NPs, interaction mechanisms of TiO2NPs with (aged) NPs, as well as the dependence of their heteroaggregation on TiO2NPs facets remain elusive. We found the critical coagulation concentration (CCC) of polystyrene nanoplastics (PSNPs) with coexisting RTiO2NPs was 1.9 - 2.2 times larger than that with coexisting ATiO2NPs, suggesting a better suspension stability of PSNPs+RTiO2NPs. In addition, CCC of TiO2NPs with coexisting photoaged PSNPs (APSNPs) was larger 1.7 - 2.2 times than that with PSNPs coexisting, indicating photoaging inhibited their heteroaggregation due to increasing electrostatic repulsion derived from increased negative charges on APSNPs and the polymer-derived dissolved organic carbon. Coexisted TiO2NPs promoted oxidation of PSNPs with the action of HO· and O2·- under UV light, leading to inhibited heteroaggregation. Moreover, Van der Waals and Lewis-acid interaction dominated the formation of primary heteroaggregates of PSNPs-TiO2NPs (ESE = ‒2.20 ∼ ‒2.78 eV) and APSNPs-TiO2NPs (ESE = ‒3.29 ∼ ‒3.67 eV), respectively. The findings provide a mechanistic insight into the environmental process of NPs and TiO2NPs, and are significant for better understanding their environmental risks in aquatic environments.


Assuntos
Nanopartículas , Poliestirenos , Titânio , Titânio/química , Poliestirenos/química , Nanopartículas/química , Raios Ultravioleta , Microplásticos/química
19.
J Hazard Mater ; 473: 134665, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776813

RESUMO

In this study, the behavior of metal cations and organic matter during polystyrene nanoplastics (PSNP) aggregation was explored combing experimental measurements and molecular dynamics simulation. The results indicated that coexisting organic matter, including organic pollutants and humic acid (HA), play a complex role in determining PSNP aggregation. The representative organic pollutant, bisphenol A, exhibited competitive behavior with HA during heteroaggregation, and the heteroaggregation between HA and PSNP was impaired by bisphenol A. The bridging effect of metal ions in aggregation is related to their interaction strength with functional groups, binding affinity with water molecules, and concentration. In particular, Mg2+ interacts more strongly with oxygen-containing functional groups on PSNP than Ca2+. However, Mg2+ is more favorable for binding with water and is therefore not as effective as Ca2+ for destabilizing PSNP. Compared with Ca2+ and Mg2+, Na+ showed a weaker association with PSNP; however, it still showed a significant effect in determining the aggregation behavior of PSNP owing to its high concentration in seawater. Overall, we provided a molecular-level understanding of PSNP aggregation and deepened our understanding of the fate of nanoplastics.

20.
Sci Total Environ ; 938: 173471, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788946

RESUMO

Waste-derived nitrogen-containing porous carbons were widely accepted as promising carbon capture materials. However, roles of nitrogen in CO2 uptake were highly controversial, posing a challenge in designing high CO2 uptake porous carbons. Herein, nitrogen-containing species was firstly introduced into machine learning (ML) models to uncover the complex relationship of nitrogen, micropore and CO2 uptake by combining ML models, DFT computations and experiments. The results revealed that micropore volume (Vmicro) was the most important property influencing CO2 uptake, but was not the only determinant factor. Nitrogen-containing species (pyrrolic/pyridonic-N (N5) and pyridinic-N (N6)) rather than total nitrogen content, also played an essential role. On the one hand, they can enhanced CO2 adsorption by Lewis acid-base and hydrogen bonding. On the other hand, they promoted development of micropores by participating in activation reactions. The model further indicated that excessive N5 (>1.5 wt%) or N6 (>1.7 wt%) led to restriction on developments of micropores, which was attributed to enlargement of pore size, collapses or blockage of micropores. The double edged-sword effect of N5 and N6 on changes of microporous structures was responsible for the long-standing controversy over nitrogen. The result was further verified by synthesizing eight porous carbons with different textural and chemical properties. This study provided not only a new perspective for resolving the controversy of nitrogen in CO2 uptake, but also a graphical user interface prediction software meaningful for designing porous carbons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...