Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 17(1): 37, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819744

RESUMO

BACKGROUND: Rice is one of the most important food crops in the world, and with the development of direct seeding methods for rice, exposure to anaerobic stress has become a major factor limiting its growth. RESULTS: In this experiment, we tested the tolerance to anaerobic germination of rice varieties NIP and HD84, and they were used as parents to construct a DH (doubled-haploid) population. The transcriptomes of NIP (highly tolerant) and HD86 (intolerant), and their progeny HR (highly tolerant) and NHR (intolerant) were sequenced from normal and anaerobic environments. The differentially-expressed genes (DEGs) were subjected to GO (Gene ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes), and WGCNA analyses. QTL mapping of the DH population identified tolerance to anaerobic germination-related chromosomal segments. The transcriptome results from 24 samples were combined with the anaerobic stress QTL results for 159 DH population lines to construct a metabolic network to identify key pathways and a gene interaction network to study the key genes. Essential genes were initially subjected to rigorous functional validation, followed by a comprehensive analysis aimed at elucidating their potential utility in domestication and breeding practices, particularly focusing on the exploitation of dominant haplotypes. CONCLUSION: The results show that pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) are the starting signals of energy metabolism for coleoptile length growth, the auxin transporter EXPA is the determining signal for coleoptile length growth. The pivotal genes Os05g0498700 and Os01g0866100 exert a negative regulatory influence on coleoptile length, ultimately enhancing tolerance to anaerobic germination in rice. Analyses of breeding potential underscore the additional value of Os05g0498700-hyp2 and Os01g0866100-hyp2, highlighting their potential utility in further improving rice through breeding programs. The results of our study will provide a theoretical basis for breeding anaerobic-tolerant rice varieties.

2.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791383

RESUMO

A homeobox transcription factor is a conserved transcription factor, ubiquitous in eukaryotes, that regulates the tissue formation of structure, cell differentiation, proliferation, and cancer. This study identified the homeobox transcription factor family and its distribution in Phoma sorghina var. saccharum at the whole genome level. It elucidated the gene structures and evolutionary characteristics of this family. Additionally, knockout experiments were carried out and the preliminary function of these transcription factors was studied. Through bioinformatics approaches, nine homeobox transcription factors (PsHOX1-PsHOX9) were identified in P. sorghina var. saccharum, and these contained HOX-conserved domains and helix-turn-helix secondary structures. Nine homeobox gene deletion mutants were obtained using the homologous recombinant gene knockout technique. Protoplast transformation was mediated by polyethylene glycol (PEG) and the transformants were identified using PCR. The knockouts of PsHOX1, PsHOX2, PsHOX3, PsHOX4, PsHOX6, PsHOX8, and PsHOX9 genes resulted in a smaller growth diameter in P. sorghina var. saccharum. In contrast, the knockouts of the PsHOX3, PsHOX6, and PsHOX9 genes inhibited the formation of conidia and led to a significant decrease in the pathogenicity. This study's results will provide insights for understanding the growth and development of P. sorghina var. saccharum. The pathogenic mechanism of the affected sugarcane will provide an essential theoretical basis for preventing and controlling sugarcane twisted leaf disease.


Assuntos
Proteínas de Homeodomínio , Doenças das Plantas , Saccharum , Saccharum/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Ascomicetos/patogenicidade , Ascomicetos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/genética , Filogenia
3.
Small ; : e2401346, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700047

RESUMO

Transparent flexible energy storage devices are limited by the trade-off among flexibility, transparency, and charge storage capability of their electrode materials. Conductive polymers are intrinsically flexible, but limited by small capacitance. Pseudocapacitive MXene provides high capacitance, yet their opaque and brittle nature hinders their flexibility and transparency. Herein, the development of synergistically interacting conductive polymer Ti3C2Tx MXene/PEDOT:PSS composites is reported for transparent flexible all-solid-state supercapacitors, with an outstanding areal capacitance of 3.1 mF cm-2, a high optical transparency of 61.6%, and excellent flexibility and durability. The high capacitance and high transparency of the devices stem from the uniform and thorough blending of PEDOT:PSS and Ti3C2Tx, which is associated with the formation of O─H…O H-bonds in the composites. The conductive MXene/polymer composite electrodes demonstrate a rational means to achieve high-capacity, transparent and flexible supercapacitors in an easy and scalable manner.

4.
Plants (Basel) ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611565

RESUMO

Soil salinity imposes osmotic, ionic, and oxidative stresses on plants, resulting in growth inhibition, developmental changes, metabolic adaptations, and ion sequestration or exclusion. Identifying salinity-tolerant resources and understanding physiological and molecular mechanisms of salinity tolerance could lay a foundation for the improvement of salinity tolerance in rice. In this study, a series of salinity-tolerance-related morphological and physiological traits were investigated in 46 rice genotypes, including Sea Rice 86, to reveal the main strategies of rice in responding to salinity stress at the seedling stage. No genotypes showed the same tolerance level as the two landraces Pokkali and Nona Bokra, which remain the donors for improving the salinity tolerance of rice. However, due to undesirable agronomic traits of these donors, alternative cultivars such as JC118S and R1 are recommended as novel source of salinity tolerance. Correlation and principal component analyses revealed that the salinity tolerance of rice seedlings is not only controlled by growth vigor but also regulated by ion transport pathways such as long-distance Na+ transport, root Na+ sequestration, and root K+ retention. Therefore, such key traits should be targeted in future breeding programs as the strategy of obtaining better Na+ exclusion is still the bottleneck for improving salinity tolerance in rice.

5.
BMC Genomics ; 25(1): 405, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658835

RESUMO

Graph-based pangenome is gaining more popularity than linear pangenome because it stores more comprehensive information of variations. However, traditional linear genome browser has its own advantages, especially the tremendous resources accumulated historically. With the fast-growing number of individual genomes and their annotations available, the demand for a genome browser to visualize genome annotation for many individuals together with a graph-based pangenome is getting higher and higher. Here we report a new pangenome browser PPanG, a precise pangenome browser enabling nucleotide-level comparison of individual genome annotations together with a graph-based pangenome. Nine rice genomes with annotations were provided by default as potential references, and any individual genome can be selected as the reference. Our pangenome browser provides unprecedented insights on genome variations at different levels from base to gene, and reveals how the structures of a gene could differ for individuals. PPanG can be applied to any species with multiple individual genomes available and it is available at https://cgm.sjtu.edu.cn/PPanG .


Assuntos
Genômica , Genômica/métodos , Oryza/genética , Anotação de Sequência Molecular , Genoma de Planta , Variação Genética , Software , Navegador , Bases de Dados Genéticas , Nucleotídeos/genética , Genoma
6.
PLoS One ; 19(3): e0286087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437206

RESUMO

The fundamental technology behind bitcoin, known as blockchain, has been studied and used in a variety of industries especially in finance. The security of blockchain is extremely important as it will affects the assets of the clients as well as it is the lifeline feature of the entire system that needs to be guaranteed. Currently, there is a lack of a methodical approach to guarantee the security and dependability of the private key during its whole life. Furthermore, there is no quick, easy, or secure way to create the encryption key. A biometric-based private key encryption and management framework (BPKEM) for blockchain is proposed not only to solve the private key lifecycle manag- ement problem, but also it maintains compatibility with existing blockchain systems. For the problem of private key encryption, a biometric-based stable key generation method is proposed. By using the relative invariance between facial and fingerprint feature points, this measure can convert feature points into stable and distinguishable descriptors, then using a reusable fuzzy extractor to create a stable key. The correct- ness and efficiency of the newly proposed biometric-based blockchain encryption tech- nique in this paper has been validated in the experiments.


Assuntos
Blockchain , Humanos , Biometria , Face , Indústrias , Manutenção
7.
Sci Data ; 11(1): 230, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388638

RESUMO

By using PacBio HiFi technology, we produced over 700 Gb of long-read sequencing (LRS) raw data; and by using Illumina paired-end whole-genome shotgun (WGS) sequencing technology, we generated more than 70 Gb of short-read sequencing (SRS) data. With LRS data, we assembled one genome and then generate a set of annotation data for an early-matured Geng/japonica glutinous rice mega variety genome, Longgeng 57 (LG57), which carries multiple elite traits including good grain quality and wide adaptability. Together with the SRS data from three parents of LG57, pedigree genome variations were called for three representative types of genes. These data sets can be used for deep variation mining, aid in the discovery of new insights into genome structure, function, and evolution, and help to provide essential support to biological research in general.


Assuntos
Genoma de Planta , Oryza , Oryza/genética , Fenótipo , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
8.
BMC Plant Biol ; 24(1): 38, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191321

RESUMO

Milling quality (MQ) and grain shape (GS) of rice (Oryza sativa L.) are correlated traits, both determine farmers' final profit. More than one population under multiple environments may provide valuable information for breeding selection on these MQ-GS correlations. However, suitable analytical methods for reciprocal introgression lines with linkage map for this kind of correlation remains unclear. In this study, our major tasks were (1) to provide a set of reciprocal introgression lines (composed of two BC2RIL populations) suitable for mapping by linkage mapping using markers/bins with physical positions; (2) to test the mapping effects of different methods by using MQ-GS correlation dissection as sample case; (3) to perform genetic and breeding simulation on pyramiding favorite alleles of QTLs for representative MQ-GS traits. Finally, with four analysis methods and data collected under five environments, we identified about 28.4 loci on average for MQ-GS traits. Notably, 52.3% of these loci were commonly detected by different methods and eight loci were novel. There were also nine regions harboring loci for different MQ-GS traits which may be underlying the MQ-GS correlations. Background independent (BI) loci were also found for each MQ and GS trait. All these information may provide useful resources for rice molecular breeding.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Alelos , Grão Comestível/genética
9.
Mol Biol Rep ; 51(1): 22, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110786

RESUMO

BACKGROUND: Salinity is one of the main abiotic factors that restrict plant growth, physiology, and crop productivity is salt stress. About 33% of the total irrigated land suffers from severe salinity because of intensive underground water extraction and irrigation with brackish water. Thus, it is important to understand the genetic mechanism and identify the novel genes involved in salt tolerance for the development of climate-resilient rice cultivars. METHODS AND RESULTS: In this study, two rice genotypes with varying tolerance to salt stress were used to investigate the differential expressed genes and molecular pathways to adapt under saline soil by comparative RNA sequencing at 42 days of the seedling stage. Salt-susceptible (S3) and -tolerant (S13) genotypes revealed 3982 and 3463 differentially expressed genes in S3 and S13 genotypes. The up-regulated genes in both genotypes were substantially enriched in different metabolic processes and binding activities. Biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and plant signal transduction mechanisms were highly enriched. Salt-susceptible and -tolerant genotypes shared the same salt adaptability mechanism with no significant quantitative differences at the transcriptome level. Moreover, bHLH, ERF, NAC, WRKY, and MYB transcription factors were substantially up-regulated under salt stress. 391 out of 1806 identified novel genes involved in signal transduction mechanisms. Expression profiling of six novel genes further validated the findings from RNA-seq data. CONCLUSION: These findings suggest that the differentially expressed genes and molecular mechanisms involved in salt stress adaptation are conserved in both salt-susceptible and salt-tolerant rice genotypes. Further molecular characterization of novel genes will help to understand the genetic mechanism underlying salt tolerance in rice.


Assuntos
Oryza , Transcriptoma , Transcriptoma/genética , Oryza/metabolismo , Perfilação da Expressão Gênica , Estresse Salino , Genótipo , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética
10.
ACS Appl Mater Interfaces ; 15(41): 48452-48461, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37802499

RESUMO

Ferroelectric materials with a modulable polarization extent hold promise for exploring voltage-driven neuromorphic hardware, in which direct current flow can be minimized. Utilizing a single active layer of an insulating ferroelectric polymer, we developed a voltage-mode ferroelectric synapse that can continuously and reversibly update its states. The device states are straightforwardly manifested in the form of variable output voltage, enabling large-scale direct cascading of multiple ferroelectric synapses to build a deep physical neural network. Such a neural network based on potential superposition rather than current flow is analogous to the biological counterpart driven by action potentials in the brain. A high accuracy of over 97% for the simulation of handwritten digit recognition is achieved using the voltage-mode neural network. The controlled ferroelectric polarization, revealed by piezoresponse force microscopy, turns out to be responsible for the synaptic weight updates in the ferroelectric synapses. The present work demonstrates an alternative strategy for the design and construction of emerging artificial neural networks.

11.
Rice (N Y) ; 16(1): 40, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713042

RESUMO

BACKGROUND: The amino acid content (AAC) of the rice grain is one of the most important determinants of nutritional quality in rice. Understanding the genetic basis of grain AAC and mining favorable alleles of target genes for AAC are important for developing new cultivars with improved nutritional quality. RESULTS: Using a diverse panel of 164 accessions genotyped by 32 M SNPs derived from 3 K Rice Genome Project, we extracted 1,123,603 high quality SNPs in 44,248 genes and used them to construct haplotypes. We measured the contents of the 17 amino acids that included seven essential amino acids and 10 dispensable amino acids. Through a genome-wide haplotype association study, 261 gene-trait associations containing 174 genes for the 17 components of AAC were detected, and 34 of these genes were associated with at least two components. Furthermore, the associated SNPs in genes were also identified by a traditional genome-wide association study to identify the key natural variations in the specific genes. CONCLUSIONS: The genome-wide haplotype association study allowed us to detected candidate genes directly and to identify key natural genetic variation as well. In the present study, twelve genes have been cloned, and 34 genes were associated with at least two components, suggesting that the genome-wide haplotype association study approach used in the current study is an efficient way to identify candidate genes for target traits. The identified candidate genes, favorable haplotypes, and key natural variations affecting AAC provide valuable resources for further functional characterization and genetic improvement of rice nutritional quality.

12.
Sensors (Basel) ; 23(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571558

RESUMO

Blockchain technology is a decentralized ledger that allows the development of applications without the need for a trusted third party. As service-oriented computing continues to evolve, the concept of Blockchain as a Service (BaaS) has emerged, providing a simplified approach to building blockchain-based applications. The growing demand for blockchain services has resulted in numerous options with overlapping functionalities, making it difficult to select the most reliable ones for users. Choosing the best-trusted blockchain peers is a challenging task due to the sparsity of data caused by the multitude of available options. To address the aforementioned issues, we propose a novel collaborative filtering-based matrix completion model called Graph Attention Collaborative Filtering (GATCF), which leverages both graph attention and collaborative filtering techniques to recover the missing values in the data matrix effectively. By incorporating graph attention into the matrix completion process, GATCF can effectively capture the underlying dependencies and interactions between users or peers, and thus mitigate the data sparsity scenarios. We conduct extensive experiments on a large-scale dataset to assess our performance. Results show that our proposed method achieves higher recovery accuracy.

13.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446015

RESUMO

Nitrogen availability might play an essential role in plant diseases by enhancing fungal cell growth and influencing the expression of genes required for successful pathogenesis. Nitrogen availability could modulate secondary metabolic pathways as evidenced by the significant differential expression of several core genes involved in mycotoxin biosynthesis and genes encoding polyketide synthase/nonribosomal peptide synthetases, cytochrome P450 and carbohydrate-active enzymes in Fusarium sacchari, grown on different nitrogen sources. A combined analysis was carried out on the transcript and metabolite profiles of regulatory metabolic processes and the virulence of Fusarium sacchari grown on various nitrogen sources. The nitrogen regulation of the gibberellin gene cluster included the metabolic flux and multiple steps of gibberellin synthesis. UHPLC-MS/MS-based metabolome analysis revealed the coordination of these related transcripts and the accumulation of gibberellin metabolites. This integrated analysis allowed us to uncover additional information for a more comprehensive understanding of biological events relevant to fungal secondary metabolic regulation in response to nitrogen availability.


Assuntos
Fusarium , Transcriptoma , Metabolismo Secundário/genética , Nitrogênio/metabolismo , Espectrometria de Massas em Tandem , Giberelinas/metabolismo , Regulação Fúngica da Expressão Gênica
14.
Ecotoxicol Environ Saf ; 263: 115274, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499389

RESUMO

Polyethylene microplastics have been detected in farmland soil, irrigation water, and soil organisms in agroecosystems, while plastic mulching is suggested as a crucial source of microplastic pollution in the agroecosystem. Plastic mulch can be broken down from plastic mulch debris to microplastics through environmental aging and degradation process in farmlands, and the colonization of polyethylene-degrading microorganisms on polyethylene microplastics can eventually enzymatically depolymerize the polyethylene molecular chains with CO2 release through the tricarboxylic acid cycle. The selective colonization of microplastics by soil microorganisms can cause changes in soil microbial community composition, and it can consequently elicit changes in enzyme activities and nutrient element content in the soil. The biological uptake of polyethylene microplastics and the associated disturbance of energy investment are the main mechanisms impacting soil-dwelling animal development and behavior. As polyethylene microplastics are highly hydrophobic, their presence among soil particles can contribute to soil water repellency and influence soil water availability. Polyethylene microplastics have been shown to cause impacts on crop plant growth, as manifested by the effects of polyethylene microplastics on soil properties and soil biota in the agroecosystems. This review reveals the degradation process, biological impacts, and associated mechanisms of polyethylene microplastics in agroecosystems and could be a critical reference for their risk assessment and management.


Assuntos
Microplásticos , Poluentes do Solo , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Agricultura , Polietileno/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo/química
15.
Plant Cell ; 35(9): 3429-3443, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279583

RESUMO

Hundreds of plant species have been domesticated to feed human civilization, while some crops have undergone de-domestication into agricultural weeds, threatening global food security. To understand the genetic and epigenetic basis of crop domestication and de-domestication, we generated DNA methylomes from 95 accessions of wild rice (Oryza rufipogon L.), cultivated rice (Oryza sativa L.) and weedy rice (O. sativa f. spontanea). We detected a significant decrease in DNA methylation over the course of rice domestication but observed an unexpected increase in DNA methylation through de-domestication. Notably, DNA methylation changes occurred in distinct genomic regions for these 2 opposite stages. Variation in DNA methylation altered the expression of nearby and distal genes through affecting chromatin accessibility, histone modifications, transcription factor binding, and the formation of chromatin loops, which may contribute to morphological changes during domestication and de-domestication of rice. These insights into population epigenomics underlying rice domestication and de-domestication provide resources and tools for epigenetic breeding and sustainable agriculture.


Assuntos
Domesticação , Oryza , Humanos , Oryza/genética , Variação Genética , Metilação de DNA/genética , Evolução Molecular , Cromatina/genética
16.
Front Plant Sci ; 14: 1134450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180379

RESUMO

Introduction: Drought and submergence are contrasting abiotic stresses that often occur in the same rice crop season and cause complete crop failure in many rain-fed lowland areas of Asia. Methods: To develop rice varieties with good tolerances to drought and submergence, 260 introgression lines (ILs) selected for drought tolerance (DT) from nine BC2 populations were screened for submergence tolerance (ST), resulting in 124 ILs with significantly improved ST. Results: Genetic characterization of the 260 ILs with DNA markers identified 59 DT quantitative trait loci (QTLs) and 68 ST QTLs with an average 55% of the identified QTLs associated with both DT and ST. Approximately 50% of the DT QTLs showed 'epigenetic' segregation with very high donor introgression and/or loss of heterozygosity (LOH). Detailed comparison of the ST QTLs identified in ILs selected only for ST with ST QTLs detected in the DT-ST selected ILs of the same populations revealed three groups of QTLs underlying the relationship between DT and ST in rice: a) QTLs with pleiotropic effects on both DT and ST; b) QTLs with opposite effects on DT and ST; and c) QTLs with independent effects on DT and ST. Combined evidence identified most likely candidate genes for eight major QTLs affecting both DT and ST. Moreover, group b QTLs were involved in the Sub1regulated pathway that were negatively associated with most group aQTLs. Discussion: These results were consistent with the current knowledge that DT and ST in rice are controlled by complex cross-talks between or among different phytohormone-mediated signaling pathways. Again, the results demonstrated that the strategy of selective introgression was powerful and efficient for simultaneous improvement and genetic dissection of multiple complex traits, including DT and ST.

17.
Front Plant Sci ; 14: 1170641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251777

RESUMO

Introduction: Saline-alkali stress is one of the main abiotic factors limiting rice production worldwide. With the widespread use of rice direct seeding technology, it has become increasingly important to improve rice saline-alkali tolerance at the germination stage. Methods: To understand the genetic basis of saline-alkali tolerance and facilitate breeding efforts for developing saline-alkali tolerant rice varieties, the genetic basis of rice saline-alkali tolerance was dissected by phenotyping seven germination-related traits of 736 diverse rice accessions under the saline-alkali stress and control conditions using genome-wide association and epistasis analysis (GWAES). Results: Totally, 165 main-effect quantitative trait nucleotides (QTNs) and 124 additional epistatic QTNs were identified as significantly associated with saline-alkali tolerance, which explained a significant portion of the total phenotypic variation of the saline-alkali tolerance traits in the 736 rice accessions. Most of these QTNs were located in genomic regions either harboring saline-alkali tolerance QTNs or known genes for saline-alkali tolerance reported previously. Epistasis as an important genetic basis of rice saline-alkali tolerance was validated by genomic best linear unbiased prediction in which inclusion of both main-effect and epistatic QTNs showed a consistently better prediction accuracy than either main-effect or epistatic QTNs alone. Candidate genes for two pairs of important epistatic QTNs were suggested based on combined evidence from the high-resolution mapping plus their reported molecular functions. The first pair included a glycosyltransferase gene LOC_Os02g51900 (UGT85E1) and an E3 ligase gene LOC_Os04g01490 (OsSIRP4), while the second pair comprised an ethylene-responsive transcriptional factor, AP59 (LOC_Os02g43790), and a Bcl-2-associated athanogene gene, OsBAG1 (LOC_Os09g35630) for salt tolerance. Detailed haplotype analyses at both gene promoter and CDS regions of these candidate genes for important QTNs identified favorable haplotype combinations with large effects on saline-alkali tolerance, which can be used to improve rice saline-alkali tolerance by selective introgression. Discussion: Our findings provided saline-alkali tolerant germplasm resources and valuable genetic information to be used in future functional genomic and breeding efforts of rice saline-alkali tolerance at the germination stage.

18.
Hortic Res ; 10(4): uhad020, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035858

RESUMO

The lemon (Citrus limon; family Rutaceae) is one of the most important and popular fruits worldwide. Lemon also tolerates huanglongbing (HLB) disease, which is a devastating citrus disease. Here we produced a gap-free and haplotype-resolved chromosome-scale genome assembly of the lemon by combining Pacific Biosciences circular consensus sequencing, Oxford Nanopore 50-kb ultra-long, and high-throughput chromatin conformation capture technologies. The assembly contained nine-pair chromosomes with a contig N50 of 35.6 Mb and zero gaps, while a total of 633.0 Mb genomic sequences were generated. The origination analysis identified 338.5 Mb genomic sequences originating from citron (53.5%), 147.4 Mb from mandarin (23.3%), and 147.1 Mb from pummelo (23.2%). The genome included 30 528 protein-coding genes, and most of the assembled sequences were found to be repetitive sequences. Several significantly expanded gene families were associated with plant-pathogen interactions, plant hormone signal transduction, and the biosynthesis of major active components, such as terpenoids and flavor compounds. Most HLB-tolerant genes were expanded in the lemon genome, such as 2-oxoglutarate (2OG)/Fe(II)-dependent oxygenase and constitutive disease resistance 1, cell wall-related genes, and lignin synthesis genes. Comparative transcriptomic analysis showed that phloem regeneration and lower levels of phloem plugging are the elements that contribute to HLB tolerance in lemon. Our results provide insight into lemon genome evolution, active component biosynthesis, and genes associated with HLB tolerance.

19.
J Integr Plant Biol ; 65(8): 1859-1873, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36988217

RESUMO

The plant hormone abscisic acid (ABA) is crucial for plant seed germination and abiotic stress tolerance. However, the association between ABA sensitivity and plant abiotic stress tolerance remains largely unknown. In this study, 436 rice accessions were assessed for their sensitivity to ABA during seed germination. The considerable diversity in ABA sensitivity among rice germplasm accessions was primarily reflected by the differentiation between the Xian (indica) and Geng (japonica) subspecies and between the upland-Geng and lowland-Geng ecotypes. The upland-Geng accessions were most sensitive to ABA. Genome-wide association analyses identified four major quantitative trait loci containing 21 candidate genes associated with ABA sensitivity of which a basic helix-loop-helix transcription factor gene, OsbHLH38, was the most important for ABA sensitivity. Comprehensive functional analyses using knockout and overexpression transgenic lines revealed that OsbHLH38 expression was responsive to multiple abiotic stresses. Overexpression of OsbHLH38 increased seedling salt tolerance, while knockout of OsbHLH38 increased sensitivity to salt stress. A salt-responsive transcription factor, OsDREB2A, interacted with OsbHLH38 and was directly regulated by OsbHLH38. Moreover, OsbHLH38 affected rice abiotic stress tolerance by mediating the expression of a large set of transporter genes of phytohormones, transcription factor genes, and many downstream genes with diverse functions, including photosynthesis, redox homeostasis, and abiotic stress responsiveness. These results demonstrated that OsbHLH38 is a key regulator in plant abiotic stress tolerance.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Oryza , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Oryza/genética , Oryza/metabolismo , Tolerância ao Sal/genética , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Secas , Germinação/genética
20.
Plant Cell Environ ; 46(4): 1295-1311, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36734269

RESUMO

Plant height (PH) in rice (Oryza sativa) is an important trait for its adaptation and agricultural performance. Discovery of the semi-dwarf1 (SD1) mutation initiated the Green Revolution, boosting rice yield and fitness, but the underlying genetic regulation of PH in rice remains largely unknown. Here, we performed genome-wide association study (GWAS) and identified 12 non-repetitive QTL/genes regulating PH variation in 619 Asian cultivated rice accessions. One of these was an SD1 structural variant, not normally detected in standard GWAS analyses. Given the strong effect of SD1 on PH, we also divided 619 accessions into subgroups harbouring distinct SD1 haplotypes, and found a further 85 QTL/genes for PH, revealing genetic heterogeneity that may be missed by analysing a broad, diverse population. Moreover, we uncovered two epistatic interaction networks of PH-associated QTL/genes in the japonica (Geng)-dominant SD1NIP subgroup. In one of them, the hub QTL/gene qphSN1.4/GAMYB interacted with qphSN3.1/OsINO80, qphSN3.4/HD16/EL1, qphSN6.2/LOC_Os06g11130, and qphSN10.2/MADS56. Sequence variations in GAMYB and MADS56 were associated with their expression levels and PH variations, and MADS56 was shown to physically interact with MADS57 to coregulate expression of gibberellin (GA) metabolic genes OsGA2ox3 and Elongated Uppermost Internode1 (EUI1). Our study uncovered the multifaceted genetic architectures of rice PH, and provided novel and abundant genetic resources for breeding semi-dwarf rice and new candidates for further mechanistic studies on regulation of PH in rice.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Oryza/genética , Epistasia Genética , Genes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA