Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39376165

RESUMO

Silicon materials are irreplaceable in the modern information society because of their rich resource, low price, and mature manufacturing technology for optoelectronics. However, improving the responsivity and response speed of silicon-based photodetectors is still a challenge. Here, a double-heterojunction photodetector (PD) by coupling two-dimensional PtSe2 thin film with a graphene/silicon Schottky junction is proposed. The introduction of PtSe2 enhances the built-in electric field of the device, thus suppressing the dark-state current and promoting the separation of photogenerated electron-hole pairs. Under 808 nm laser illumination, the PtSe2/graphene/Si PD exhibits an optimal responsivity, specific detectivity, and response speed of 0.81 A W-1, 1.24 × 109 Jones, and 43.6/51.2 µs, respectively. These performance indexes are obviously better than the corresponding graphene/Si device. Furthermore, the PtSe2/graphene/Si PD has good environmental durability and photoresponse ability from the ultraviolet to near-infrared. This work will provide new possibilities for designing novel silicon-based photodetection devices with high performance and fast response.

2.
ACS Nano ; 18(35): 24495-24504, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39169869

RESUMO

The short longevity of perovskite solar cells (PSCs) is the major hurdle toward their commercialization. In recent years, mechanical stability has emerged as a pivotal aspect in enhancing the overall durability of PSCs, prompting a myriad of strategies devoted to this issue. However, the mechanical degradation mechanisms of PSCs remain largely unexplored, with corresponding studies mainly limited to perovskite single crystals, neglecting the complexity and nuances present in PSC devices based on polycrystalline perovskite thin films. Herein, we reveal the underlying mechanisms of the mechanical degradation of formamidinium-based PSCs, which are the most prevalent high-performance PSC candidates. Under uniaxial tensile loads, we found that the degradation is mainly attributed to the sequential increase in the density of micropores and halide defects within the perovskite films. This phenomenon is consistent across various perovskite compositions and environmental conditions. Our findings elucidate mechanistic insights for more targeted mitigation strategies aimed at addressing the mechanical degradation of PSC devices.

3.
J Control Release ; 375: 60-73, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39216600

RESUMO

Rheumatoid arthritis (RA) remains a formidable healthcare challenge due to its chronic nature and potential for irreversible joint damage. Methotrexate (MTX) is a cornerstone treatment for RA but carries significant risks of adverse effects with repeated administration, necessitating the exploration of alternative delivery methods. Injectable hydrogels loaded with MTX for intra-articular injection present a promising solution, allowing sustained drug release directly into affected joints. However, current hydrogel systems often lack extended therapeutic periods and the ability to self-regulate drug release according to disease state. Furthermore, RA is associated with excessive production of reactive oxygen species (ROS), which exacerbates inflammation and joint damage. Herein, we developed an advanced injectable hydrogel (MPDANPs/MTX HA-PEG gel) based on "bio-orthogonal chemistry", combining hyaluronic acid and polyethylene glycol (PEG) matrices co-loaded with mesoporous polydopamine nanoparticles (MPDANPs) and MTX. MPDANPs/MTX HA-PEG gel achieved prolonged, staged, and self-regulated MTX release, coupled with ROS scavenging capabilities for enhanced therapeutic efficacy. Due to its optimized MTX release behavior and significant ROS scavenging function, MPDANPs/MTX HA-PEG gel exhibited potent anti-inflammatory effects in collagen-induced arthritis (CIA) rats following a single intra-articular injection. Our findings highlight the potential of MPDANPs/MTX HA-PEG gel as a highly effective treatment strategy for RA, offering a promising avenue for improving patient outcomes.

4.
Nano Lett ; 24(30): 9406-9414, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39036992

RESUMO

Extremely small iron oxide nanoparticle (ESIONP)-based stimuli-responsive switchable MRI contrast agents (CAs) show great promise for accurate detection of tumors due to their outstanding advantages of high specificity and low background signal. However, currently developed ESIONP-based switchable CAs often suffer single-biomarker-induced responses, which lack absolute specificity to pathological tissues, potentially diminishing diagnostic accuracy. In this study, weak acidity and hypoxia, two of the most remarkable characteristics of tumors, are introduced as dual biomarker stimuli to construct an ESIONP-based switchable MRI CA (DKL-CA), with its signal switch controlled by a "dual-key-and-lock" strategy. Only when DKL-CA is exposed to a coexisting weakly acidic and hypoxic environment can monodispersed ESIONPs form nanoclusters, thereby realizing a switch from the T1 to T2 contrast. Moreover, DKL-CA exhibits favorable biosafety and the capacity for precise tumor diagnosis in tumor-bearing mice. Overall, DKL-CA paves the way for designing highly accurate ESIONP-based MRI CAs for tumor diagnosis.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Neoplasias , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Animais , Camundongos , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/diagnóstico , Nanopartículas Magnéticas de Óxido de Ferro/química , Linhagem Celular Tumoral
5.
Adv Healthc Mater ; 13(22): e2304668, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38925602

RESUMO

Healing bone erosions in rheumatoid arthritis (RA) remains greatly challenging via biomaterial strategies. Given the unsuccessful innate bone erosion healing due to an inflammatory disorder, over-activated osteoclasts, and impaired osteoblasts differentiation, RA pathogenesis-guided engineering of an innovative hydrogel platform is needed for remodeling osteoimmune and osteogenic microenvironment of bone erosion healing. Herein, in situ adaptable and injectable interpenetrating polymer network (IPN) hydrogel is developed through an ingenious combination of a bio-orthogonal reaction between hyaluronic acid (HA) and collagen, along with effective electrostatic interactions leveraging bisphosphonate (BP)-functionalized HA macromers (HABP) and nanorod shaped zinc (Zn)-doped biphasic calcium phosphate (ZnBCP). IPN hydrogel exhibits exceptional adaptability to the local shape complexity at bone erosions, and by integrating ZnBCP and HABP, a multi-stage releasing platform is engineered, facilitating controlled cargo delivery for remodeling more anti-inflammatory M2 cells and reducing over-activated osteoclastic activities, thereby reconstructing the bone regeneration microenvironment. Sustainedly co-delivering multiple ions (calcium and phosphate) can display excellent osteogenic properties and be conducive to the bone formation process, by effects of osteogenesis-associated cell differentiation. Overall, the introduced bioactive IPN hydrogel therapy remodels the osteoimmune environment by synergistic pro-inflammation-resolving, osteogenesis, and anti-osteoclastic activities, displaying excellent bone reconstruction in the collagen-induced arthritis rabbit model.


Assuntos
Artrite Reumatoide , Hidrogéis , Osteogênese , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Animais , Osteogênese/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Coelhos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Camundongos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Humanos , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Remodelação Óssea/efeitos dos fármacos , Células RAW 264.7
6.
Food Chem ; 458: 140178, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38944923

RESUMO

Based on the three typical gels under KCl substitution groups, the effect of partial substitution of NaCl by KCl (groups: T 1:0.6 M NaCl; T 2: 0.3 M NaCl +0.3 M KCl; T 3: 0.2 M NaCl +0.4 M KCl; T 4:0.6 M KCl) on the aggregation behavior and gel characteristics of myosin was evaluated. The significant changes in hydrophobicity and sulfhydryl content (P < 0.05) indicate KCl substitution enhances myosin aggregation through hydrophobic interactions and disulfide bonds. According to Ca2+-ATP, scanning electron microscopes (SEM) and the rheological results, T2 had a smoother network structure at about 75 °C. Noticeably, T3 had high water holding capacity (WHC), but its gel had some visible cavities. T4 had a gel structure with several irregular aggregates due to a greater aggregation rate. Thus, appropriate partial substitution of NaCl by KCl could enhance beef myosin gel properties and heat-induced aggregation behavior.


Assuntos
Géis , Miosinas , Cloreto de Potássio , Cloreto de Sódio , Animais , Cloreto de Potássio/química , Cloreto de Potássio/farmacologia , Bovinos , Cloreto de Sódio/química , Cloreto de Sódio/farmacologia , Miosinas/química , Géis/química , Interações Hidrofóbicas e Hidrofílicas , Reologia , Agregados Proteicos/efeitos dos fármacos
7.
Int J Biol Macromol ; 271(Pt 1): 132514, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768917

RESUMO

Accurate early diagnosis of rheumatoid arthritis (RA) and prompt implementation of appropriate treatment approaches are crucial. In the clinic, magnetic resonance imaging (MRI) has been recommended for implementation to aid in the precise and early diagnosis of RA. However, they are still limited by issues regarding specificity and their ability to capture comprehensive information about the pathological features. Herein, a responsive multifunctional nanoplatform with targeting capabilities (hMnO2-IR@BSA-PEG-FA) is constructed through integrating a RA microenvironment-responsive MRI contrast agent with activatable near-infrared (NIR) fluorescence imaging, aiming to simultaneously acquire comprehensive pathological features of RA from both structural and molecular imaging perspectives. Moreover, taking advantage of its targeting function to synovial microphages, hMnO2-IR@BSA-PEG-FA demonstrated a remarkable capability to accumulate effectively at the synovial tissue. Additionally, hMnO2 responded to the mild acidity and reactive oxygen species (ROS) in the RA microenvironment, leading to the controlled release of Mn2+ ions and IR780, which separately caused special MRI contrast enhancement of synovial tissues and sensitively demonstrated the presence of ROS and weakly acid microenvironment by NIR imaging. Consequently, hMnO2-IR@BSA-PEG-FA is expected to serve as a promising nanoplatform, offering valuable assistance in the precise diagnosis of early-stage RA by specially providing comprehensive information about the pathological features.


Assuntos
Artrite Reumatoide , Imageamento por Ressonância Magnética , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/diagnóstico , Imageamento por Ressonância Magnética/métodos , Animais , Meios de Contraste/química , Humanos , Imagem Molecular/métodos , Nanopartículas/química , Diagnóstico Precoce , Espécies Reativas de Oxigênio/metabolismo , Camundongos
8.
Biomed Mater ; 19(4)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38729172

RESUMO

The sensitivity and diagnostic accuracy of magnetic resonance imaging mainly depend on the relaxation capacity of contrast agents (CAs) and their accumulated amount at the pathological region. Due to the better biocompatibility and high-spin capacity, Fe-complexes have been studied widely as an alternative to replace popular Gd-based CAs associated with potential biotoxicity. Compared with a variety of Fe complex-based CAs, such as small molecular, macrocyclic, multinuclear complexes, the form of nanoparticle exhibits outstanding longitudinal relaxation, but the clinical transformation was still limited by the inconspicuous difference of contrast between tumor and normal tissue. The enhanced effect of contrast is a positive relation as relaxation of CAs and their concentration in desired region. To specifically improve the amount of CAs accumulated in the tumor, pH-responsive polymer poly(2-ethyl-2-oxazoline) (PEOz) was modified on melanin, a ubiquitous natural pigment providing much active sites for chelating with Fe(III). The Fe(III)-Mel-PEOz we prepared could raise the tumor cell endocytosis efficiency via switching surface charge from anion to cation with the stimuli of the decreasing pH of tumor microenvironment. The change of pH has negligible effect on ther1of Fe(III)-Mel-PEOz, which is always maintained at around 1.0 mM-1s-1at 0.5 T. Moreover, Fe(III)-Mel-PEOz exhibited low cytotoxicity, and satisfactory enhancement of positive contrast effectin vivo. The excellent biocompatibility and stable relaxation demonstrate the high potential of Fe(III)-Mel-PEOz in the diagnosis of tumor.


Assuntos
Materiais Biocompatíveis , Meios de Contraste , Ferro , Imageamento por Ressonância Magnética , Melaninas , Melaninas/química , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Animais , Materiais Biocompatíveis/química , Humanos , Ferro/química , Camundongos , Linhagem Celular Tumoral , Poliaminas/química , Nanopartículas/química , Microambiente Tumoral
9.
Mol Nutr Food Res ; 68(9): e2400048, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38659317

RESUMO

Egg yolk lipids significantly alleviate dextran sulfate sodium (DSS)-induced colitis by inhibiting NLRP3 inflammasome, reversing gut microbiota dysbiosis, and increasing short chain fatty acids (SCFAs) concentrations. However, the role of gut microbiota and the relationship between SCFAs and NLRP3 inflammasome are still unknown. Here, this study confirms that antibiotic treatment abolishes the protective effect of egg yolk lipids on DSS-induced colonic inflammation, intestinal barrier damage, and lipopolysaccharide translocation. Fecal microbiota transplantation also supports that egg yolk lipids alleviate colitis in a gut microbiota-dependent manner. Then, the study investigates the relationship between SCFAs and NLRP3 inflammasome, and finds that SCFAs significantly suppress colitis via inhibiting colonic NLRP3 inflammasome activation and proinflammatory cytokines secretions (interleukin, IL)-1ß and IL-18, and combined treatment of SCFAs and MCC950 (NLRP3 inhibitor) shows a better activity against colitis and NLRP3 inflammasome activation. Together, these findings provide positive evidence for gut microbiorta-SCFAs-NLRP3 axis as a novel target involving in the therapy of inflammatory bowel disease.


Assuntos
Colite , Sulfato de Dextrana , Gema de Ovo , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Inflamassomos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácidos Graxos Voláteis/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Masculino , Camundongos , Transplante de Microbiota Fecal , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/microbiologia , Lipídeos , Interleucina-1beta/metabolismo
10.
Nanoscale ; 16(12): 6078-6086, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38441960

RESUMO

There is great interest in the incorporation of novel two-dimensional materials into Si-based technologies to realize multifunctional optoelectronic devices via heterogeneous integration. Here, we demonstrate a gate-tunable, self-driven, high-performance broadband phototransistor array based on a PdSe2/Si Schottky junction, which is fabricated by pre-depositing a semi-metallic PdSe2 film on a SOI substrate. In addition, thanks to the zero bandgap of the PdSe2 material and the PdSe2/Si vertical heterostructure, the prepared phototransistor exhibits pronounced photovoltaic properties in a wide spectral range from ultraviolet to near-infrared. The responsivity, specific detectivity and response time of the device at the incident light wavelength of 808 nm are 1.15 A W-1, 9.39 × 1010 Jones, and 27.1/40.3 µs, respectively, which are better than those of previously reported PdSe2-based photodetectors. The photoelectric performance can be further improved by applying an appropriate gate voltage to the phototransistor and the responsivity of the device increases to 1.61 A W-1 at VG = 5 V. We demonstrate the excellent imaging capabilities of a 4 × 4 array image sensor using PdSe2/SOI phototransistors under 375 nm, 532 nm, and 808 nm laser sources.

11.
ACS Nano ; 18(14): 10249-10258, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38529949

RESUMO

The van der Waals (vdW) heterostructures composed of two-dimensional (2D) transition metal dichalcogenides (TMDs) and organic semiconductors demonstrate numerous compelling optoelectronic properties. However, the influence of the vdW epitaxial effect and temperature on the optoelectronic properties and interface exciton dynamics of heterostructures remains unclear. This study systematically investigates the fluorescence properties of TiOPc/WSe2 heterostructure. Comprehensive spectral characterization elucidates that the emission behavior of the TiOPc/WSe2 heterostructure arises from charge/energy transfer at the heterostructure interfaces and the structural ordering of the organic layer on the 2D monolayer WSe2 induced by vdW epitaxy. The interface exciton dynamic features probed by ultrafast transient spectroscopy reveal that the face-to-face molecular stacking configuration of TiOPc exhibits ultrafast exciton dynamics. In particular, we observe picosecond-scale absorption of organic molecular dimer cations, providing direct evidence of interface charge transfer at room temperature. Moreover, energy transfer from the TiOPc to WSe2 may exist based on the tunability in the fluorescence emission of the TiOPc/WSe2 heterostructure as the temperature changes. This study unveils the critical role of vdW epitaxy and temperature in the exciton dynamics of organic/2D TMDs hybrid systems and provides guidance for studying interlayer charge and energy transfer in organic/inorganic heterostructures.

12.
Food Chem X ; 21: 101151, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312487

RESUMO

The influence of ultrasonic processing on the physicochemical characteristics, microstructure, and intermolecular forces of the hybrid gels obtained by heating the mixtures of different ratios of salted ovalbumin (SOVA)-cooked soybean protein isolate (CSPI) was investigated. With the growth of SOVA addition, ζ-potential in absolute value, cohesiveness, water-holding capacity (WHC), surface hydrophobicity, and the content of soluble protein of the hybrid gels decreased (P < 0.05), while the hardness, T2 relaxation time of the hybrid gels increased (P < 0.05). And the compactness of the network structure of the hybrid gel increased with the increase of SOVA addition. After being treated with ultrasound, significant increases (P < 0.05) of ζ-potential in absolute value, cohesiveness, WHC, and surface hydrophobicity of the hybrid gels were observed. In general, ultrasonic processing is one of the effective means to improve the gel properties of SOVA-CSPI hybrid gels.

13.
Mol Nutr Food Res ; 68(3): e2300509, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037542

RESUMO

The increasing incidence of inflammatory bowel disease (IBD) has become a global phenomenon. Egg yolk lipids are one of the essential dietary foods, but its effects on intestinal immunity remain unclear. Here, egg yolk lipids are obtained using ethanol extraction and a total of 601 kinds of lipids are detected via lipidomics, including 251 kinds of triglycerides, 133 kinds of phosphatidylcholines, 44 kinds of phosphatidylethanolamines. Then, the study finds that egg yolk lipids significantly alleviate dextran sulfate sodium-induced colitis and reduce the production of inflammatory factors. Meanwhile, egg yolk lipids also maintain intestinal barrier integrity and decrease lipopolysaccharide translocation by alleviating intestinal structure damage and increasing the numbers of goblet cells and mucin 2. Mechanistically, egg yolk lipids attenuate colitis by inhibiting the assembly and activation of NLRP3 inflammasome. Moreover, the study also finds that egg yolk lipids reverse gut microbiota dysbiosis referring to increased relative abundance of Bacteroides acidifaciens and decrease relative abundance of Akkermansia muciniphila, as well as increased short chain fatty acids concentration in the gut. Together, the study elucidates the anti-colitis effect of egg yolk lipids and provides positive evidences for egg yolk lipids involving in dietary strategy and IBD therapy.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Camundongos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sulfato de Dextrana/toxicidade , Gema de Ovo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
14.
Food Funct ; 14(20): 9309-9323, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37781872

RESUMO

Ulcerative colitis (UC) is a common inflammatory bowel disease, whose incidence is on the rise worldwide. The drugs commonly used for UC are often associated with a number of side effects. Therefore, the development of effective, food-borne substances for UC is in line with the current needs. Egg yolk phosphatidylcholine (EYPC) is one of the abundant lipids in egg yolk and possesses various biological activities. However, its protective effect against UC has not been clarified. In this study, the anti-UC activity of EYPC was investigated using a dextran sodium sulfate (DSS)-induced colitis model of BALB/c mice. The results showed that EYPC supplementation inhibited DSS-induced colon shortening, the spleen index and disease activity index increase and intestinal structural damage. EYPC could down-regulate the levels of TNF-α, IL-1ß, IL-6 and MPO in the colon and restore the number of goblet cells and the level of tight junction (TJ) proteins. Besides, EYPC modulated the composition of the gut microbiota, lowered the relative abundance of the pathogenic bacterium Parabacteroides and upregulated the abundance of the beneficial bacteria Alistipes and Lachnospiraceae_NK4A136_group. These results evidenced that EYPC could attenuate DSS-induced colitis in mice and had the potential to prevent and treat UC.


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Lecitinas , Camundongos Endogâmicos BALB C , Gema de Ovo/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
15.
Opt Express ; 31(18): 29061-29073, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710713

RESUMO

In the field of diamond MESFETs, this work is what we believe to be the first to investigate the optoelectronic properties of hydrogen-terminated polycrystalline diamond MESFETs under visible and near-UV light irradiation. It is shown that the diamond MESFETs are well suited for weak light detection in the near-ultraviolet region around the wavelength of 368 nm, with a responsivity of 6.14 × 106 A/W and an external quantum efficiency of 2.1 × 107 when the incident light power at 368.7 nm is only 0.75 µW/cm2. For incident light at 275.1 nm, the device's sensitivity and EQE increase as the incident light power increases; at an incident light power of 175.32 µW/cm2 and a VGS of -1 V, the device's sensitivity is 2.9 × 105 A/W and the EQE is 1.3 × 106. For incident light in the wavelength range of 660 nm to 404 nm with an optical power of 70 µW/cm2, the device achieves an average responsivity of 1.21 × 105 A/W. This indicates that hydrogen-terminated polycrystalline diamond MESFETs are suitable for visible and near-UV light detection, especially for weak near-UV light detection. However, the transient response test of the device shows a long relaxation time of about 0.2 s, so it is not yet suitable for high-speed UV communication or detection.

16.
Nanotechnology ; 34(49)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37666240

RESUMO

Two-dimensional (2D) PdSe2film has the characteristics of adjustable bandgap, high carrier mobility, and high stability. Photodetector (PD) based on 2D PdSe2exhibits wide spectral self-driving features, demonstrating enormous potential in the field of optical detection. Here, we design and fabricate PdSe2/Si heterojunction PDs with various thicknesses of the PdSe2films from 10 to 35 nm. Due to the enhancement of light absorption capacity and built-in electric field of heterojunction, the photodetector with thicker PdSe2film can generate more photo-generated carriers and effectively separate them to form a large photocurrent, thus showing more excellent photodetection performance. The responsivity and specific detectivity of the PdSe2/Si PDs with 10 nm, 20 nm, and 35 nm PdSe2films are 2.12 A W-1and 6.72 × 109Jones, 6.17 A W-1and 1.95 × 1010Jones, and 8.02 A W-1and 2.54 × 1010Jones, respectively (808 nm illumination). The PD with 35 nm PdSe2film exhibits better performance than the other two PDs, with the rise/fall times of 15.8µs/138.9µs atf= 1 kHz and the cut-off frequency of 8.6 kHz. Furthermore, we demonstrate that the properties of PdSe2/Si PD array have excellent uniformity and stability at room temperature and shows potential for image sensing in the UV-vis-NIR wavelength range.

17.
Adv Sci (Weinh) ; 10(31): e2302516, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37767942

RESUMO

The inhomogeneous native oxide shells on the surfaces of III-V group semiconductors typically yield inferior and unstable electrical properties metrics, challenging the development of next-generation integrated circuits. Herein, the native GaOx shells are profitably utilized by a simple in-situ thermal annealing process to achieve high-performance GaSb nanowires (NWs) field-effect-transistors (FETs) with excellent bias-stress stability and synaptic behaviors. By an optimal annealing time of 5 min, the as-constructed GaSb NW FET demonstrates excellent stability with a minimal shift of transfer curve (ΔVth ≈ 0.54 V) under a 60 min gate bias, which is far more stable than that of pristine GaSb NW FET (ΔVth ≈ 8.2 V). When the high bias-stress stability NW FET is used as the chargeable-dielectric free synaptic transistor, the typical synaptic behaviors, such as short-term plasticity, long-term plasticity, spike-time-dependent plasticity, and reliable learning stability are demonstrated successfully through the voltage tests. The mobile oxygen ion in the native GaOx shell strongly offsets the trapping states and leads to enhanced bias-stress stability and charge retention capability for synaptic behaviors. This work provides a new way of utilizing the native oxide shell to realize stable FET for chargeable-dielectric free neuromorphic computing systems.

18.
Bioconjug Chem ; 34(9): 1622-1632, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37584604

RESUMO

To realize the accurate diagnosis of tumors by magnetic resonance imaging (MRI), switchable magnetic resonance contrast agents (CAs) between T1 and T2 contrast enhancement that are constructed based on extremely small iron oxide nanoparticles (ESIONPs) have been developed in recent years. We herein report, for the first time, a novel ESIONP-based nanocluster (named EAmP), which exhibited hypoxia responsiveness to the tumor microenvironment and offered a T2-to-T1-switchable contrast enhancement function, effectively distinguishing between the normal tissue and tumor tissue. In detail, active perfluorophenyl ester-modified ESIONPs with a diameter of approximately 3.6 nm were initially synthesized, and then 4,4'-azodianiline was used as a cross-linker to facilitate the formation of nanoclusters from ESIONPs through the reaction between the active ester and amine. Finally, poly(ethylene glycol) was further modified onto nanoclusters by utilizing the remaining active ester residues. The resulting EAmP demonstrated satisfactory colloidal stability and favorable biosafety and exhibited a desired T2-to-T1-switchable function, as evidenced by conversion from nanocluster to the dispersed state and a significant decrease in the r2/r1 ratio from 14.86 to 1.61 when exposed to a mimical hypoxic environment in the solution. Moreover, EAmP could decompose into dispersed ESIONPs at the tumor region, resulting in a switch from T2 to T1 contrast enhancement. This T2-to-T1-switchable contrast agent offers high sensitivity and signal-to-noise ratio to realize the accurate diagnosis of tumors. In conclusion, hypoxia-responsive EAmP is a potential MRI nanoprobe for improving the diagnostic accuracy of solid tumors.


Assuntos
Nanopartículas , Neoplasias , Humanos , Meios de Contraste/química , Neoplasias/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Polietilenoglicóis/química , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/química , Microambiente Tumoral
19.
J Agric Food Chem ; 71(33): 12474-12486, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37566483

RESUMO

Ovotransferrin (OVT) has been confirmed to have anti-inflammatory activity. However, its effect and mechanism on gastric inflammation are unclear. In this study, the effect and mechanism of the OVT on the tumor necrosis factor-α (TNF-α) induced inflammatory response in gastric epithelial cells (GES-1) were investigated. The enzyme linked immunosorbent assay (ELISA) was used to determine the levels of inflammation cytokines, followed by RNA sequencing to explore the potential pathways of its anti-inflammatory effect, and then it was validated by Western blotting and pathways inhibitors. Results showed that the OVT at concentrations of 50-400 µg/mL displayed nontoxicity against GES-1 cells. Additionally, 100 µg/mL of OVT obviously reduced the secretion of interleukin (IL)-8, IL-6, and TNF-α by 63.02% (630.09/1703.98), 35.53% (935.81/1451.43), and 36.19% (964.60/1511.63), respectively. The results of RNA sequencing exhibited that the OVT significantly influences the activation of mitogen-activated protein kinase (MAPK) and the nuclear factor kappa-light-chain enhancer of activated B cell (NF-κB) pathways, which was verified by the levels of p-IKK, p-IκB, p-P65, p-ERK, p-JNK, and p-P38 protein. IL-8 contents released by GES-1 cells after incubation with inhibitors of NF-κB and MAPK pathways further confirmed that OVT hindered activation of these two pathways. Collectively, these results suggested that OVT was a natural protein with the potential to treat gastric inflammation.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , NF-kappa B , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Conalbumina/metabolismo , Células Epiteliais/metabolismo , Inflamação/genética , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
J Mater Chem B ; 11(14): 3176-3185, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36942891

RESUMO

T1 contrast agents (CAs) exhibit outstanding capacity in enhancing the magnetic resonance imaging (MRI) contrast between tumor tissues and normal tissues for generating bright images. However, the clinical application of representative gadolinium(III) chelate-based T1 CAs is limited due to their potential toxicity and low specificity for pathological tissues. To obtain MRI CAs with a combination of low toxicity and high tumor specificity, herein, we report a reactive oxygen species (ROS)-responsive T1 CA (GA-Fe(II)-PEG-FA), which was constructed by chelating Fe(II) with gallic acid (GA), and modified with tumor-targeted folic acid (FA). The resultant CA could accumulate in tumor tissues via the affinity between FA and their receptors on the tumor cell membrane. It realized the switch from Fe(II) to Fe(III), and further enhancing the longitudinal relaxation rate (r1) under the stimuli of ROS in the tumor microenvironment. The r1 of GA-Fe(II)-PEG-FA on a 0.5 T nuclear magnetic resonance analyzer increased to 2.20 mM-1 s-1 under ROS stimuli and was 5 times greater than the r1 (0.42 mM-1 s-1) before oxidation. The cell and in vivo experiments demonstrated that GA-Fe(II)-PEG-FA exhibited good biocompatibility and significant targeting specificity to tumor cells and tumor tissues. Furthermore, in vivo MRI studies demonstrated that the enhanced T1 contrast effect against tumors could be achieved after injecting the CA for 3 h, indicating that GA-Fe(II)-PEG-FA has the potential as an ideal tumor MRI CA to increase the contrast and improve the diagnostic precision.


Assuntos
Ferro , Neoplasias , Humanos , Meios de Contraste , Espécies Reativas de Oxigênio , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Imageamento por Ressonância Magnética/métodos , Compostos Ferrosos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...