RESUMO
Although the coronavirus disease 2019 (COVID-19) crisis has passed, there remains a necessity for continuous efforts toward developing more targeted drugs and preparing for potential future virus attacks. Currently, most of the drugs received authorization for the treatment of COVID-19 have exhibited several limitations, such as poor metabolic stability, formidable preparation, and uncertain effectiveness. It is still significant to develop novel, structurally diverse small-molecule antiviral drugs targeting SARS-CoV-2 3-chymotrypsin-like protease (3CLpro). Herein, we report a class of alkynylamide-based nonpeptidic 3CLpro inhibitors that can be prepared conveniently by our previously developed one-pot synthetic method. The structure-activity relationships of alkynylamides as SARS-CoV-2 3CLpro inhibitors have been carefully investigated and discussed in this study. The two stereoisomers of the resulting molecules exhibit stereoselective interaction with 3CLpro, and the optimized compound (S,R)-4y inhibits 3CLpro with high potency (IC50 = 0.43 µM), low cytotoxicity, and acceptable cell permeability. Compound (S,R)-4y presents as a noncovalent inhibitor of 3CLpro against SARS-CoV-2 by the time-dependent inhibition assay (TDI) and mass spectrometry analysis. The Lineweaver-Burk plots, binding energy, surface plasmon resonance, and molecular docking studies suggest that (S,R)-4y specifically binds to an allosteric pocket of the SARS-CoV-2 3CLpro. These findings provide a novel class of nonpeptidic alkynylamide-based allosteric inhibitors with high selectivity against SARS-CoV-2 3CLpro featured by a simplified one-pot synthesis at room temperature in air.
RESUMO
Neuroinflammation is a critical factor that contributes to neurological impairment and is closely associated with the onset and progression of neurodegenerative diseases. In the central nervous system (CNS), microglia play a pivotal role in the regulation of inflammation through various signaling pathways. Therefore, mitigating microglial inflammation is considered a promising strategy for restraining neuroinflammation. Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and exhibit clear neuroprotective effects in various disease models. However, whether the activation of mAChRs can harness benefits in neuroinflammation remains largely unexplored. In this study, the anti-inflammatory effects of mAChRs were found in a neuroinflammation mouse model. The expression of various cytokines and chemokines was regulated in the brains and spinal cords after the administration of mAChR agonists. Microglia were the primary target cells through which mAChRs exerted their anti-inflammatory effects. The results showed that the activation of mAChRs decreased the pro-inflammatory phenotypes of microglia, including the expression of inflammatory cytokines, morphological characteristics, and distribution density. Such anti-inflammatory modulation further exerted neuroprotection, which was found to be even more significant by the direct activation of neuronal mAChRs. This study elucidates the dual mechanisms through which mAChRs exert neuroprotective effects in central inflammatory responses, providing evidence for their application in inflammation-related neurological disorders.
Assuntos
Modelos Animais de Doenças , Microglia , Doenças Neuroinflamatórias , Receptores Muscarínicos , Animais , Microglia/metabolismo , Microglia/patologia , Camundongos , Receptores Muscarínicos/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Agonistas Muscarínicos/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Encéfalo/patologiaRESUMO
Immune checkpoint blockade (ICB) therapy, while showing promise in various cancers, exhibits limited effectiveness in hepatic carcinoma due to the tumor's immunosuppressive microenvironment (TME) and challenges associated with immune cell infiltration. Efforts to transform the "cold" TME into an "inflamed" state, notably through chemo-immunotherapy, have sparked interest due to their potential to induce immunogenic cell death and augment the infiltration of cytotoxic T lymphocytes (CTLs). Nonetheless, the efficacy of chemo-immunotherapy is often compromised by suboptimal pharmacokinetics, poor tumor accumulation, and off-target toxicity. Herein, in response, we introduce an innovative, milder thermal therapeutic approach leveraging gold nano frameworks with mesopores for the targeted delivery of the immunostimulant imiquimod and NIR-II photothermal therapy. This strategy employs targeted molecule modifications to ensure precise tumor targeting, guided by photoacoustic imaging. Subsequent to mild thermal treatment, there is a release of immunogenic proteins (CRT and HSP90), enhancing tumor immunogenicity. Assisted by imiquimod, substantial CTL infiltration occurs, accompanied by pro-inflammatory factor release (TNF-α, IL-6), transforming M2 macrophages into the M1 phenotype. Ultimately, the proposed strategy combines PD-L1/PD-1 blockade, imiquimod and mild thermal treatment to synergistically enhance tumor immunogenicity, remodel the TME, and restrain hepatic carcinoma, making strides in ICB synergistic immune-thermal therapy.
Assuntos
Ouro , Imiquimode , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas , Terapia Fototérmica , Ouro/química , Animais , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Imiquimode/química , Imiquimode/uso terapêutico , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Humanos , Imunoterapia , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linhagem Celular TumoralRESUMO
Introduction: Hepatocellular carcinomas (HCC) have a high morbidity and mortality rate, and is difficult to cure and prone to recurrence when it has already developed. Therefore, early detection and efficient treatment of HCC is necessary. Methods: In this study, we synthesized a novel NDI polymer with uniform size, long-term stability, and high near-infrared two-zone (NIR-II) absorption efficiency, which can greatly enhance the effect of photothermal therapy (PTT) after intravenous injection into Huh-7-tumor bearing mice. Results: The in vitro and in vivo studies showed that NDI polymer exhibited excellent NIR-guided PTT treatment, and the antitumor effect was approximately 88.5%, with obvious antimetastatic effects. Conclusion: This study developed an NDI polymer-mediated integrated diagnostic and therapeutic modality for NIR-II fluorescence imaging and photothermal therapy.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia Fototérmica , Polímeros , Animais , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Terapia Fototérmica/métodos , Polímeros/química , Camundongos , Humanos , Linhagem Celular Tumoral , Raios Infravermelhos , Camundongos Nus , Imagem Óptica , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Fototerapia/métodosRESUMO
OBJECTIVES: Aneurysm wall enhancement (AWE) on high-resolution contrast-enhanced vessel wall MRI (VWMRI) is an emerging biomarker for intracranial aneurysms (IAs) stability. Quantification methods of AWE in the literature, however, are variable. We aimed to determine the optimal post-contrast timing to quantify AWE in both saccular and fusiform IAs. MATERIALS AND METHODS: Consecutive patients with unruptured IAs were prospectively recruited. VWMRI was acquired on 1 pre-contrast and 4 consecutive post-contrast phases (each phase was 9 min). Signal intensity values of cerebrospinal fluid (CSF) and aneurysm wall on pre- and 4 post-contrast phases were measured to determine the aneurysm wall enhancement index (WEI). AWE was also qualitatively analyzed on post-contrast images using previous grading criteria. The dynamic changes of AWE grade and WEI were analyzed for both saccular and fusiform IAs. RESULTS: Thirty-four patients with 42 IAs (27 saccular IAs and 15 fusiform IAs) were included. The changes in AWE grade occurred in 8 (30%) saccular IAs and 6 (40%) in fusiform IAs during the 4 post-contrast phases. The WEI of fusiform IAs decreased 22.0% over time after contrast enhancement (p = 0.009), while the WEI of saccular IAs kept constant during the 4 post-contrast phases (p > 0.05). CONCLUSIONS: When performing quantitative analysis of AWE, acquiring post-contrast VWMRI immediately after contrast injection achieves the strongest AWE for fusiform IAs. While the AWE degree is stable for 36 min after contrast injection for saccular IAs. CLINICAL RELEVANCE STATEMENT: The standardization of imaging protocols and analysis methods for AWE will be helpful for imaging surveillance and further treatment decisions of patients with unruptured IAs. KEY POINTS: Imaging protocols and measurements of intracranial aneurysm wall enhancement are reported heterogeneously. Aneurysm wall enhancement for fusiform intracranial aneurysms (IAs) is strongest immediately post-contrast, and stable for 36 min for saccular IAs. Future multi-center studies should investigate aneurysm wall enhancement as an emerging marker of aneurysm growth and rupture.
RESUMO
Carbon-fixing bacterial communities are essential drivers of carbon fixation in estuarine ecosystems that critically affect the global carbon cycle. This study compared the abundances of the Calvin cycle functional genes cbbL and cbbM and Reductive tricarboxylic acid cycle gene aclB, as well as compared carbon-fixing bacterial community features in the two estuaries, predicted potential ecological functions of carbon-fixation bacteria, and analyzed their symbiosis strategies in two estuaries having different geographical distributions. Gammaproteobacteria was the dominant carbon-fixing bacterial community in the two estuaries. However, a higher number of Alphaproteobacteria were noted in the Liaohe Estuary, and a higher number of Betaproteobacteria were found in the Yalujiang Estuary. The carbon-fixing functional gene levels exhibited the order of aclB > cbbL > cbbM, and significant effects of Cu, Pb, and petroleum were observed (p < 0.05). Nitrogen-associated nutrient levels are major environmental factors that affect carbon-fixing bacterial community distribution patterns. Spatial factors significantly affected cbbL carbon-fixing functional bacterial community structure more than environmental factors. With the increase in offshore distance, the microbial-led processes of methylotrophy and nitrogen fixation gradually weakened, but a gradual strengthening of methanotrophy and nitrification was observed. Symbiotic network analysis of the microorganisms mediating these ecological processes revealed that the carbon-fixing bacterial community in these two estuaries had a non-random symbiotic pattern, and microbial communities from the same module were strongly linked among the carbon, nitrogen, and sulfur cycle. These findings could advance the understanding of carbon fixation in estuarine ecosystems.
Assuntos
Bactérias , Ciclo do Carbono , Estuários , Bactérias/genética , Bactérias/classificação , Carbono/metabolismo , Microbiota , Ecossistema , China , Fixação de NitrogênioRESUMO
Cholangiocarcinoma (CCA) is a highly malignant biliary tract cancer with currently suboptimal diagnostic and prognostic approaches. We present a novel system to monitor CCA using exosomal circular RNA (circRNA) via serum and biliary liquid biopsies. A pilot cohort consisting of patients with CCA-induced biliary obstruction (CCA-BO, n = 5) and benign biliary obstruction (BBO, n = 5) was used to identify CCA-derived exosomal circRNAs through microarray analysis. This was followed by a discovery cohort (n = 20) to further reveal a CCA-specific circRNA complex (hsa-circ-0000367, hsa-circ-0021647, and hsa-circ-0000288) in both bile and serum exosomes. In vitro and in vivo studies revealed the three circRNAs as promoters of CCA invasiveness. Diagnostic and prognostic models were established and verified by two independent cohorts (training cohort, n = 184; validation cohort, n = 105). An interpreter-free diagnostic model disclosed the diagnostic power of biliary exosomal circRNA signature (Bile-DS, AUROC = 0.947, RR = 6.05) and serum exosomal circRNA signature (Serum-DS, AUROC = 0.861, RR = 4.04) compared with conventional CA19-9 (AUROC = 0.759, RR = 2.08). A prognostic model of CCA undergoing curative-intent surgery was established by calculating early recurrence score, verified with bile samples (Bile-ERS, C-index=0.783) and serum samples (Serum-ERS, C-index = 0.782). These models, combined with other prognostic factors revealed by COX-PH model, enabled the establishment of nomograms for recurrence monitoring of CCA. Our study demonstrates that the exosomal triple-circRNA panel identified in both bile and serum samples serves as a novel diagnostic and prognostic tool for the clinical management of CCA.
Assuntos
Colangiocarcinoma , Exossomos , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/sangue , Colangiocarcinoma/genética , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/sangue , Colangiocarcinoma/patologia , Exossomos/genética , Masculino , Feminino , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Pessoa de Meia-Idade , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/sangue , Neoplasias dos Ductos Biliares/patologia , Prognóstico , Colestase/genética , Colestase/diagnóstico , Colestase/sangueRESUMO
Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis, and its heterogeneity affects the response to clinical treatments. Glycolysis is highly associated with HCC therapy and prognosis. The present study aimed to identify a novel biomarker for HCC by exploring the heterogeneity of glycolysis in HCC. The intersection of both marker genes of glycolysisrelated cell clusters from singlecell RNA sequencing analysis and mRNA data of liver HCC from The Cancer Genome Atlas were used to construct a prognostic model through Cox proportional hazard regression and the least absolute shrinkage and selection operator Cox regression. Data from the International Cancer Genome Consortium were used to validate the results of the analysis. Immune status analysis was then conducted. A significant gene in the prognostic model was identified as a potential biomarker and was verified through in vitro experiments. The results revealed that the glycolysisrelated prognostic model divided patients with HCC into high and lowrisk groups. A nomogram combining the model and clinical features exhibited accurate predictive ability, with an area under the curve of 0.763 at 3 years. The highrisk group exhibited a higher expression of checkpoint genes and lower tumor immune dysfunction and exclusion scores, suggesting that this group may be more likely to benefit from immunotherapy. The tumor tissues had a higher zinc finger protein (ZFP)41 mRNA and protein expression compared with the adjacent tissues. In vitro analyses revealed that ZFP41 played a crucial role in cell viability, proliferation, migration, invasion and glycolysis. On the whole, the present study demonstrates that the glycolysisrelated prognostic gene, ZFP41, is a potential prognostic biomarker and therapeutic target, and may play a crucial role in glycolysis and malignancy in HCC.
Assuntos
Carcinoma Hepatocelular , Fatores de Transcrição Kruppel-Like , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Glicólise/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Prognóstico , RNA Mensageiro , Análise da Expressão Gênica de Célula Única , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , BiomarcadoresRESUMO
PURPOSE: The temporal evolution of ventricular trabecular complexity and its correlation with major adverse cardiovascular events (MACE) remain indeterminate in patients presenting with acute ST elevation myocardial infarction (STEMI). METHODS: This retrospective analysis enrolled patients undergoing primary percutaneous coronary intervention (pPCI) for acute STEMI, possessing cardiac magnetic resonance (CMR) data in the acute (within 7 days), subacute (1 month after pPCI), and chronic phases (6 months after pPCI) from January 2015 to January 2020 at the three participating sites. Fractal dimensions (FD) were measured for the global, infarct, and remote regions of left ventricular trabeculae during each phase. The potential association of FD with MACE was analyzed using multivariate Cox regression. RESULTS: Among the 200 analyzed patients (182 men; median age, 61 years; age range, 50-66 years), 37 (18.5%) encountered MACE during a median follow-up of 31.2 months. FD exhibited a gradual decrement (global FD at acute, subacute, and chronic phases: 1.253 ± 0.049, 1.239 ± 0.046, 1.230 ± 0.045, p < 0.0001), with a more pronounced decrease observed in patients subsequently experiencing MACE (p < 0.001). The global FD at the subacute phase correlated with MACE (hazard ratio 0.89 (0.82, 0.97), p = 0.01), and a global FD value below 1.26 was associated with a heightened risk. CONCLUSION: In patients post-STEMI, the global FD, serving as an indicator of left ventricular trabeculae complexity, independently demonstrated an association with subsequent major adverse cardiovascular events, beyond factors encompassing left ventricular ejection fraction, indexed left ventricular end-diastolic volume, infarct size, heart rate, NYHA class, and post-pPCI TIMI flow. CRITICAL RELEVANCE STATEMENT: In patients who have had an ST-segment elevation myocardial infarction, global fractal dimension, as a measure of left ventricular trabeculae complexity, provided independent association with subsequent major adverse cardiovascular event. KEY POINTS: ⢠Global and regional FD decreased after STEMI, and more so in patients with subsequent MACE. ⢠Lower global FD at the subacute phase and Δglobal FD from acute to subacute phase were associated with subsequent MACE besides clinical and CMR factors. ⢠Global FD at the subacute phase independently correlated with MACE and global FD value below 1.26 was associated with higher risk.
RESUMO
BACKGROUND: The prognostic value of left ventricular segmental strain (SS) in ST-elevation myocardial infarction (STEMI) remains unclear. HYPOTHESIS: To assess the prognostic value and application of SS. STUDY TYPE: Retrospective analysis of a prospective registry. POPULATION: Five hundred and forty-four patients after STEMI (500 in Cohort 1, 44 in Cohort 2). FIELD STRENGTH/SEQUENCE: 3 T, balanced steady-state free precession, gradient echo, and gradient echo contrast-enhanced images. ASSESSMENT: Participants underwent cardiac MR during the acute phase after STEMI. Infarct-related artery (IRA) strain was determined based on SS obtained from cine images. The primary endpoint was the composite of major adverse cardiovascular events (MACEs) after 8 years of follow-up. In Cohort 2, SS stability was assessed by MR twice within 8 days. Contrast and non-contrast risk models based on SS were established, leading to the development of an algorithm. STATISTICAL TEST: Student's t-test, Mann-Whitney U-test, Cox and logistic regression, Kaplan-Meier analysis, net reclassification index (NRI). P < 0.05 was considered significant. RESULTS: During a median follow-up of 5.2 years, 83 patients from Cohort 1 experienced a MACE. Among SS, IRA peak circumferential strain (IRA-CS) was an independent factor for MACEs (adjusted hazard ratio 1.099), providing incremental prognostic value (NRI 0.180, P = 0.10). Patients with worse IRA-CS (>-8.64%) demonstrated a heightened susceptibility to MACE. Additionally, IRA-CS was significantly associated with microvascular obstruction (MVO) (adjusted odds ratio 1.084) and infarct size (r = 0.395). IRA-CS showed comparable prognostic effectiveness to global peak circumferential strain (NRI 0.100, P = 0.39), also counterbalancing contrast and non-contrast risk models (NRI 0.205, P = 0.05). In Cohort 2, IRA-CS demonstrated stability between two time points (P = 0.10). Based on risk models incorporating IRA-CS, algorithm "HJKL" was preliminarily proposed for stratification. DATA CONCLUSIONS: IRA-CS is an important prognostic factor, and an algorithm based on it is proposed for stratification. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 2.
Assuntos
Imagem Cinética por Ressonância Magnética , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Estudos Retrospectivos , Idoso , Ventrículos do Coração/diagnóstico por imagem , Estudos Prospectivos , Miocárdio/patologiaRESUMO
BACKGROUND AND PURPOSE: Intracranial plaque enhancement (IPE) identified by contrast-enhanced vessel wall MR imaging (VW-MR imaging) is an emerging marker of plaque instability related to stroke risk, but there was no standardized timing for postcontrast acquisition. We aim to explore the optimal postcontrast timing by using multiphase contrast-enhanced VW-MR imaging and to test its performance in differentiating culprit and nonculprit lesions. MATERIALS AND METHODS: Patients with acute ischemic stroke due to intracranial plaque were prospectively recruited to undergo VW-MR imaging with 1 precontrast phase and 4 consecutive postcontrast phases (9 minutes and 13 seconds for each phase). The signal intensity (SI) values of the CSF and intracranial plaque were measured on 1 precontrast and 4 postcontrast phases to determine the intracranial plaque enhancement index (PEI). The dynamic changes of the PEI were compared between culprit and nonculprit plaques on the postcontrast acquisitions. RESULTS: Thirty patients with acute stroke (aged 59 ± 10 years, 18 [60%] men) with 113 intracranial plaques were included. The average PEI of all intracranial plaques significantly increased (up to 14%) over the 4 phases. There was significantly increased PEI over the 4 phases for culprit plaques (an average increase of 23%), but this was not observed for nonculprit plaques. For differentiating culprit and nonculprit plaques, we observed that the performance of IPE in the second postcontrast phase (cutoff = 0.83, AUC = 0.829 [0.746-0.893]) exhibited superior accuracy when compared with PEI in the first postcontrast phase (cutoff = 0.48; AUC = 0.768 [0.680-0.843]) (P = .022). CONCLUSIONS: A 9-minute delay of postcontrast acquisition can maximize plaque enhancement and better differentiate between culprit and nonculprit plaques. In addition, culprit and nonculprit plaques have different enhancement temporal patterns, which should be evaluated in future studies.
Assuntos
Arteriosclerose Intracraniana , AVC Isquêmico , Placa Aterosclerótica , Acidente Vascular Cerebral , Masculino , Humanos , Feminino , Arteriosclerose Intracraniana/patologia , Imageamento por Ressonância Magnética/métodos , Placa Aterosclerótica/patologiaRESUMO
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been ongoing for more than three years and urgently needs to be addressed. Traditional Chinese medicine (TCM) prescriptions have played an important role in the clinical treatment of patients with COVID-19 in China. However, it is difficult to uncover the potential molecular mechanisms of the active ingredients in these TCM prescriptions. In this paper, we developed a new approach by integrating the experimental assay, virtual screening, and the experimental verification, exploring the rapid discovery of active ingredients from TCM prescriptions. To achieve this goal, 4 TCM prescriptions in clinical use for different indications were selected to find the antiviral active ingredients in TCMs. The 3-chymotrypsin-like protease (3CLpro), an important target for fighting COVID-19, was utilized to determine the inhibitory activity of the TCM prescriptions and single herb. It was found that 10 single herbs had better inhibitory activity than other herbs by using a fluorescence resonance energy transfer (FRET) - based enzymatic assay of SARS-CoV-2 3CLpro. The ingredients contained in 10 herbs were thus virtually screened and the predicted active ingredients were experimentally validated. Thus, such a research strategy firstly removed many single herbs with no inhibitory activity against SARS-CoV-2 3CLpro at the very beginning by FRET-based assay, making our subsequent virtual screening more effective. Finally, 4 active components were found to have stronger inhibitory effects on SARS-CoV-2 3CLpro, and their inhibitory mechanism was subsequently investigated. Among of them, methyl rosmarinate as an allosteric inhibitor of SARS-CoV-2 3CLpro was confirmed and its ability to inhibit viral replication was demonstrated by the SARS-CoV-2 replicon system. To validate the binding mode via docking, the mutation experiment, circular dichroism (CD), enzymatic inhibition and surface plasmon resonance (SPR) assay were performed, demonstrating that methyl rosmarinate bound to the allosteric site of SARS-CoV-2 3CLpro. In conclusion, this paper provides the new ideas for the rapid discovery of active ingredients in TCM prescriptions based on a specific target, and methyl rosmarinate has the potential to be developed as an antiviral therapeutic candidate against SARS-CoV-2 infection.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Ácido Rosmarínico , Peptídeo Hidrolases , Antivirais/farmacologia , Inibidores de Proteases/farmacologia , Simulação de Acoplamento MolecularRESUMO
Osteoclasts are over-activated as we age, which results in bone loss. Src deficiency in mice leads to severe osteopetrosis due to a functional defect in osteoclasts, indicating that Src function is essential in osteoclasts. G-protein-coupled receptors (GPCRs) are the targets for â¼35% of approved drugs but it is still unclear how GPCRs regulate Src kinase activity. Here, we reveal that GPR54 activation by its natural ligand Kisspeptin-10 (Kp-10) causes Dusp18 to dephosphorylate Src at Tyr 416. Mechanistically, Gpr54 recruits both active Src and the Dusp18 phosphatase at its proline/arginine-rich motif in its C terminus. We show that Kp-10 binding to Gpr54 leads to the up-regulation of Dusp18. Kiss1, Gpr54 and Dusp18 knockout mice all exhibit osteoclast hyperactivation and bone loss, and Kp-10 abrogated bone loss by suppressing osteoclast activity in vivo. Therefore, Kp-10/Gpr54 is a promising therapeutic target to abrogate bone resorption by Dusp18-mediated Src dephosphorylation.
Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Camundongos , Osteoclastos/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo , Camundongos Knockout , Reabsorção Óssea/genética , Receptores de Kisspeptina-1RESUMO
Amyloidosis involves the deposition of misfolded proteins. Even though it is caused by different pathogenic mechanisms, in aggregate, it shares similar features. Here, we tested and confirmed a hypothesis that an amyloid antibody can be engineered by a few mutations to target a different species. Amyloid light chain (AL) and ß-amyloid peptide (Aß) are two therapeutic targets that are implicated in amyloid light chain amyloidosis and Alzheimer's disease, respectively. Though crenezumab, an anti-Aß antibody, is currently unsuccessful, we chose it as a model to computationally design and prepare crenezumab variants, aiming to discover a novel antibody with high affinity to AL fibrils and to establish a technology platform for repurposing amyloid monoclonal antibodies. We successfully re-engineered crenezumab to bind both Aß42 oligomers and AL fibrils with high binding affinities. It is capable of reversing Aß42-oligomers-induced cytotoxicity, decreasing the formation of AL fibrils, and alleviating AL-fibrils-induced cytotoxicity in vitro. Our research demonstrated that an amyloid antibody could be engineered by a few mutations to bind new amyloid sequences, providing an efficient way to reposition a therapeutic antibody to target different amyloid diseases.
Assuntos
Doença de Alzheimer , Amiloidose , Anticorpos Monoclonais Humanizados , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Amiloide/metabolismo , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/uso terapêutico , Amiloidose/terapia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêuticoRESUMO
In a previous study, we discovered that the level of lnc-TSPAN12 was significantly elevated in hepatocellular carcinoma (HCC) and correlated with a low survival rate. However, the function and mechanism of lnc-TSPAN12 in modulating epithelial-mesenchymal transition (EMT) and metastasis in HCC remains poorly understood. This study demonstrates that lnc-TSPAN12 positively influences migration, invasion, and EMT of HCC cells in vitro and promotes hepatic metastasis in vivo. The modification of N6-methyladenosine, driven by METTL3, is essential for the stability of lnc-TSPAN12, which may partially contribute to the upregulation of lnc-TSPAN12. Mechanistically, lnc-TSPAN12 exhibits direct interactions with EIF3I and SENP1, acting as a scaffold to enhance the SENP1-EIF3I interaction. As a result, the SUMOylation of EIF3I is inhibited, preventing its ubiquitin-mediated degradation. Ultimately, this activates the Wnt/ß-catenin signaling pathway, stimulating EMT and metastasis in HCC. Our findings shed light on the regulatory mechanism of lnc-TSPAN12 in HCC metastasis and identify the lnc-TSPAN12-EIF3I/SENP1 axis as a novel therapeutic target for HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Tetraspaninas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Transição Epitelial-Mesenquimal , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Longo não Codificante/genética , Via de Sinalização WntRESUMO
OBJECTIVES: Significant atherosclerotic stenosis or occlusion in the distal internal carotid artery (ICA) may induce diffuse wall thickening (DWT) in the upstream arterial wall. This study aimed to assess the association of atherosclerotic steno-occlusive diseases in the distal ICA with DWT in the upstream ipsilateral ICA. METHODS: Individuals with atherosclerotic stenosis in the distal ICA, detected by carotid MR vessel wall imaging using 3D pre- and post-contrast T1 volume isotropic turbo spin-echo acquisition (T1-VISTA) sequence, were enrolled. The associations of vessel wall thickening, the longitudinal extent of DWT, enhancement of the upstream ipsilateral ICA, and stenosis degree in the distal ICA were examined. RESULTS: Totally 64 arteries in 55 patients with atherosclerotic steno-occlusive distal ICAs were included. Significant correlations were found between distal ICA stenosis and DWT in the petrous ICA (r = 0.422, p = 0.001), DWT severity (r = 0.474, p < 0.001), the longitudinal extent of DWT in the ICA (r = 0.671, p < 0.001), enhancement in the petrous ICA (r = 0.409, p = 0.001), and enhancement degree (r = 0.651, p < 0.001). In addition, high degree of enhancement was correlated with both increased wall thickness and increased prevalence of DWT in the petrous ICA (both p < 0.001). CONCLUSIONS: DWT of the petrous ICA is commonly detected in patients with atherosclerotic steno-occlusive disease in the distal ICA. The degree of stenosis in the distal ICA is associated with wall thickening and its longitudinal extent in the upstream segments. CLINICAL RELEVANCE STATEMENT: Diffuse wall thickening is a common secondary change in atherosclerotic steno-occlusive disease in the intracranial carotid. This phenomenon constitutes a confounding factor in the distinction between atherosclerosis and inflammatory vasculopathies, and could be reversed after alleviated atherosclerotic stenosis. KEY POINTS: ⢠Diffuse wall thickening of the petrous internal carotid artery is commonly detected in patients with atherosclerotic steno-occlusive disease in the distal internal carotid artery. ⢠The phenomenon of diffuse wall thickening could be reversed after stenosis alleviation. ⢠Carotid artery atherosclerosis with diffuse wall thickening should warrant a differential diagnosis from other steno-occlusive diseases, including moyamoya diseases and Takayasu aortitis.
Assuntos
Artéria Carótida Interna , Estenose das Carótidas , Humanos , Feminino , Masculino , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/complicações , Pessoa de Meia-Idade , Artéria Carótida Interna/diagnóstico por imagem , Artéria Carótida Interna/patologia , Idoso , Angiografia por Ressonância Magnética/métodos , Adulto , Imageamento Tridimensional/métodos , Idoso de 80 Anos ou maisRESUMO
OBJECTIVES: The present study aimed to investigate the incremental prognostic value of the right ventricular fractal dimension (FD), a novel marker of myocardial trabecular complexity by cardiac magnetic resonance (CMR) in patients with arrhythmogenic cardiomyopathy (ACM). METHODS: Consecutive patients with ACM undergoing CMR were followed up for major cardiac events, including sudden cardiac death, aborted cardiac arrest, and appropriate implantable cardioverter defibrillator intervention. Prognosis prediction was compared by Cox regression analysis. We established a multivariable model supplemented with RV FD and evaluated its discrimination by Harrell's C-statistic. We compared the category-free, continuous net reclassification improvement (cNRI) and integrated discrimination index (IDI) before and after the addition of FD. RESULTS: A total of 105 patients were prospectively included from three centers and followed up for a median of 60 (48, 66) months; experienced 36 major cardiac events were recorded. Trabecular FD displayed a strong unadjusted association with major cardiac events (p < 0.05). In the multivariable Cox regression analysis, RV maximal apical FD maintained an independent association with major cardiac events (hazard ratio, 1.31 (1.11-1.55), p < 0.002). The Hosmer-Lemeshow goodness of fit test displayed good fit (X2 = 0.68, p = 0.99). Diagnostic performance was significantly improved after the addition of RV maximal apical FD to the multivariable baseline model, and the continuous net reclassification improvement increased 21% (p = 0.001), and the integrated discrimination index improved 16% (p = 0.045). CONCLUSIONS: In patients with ACM, CMR-assessed myocardial trabecular complexity was independently correlated with adverse cardiovascular events and provided incremental prognostic value. CLINICAL RELEVANCE STATEMENT: The application of FD values for assessing RV myocardial trabeculae may become an accessible and promising parameter in monitoring and early diagnosis of risk factors for adverse cardiovascular events in patients with ACM. KEY POINTS: ⢠Ventricular trabecular morphology, a novel quantitative marker by CMR, has been explored for the first time to determine the severity of ACM. ⢠Patients with higher maximal apical fractal dimension of RV displayed significantly higher cumulative incidence of major cardiac events. ⢠RV maximal apical FD was independently associated with major cardiac events and provided incremental prognostic value in patients with ACM.
Assuntos
Displasia Arritmogênica Ventricular Direita , Ventrículos do Coração , Humanos , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Displasia Arritmogênica Ventricular Direita/diagnóstico por imagem , Displasia Arritmogênica Ventricular Direita/complicações , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Estudos Prospectivos , Fractais , Adulto , Imageamento por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos , Morte Súbita CardíacaRESUMO
OBJECTIVES: To differentiate high-grade from low-grade clear cell renal cell carcinoma (ccRCC) using diffusion-relaxation correlation spectroscopic imaging (DR-CSI) spectra in an equal separating analysis. METHODS: Eighty patients with 86 pathologically confirmed ccRCCs who underwent DR-CSI were enrolled. Two radiologists delineated the region of interest. The spectrum was derived based on DR-CSI and was further segmented into multiple equal subregions from 2*2 to 9*9. The agreement between the 2 radiologists was assessed by the intraclass correlation coefficient (ICC). Logistic regression was used to establish the regression model for differentiation, and 5-fold cross-validation was used to evaluate its accuracy. McNemar's test was used to compare the diagnostic performance between equipartition models and the traditional parameters, including the apparent diffusion coefficient (ADC) and T2 value. RESULTS: The inter-reader agreement decreased as the divisions in the equipartition model increased (overall ICC ranged from 0.859 to 0.920). The accuracy increased from the 2*2 to 9*9 equipartition model (0.68 for 2*2, 0.69 for 3*3 and 4*4, 0.70 for 5*5, 0.71 for 6*6, 0.78 for 7*7, and 0.75 for 8*8 and 9*9). The equipartition models with divisions >7*7 were significantly better than ADC and T2 (vs ADC: P = .002-.008; vs T2: P = .001-.004). CONCLUSIONS: The equipartition method has the potential to analyse the DR-CSI spectrum and discriminate between low-grade and high-grade ccRCC. ADVANCES IN KNOWLEDGE: The evaluation of DR-CSI relies on prior knowledge, and how to assess the spectrum derived from DR-CSI without prior knowledge has not been well studied.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Análise Espectral , Diagnóstico por Imagem , Diferenciação CelularRESUMO
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to human. Since there are still no effective treatment options against the new emerging variants of SARS-CoV-2, it is necessary to devote a continuous endeavor for more targeted drugs and the preparation for the next pandemic. Salvia miltiorrhiza and its active ingredients possess wide antiviral activities, including against SARS-CoV-2. Danshensu, as one of the most important active ingredients in Salvia miltiorrhiza, has been reported to inhibit the entry of SARS-CoV-2 into ACE2 (angiotensin-converting enzyme 2)-overexpressed HEK-293T cells and Vero-E6 cells. However, there is a paucity of information regarding its detailed target and mechanism against SARS-CoV-2. Here, we present Danshensu as a covalent inhibitor of 3-chymotrypsin-like protease (3CLpro) against SARS-CoV-2 by the time-dependent inhibition assay (TDI) and mass spectrometry analysis. Further molecular docking, site-directed mutagenesis, circular dichroism (CD) and fluorescence spectra revealed that Danshensu covalently binds to C145 of SARS-CoV-2 3CLpro, meanwhile forming the hydrogen bonds with S144, H163 and E166 in the S1 site. Structure-based optimization of Danshensu led to the discovery of the promising compounds with good inhibitory activity and microsomal stability in vitro. Due to Danshensu inhibiting lung inflammation in the mouse model, we found that Danshensu derivatives also showed better anti-inflammatory activity than Danshensu in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Thus, our study provides not only the clue of the efficacy of Salvia miltiorrhiza against SARS-CoV-2, but also a detailed mechanistic insight into the covalent mode of action of Danshensu for design of covalent inhibitors against SARS-CoV-2 3CLpro, highlighting its potential as a bifunctional molecule with antivirus and anti-inflammation.