Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4657, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822036

RESUMO

Microbial communities play a crucial role in ocean ecology and global biogeochemical processes. However, understanding the intricate interactions among diversity, taxonomical composition, functional traits, and how these factors respond to climate change remains a significant challenge. Here, we propose seven distinct ecological statuses by systematically considering the diversity, structure, and biogeochemical potential of the ocean microbiome to delineate their biogeography. Anthropogenic climate change is expected to alter the ecological status of the surface ocean by influencing environmental conditions, particularly nutrient and oxygen contents. Our predictive model, which utilizes machine learning, indicates that the ecological status of approximately 32.44% of the surface ocean may undergo changes from the present to the end of this century, assuming no policy interventions. These changes mainly include poleward shifts in the main taxa, increases in photosynthetic carbon fixation and decreases in nutrient metabolism. However, this proportion can decrease significantly with effective control of greenhouse gas emissions. Our study underscores the urgent necessity for implementing policies to mitigate climate change, particularly from an ecological perspective.


Assuntos
Mudança Climática , Microbiota , Oceanos e Mares , Água do Mar/microbiologia , Ecossistema , Ciclo do Carbono , Biodiversidade
2.
Environ Res ; 252(Pt 4): 119116, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734289

RESUMO

Activated sludge comprises diverse bacteria, fungi, and other microorganisms, featuring a rich repertoire of genes involved in antibiotic resistance, pollutant degradation, and elemental cycling. In this regard, hybrid assembly technology can revolutionize metagenomics by detecting greater gene diversity in environmental samples. Nonetheless, the optimal utilization and comparability of genomic information between hybrid assembly and short- or long-read technology remain unclear. To address this gap, we compared the performance of the hybrid assembly, short- and long-read technologies, abundance and diversity of annotated genes, and taxonomic diversity by analysing 46, 161, and 45 activated sludge metagenomic datasets, respectively. The results revealed that hybrid assembly technology exhibited the best performance, generating the most contiguous and longest contigs but with a lower proportion of high-quality metagenome-assembled genomes than short-read technology. Compared with short- or long-read technologies, hybrid assembly technology can detect a greater diversity of microbiota and antibiotic resistance genes, as well as a wider range of potential hosts. However, this approach may yield lower gene abundance and pathogen detection. Our study revealed the specific advantages and disadvantages of hybrid assembly and short- and long-read applications in wastewater treatment plants, and our approach could serve as a blueprint to be extended to terrestrial environments.


Assuntos
Metagenômica , Esgotos , Esgotos/microbiologia , Metagenômica/métodos , Metagenoma , Anotação de Sequência Molecular , Bactérias/genética , Bactérias/classificação
3.
J Agric Food Chem ; 72(11): 5659-5670, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442360

RESUMO

Nitrogen is the most limiting factor in crop production. Legumes establish a symbiotic relationship with rhizobia and enhance nitrogen fixation. We analyzed 1,624 rhizosphere 16S rRNA gene samples and 113 rhizosphere metagenomic samples from three typical legumes and three non-legumes. The rhizosphere microbial community of the legumes had low diversity and was enriched with nitrogen-cycling bacteria (Sphingomonadaceae, Xanthobacteraceae, Rhizobiaceae, and Bacillaceae). Furthermore, the rhizosphere microbiota of legumes exhibited a high abundance of nitrogen-fixing genes, reflecting a stronger nitrogen-fixing potential, and Streptomycetaceae and Nocardioidaceae were the predominant nitrogen-fixing bacteria. We also identified helper bacteria and confirmed through metadata analysis and a pot experiment that the synthesis of riboflavin by helper bacteria is the key factor in promoting nitrogen fixation. Our study emphasizes that the construction of synthetic communities of nitrogen-fixing bacteria and helper bacteria is crucial for the development of efficient nitrogen-fixing microbial fertilizers.


Assuntos
Fabaceae , Microbiota , Fabaceae/genética , Rizosfera , Fixação de Nitrogênio , RNA Ribossômico 16S/genética , Microbiota/genética , Verduras/genética , Bactérias/genética , Nitrogênio , Microbiologia do Solo
4.
Environ Sci Technol ; 58(10): 4476-4486, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38382547

RESUMO

Antibiotic resistance genes (ARGs) are ancient but have become a modern critical threat to health. Gut microbiota, a dynamic reservoir for ARGs, transfer resistance between individuals. Surveillance of the antibiotic resistome in the gut during different host growth phases is critical to understanding the dynamics of the resistome in this ecosystem. Herein, we disentangled the ARG profiles and the dynamic mechanism of ARGs in the egg and adult phases of Tetramorium caespitum. Experimental results showed a remarkable difference in both gut microbiota and gut resistome with the development of T. caespitum. Meta-based metagenomic results of gut microbiota indicated the generalizability of gut antibiotic resistome dynamics during host development. By using Raman spectroscopy and metabolomics, the metabolic phenotype and metabolites indicated that the biotic phase significantly changed lipid metabolism as T. caespitum aged. Lipid metabolites were demonstrated as the main factor driving the enrichment of ARGs in T. caespitum. Cuminaldehyde, the antibacterial lipid metabolite that displayed a remarkable increase in the adult phase, was demonstrated to strongly induce ARG abundance. Our findings show that the gut resistome is host developmental stage-dependent and likely modulated by metabolites, offering novel insights into possible steps to reduce ARG dissemination in the soil food chain.


Assuntos
Antibacterianos , Formigas , Genes Bacterianos , Humanos , Adulto , Idoso , Antibacterianos/farmacologia , Ecossistema , Lipídeos
5.
Appl Environ Microbiol ; 90(2): e0171923, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193672

RESUMO

Application of organic fertilizers is an important strategy for sustainable agriculture. The biological source of organic fertilizers determines their specific functional characteristics, but few studies have systematically examined these functions or assessed their health risk to soil ecology. To fill this gap, we analyzed 16S rRNA gene amplicon sequencing data from 637 soil samples amended with plant- and animal-derived organic fertilizers (hereafter plant fertilizers and animal fertilizers). Results showed that animal fertilizers increased the diversity of soil microbiome, while plant fertilizers maintained the stability of soil microbial community. Microcosm experiments verified that plant fertilizers were beneficial to plant root development and increased carbon cycle pathways, while animal fertilizers enriched nitrogen cycle pathways. Compared with animal fertilizers, plant fertilizers harbored a lower abundance of risk factors such as antibiotic resistance genes and viruses. Consequently, plant fertilizers might be more suitable for long-term application in agriculture. This work provides a guide for organic fertilizer selection from the perspective of soil microecology and promotes sustainable development of organic agriculture.IMPORTANCEThis study provides valuable guidance for use of organic fertilizers in agricultural production from the perspective of the microbiome and ecological risk.


Assuntos
Microbiota , Rizosfera , Animais , Fertilizantes , RNA Ribossômico 16S/genética , Microbiota/genética , Solo , Plantas/genética , Microbiologia do Solo , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...