Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Cell Mol Life Sci ; 81(1): 293, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976012

RESUMO

The function of astrocytes in response to gut microbiota-derived signals has an important role in the pathophysiological processes of central nervous system (CNS) diseases. However, the specific effects of microbiota-derived metabolites on astrocyte activation have not been elucidated yet. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL/6 mice as a classical MS model. The alterations of gut microbiota and the levels of short-chain fatty acids (SCFAs) were assessed after EAE induction. We observed that EAE mice exhibit low levels of Allobaculum, Clostridium_IV, Clostridium_XlVb, Lactobacillus genera, and microbial-derived SCFAs metabolites. SCFAs supplementation suppressed astrocyte activation by increasing the level of tryptophan (Trp)-derived AhR ligands that activating the AhR. The beneficial effects of SCFAs supplementation on the clinical scores, histopathological alterations, and the blood brain barrier (BBB)-glymphatic function were abolished by intracisterna magna injection of AAV-GFAP-shAhR. Moreover, SCFAs supplementation suppressed the loss of AQP4 polarity within astrocytes in an AhR-dependent manner. Together, SCFAs potentially suppresses astrocyte activation by amplifying Trp-AhR-AQP4 signaling in EAE mice. Our study demonstrates that SCFAs supplementation may serve as a viable therapy for inflammatory disorders of the CNS.


Assuntos
Aquaporina 4 , Astrócitos , Encefalomielite Autoimune Experimental , Ácidos Graxos Voláteis , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Triptofano , Animais , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Camundongos , Triptofano/metabolismo , Triptofano/farmacologia , Feminino , Transdução de Sinais/efeitos dos fármacos , Aquaporina 4/metabolismo , Aquaporina 4/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
2.
NPJ Parkinsons Dis ; 10(1): 129, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961119

RESUMO

The seeding amplification assay (SAA) has recently emerged as a valuable tool for detecting α-synuclein (αSyn) aggregates in various clinically accessible biospecimens. Despite its efficiency and specificity, optimal tissue-specific conditions for distinguishing Parkinson's disease (PD) from non-PD outside the brain remain underexplored. This study systematically evaluated 150 reaction conditions to identify the one with the highest discriminatory potential between PD and non-synucleinopathy controls using skin samples, resulting in a modified SAA. The streamlined SAA achieved an overall sensitivity of 92.46% and specificity of 93.33% on biopsy skin samples from 332 PD patients and 285 controls within 24 h. Inter-laboratory reproducibility demonstrated a Cohen's kappa value of 0.87 (95% CI 0.69-1.00), indicating nearly perfect agreement. Additionally, αSyn seeds in the skin were stable at -80 °C but were vulnerable to short-term exposure to non-ultra-low temperatures and grinding. This study thoroughly investigated procedures for sample preprocessing, seed amplification, and storage, introducing a well-structured experimental framework for PD diagnosis using skin samples.

3.
Mol Pain ; : 17448069241266683, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912637

RESUMO

Pain and anxiety are two common and undertreated non-motor symptoms in Parkinson's disease (PD), which affect the life quality of PD patients, and the underlying mechanisms remain unclear. As an important subtype of adenylyl cyclases (ACs), adenylyl cyclase subtype 1 (AC1) is critical for the induction of cortical long-term potentiation (LTP) and injury induced synaptic potentiation in the cortical areas including anterior cingulate cortex (ACC) and insular cortex (IC). Genetic deletion of AC1 or pharmacological inhibition of AC1 improved chronic pain and anxiety in different animal models. In this study, we proved the motor deficit, pain, and anxiety symptoms of PD in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice model. As a lead candidate AC1 inhibitor, oral administration (1 dose and 7 doses) of NB001 (20 and 40 mg/kg) showed significant analgesic effect in MPTP-treated mice, and the anxiety behavior was also reduced (40 mg/kg). By using genetic knockout mice, we found that AC1 knockout mice showed reduced pain and anxiety symptoms after MPTP administration, but not AC8 knockout mice. In summary, genetic deletion of AC1 or pharmacological inhibition of AC1 improved pain and anxiety symptoms in PD model mice, but didn't affect motor function. These results suggest that NB001 is a potential drug for the treatment of pain and anxiety symptoms in PD patients by inhibiting AC1 target.

4.
Neurocase ; 30(2): 63-67, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38762762

RESUMO

Krabbe disease (KD) is classed as the lysosomal storage disease with mutations in the galactosylceramidase (GALC) gene, and commonly showed as autosomal recessive pattern with 30-kb deletion in infantile subtype. In this case, we report a 39-years adult-onset KD (AOKD) patient with multiple sclerosis-like symptoms and neuroimaging changes. She carries the heterozygous mutations in GALC included a missense mutation of c.1901T>C from her mother, and a splicing mutation of c.908+5G>A from her father. The splicing mutations in KD are reviewed and confirmed that c.908+5G>A is a novel splicing mutation in AOKD.


Assuntos
Galactosilceramidase , Leucodistrofia de Células Globoides , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patologia , Adulto , Galactosilceramidase/genética , Feminino , Mutação , Mutação de Sentido Incorreto
5.
Cell Mol Life Sci ; 81(1): 232, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780644

RESUMO

Ubiquitin-proteasome system dysfunction triggers α-synuclein aggregation, a hallmark of neurodegenerative diseases, such as Parkinson's disease (PD). However, the crosstalk between deubiquitinating enzyme (DUBs) and α-synuclein pathology remains unclear. In this study, we observed a decrease in the level of ubiquitin-specific protease 14 (USP14), a DUB, in the cerebrospinal fluid (CSF) of PD patients, particularly females. Moreover, CSF USP14 exhibited a dual correlation with α-synuclein in male and female PD patients. To investigate the impact of USP14 deficiency, we crossed USP14 heterozygous mouse (USP14+/-) with transgenic A53T PD mouse (A53T-Tg) or injected adeno-associated virus (AAV) carrying human α-synuclein (AAV-hα-Syn) in USP14+/- mice. We found that Usp14 deficiency improved the behavioral abnormities and pathological α-synuclein deposition in female A53T-Tg or AAV-hα-Syn mice. Additionally, Usp14 inactivation attenuates the pro-inflammatory response in female AAV-hα-Syn mice, whereas Usp14 inactivation demonstrated opposite effects in male AAV-hα-Syn mice. Mechanistically, the heterodimeric protein S100A8/A9 may be the downstream target of Usp14 deficiency in female mouse models of α-synucleinopathies. Furthermore, upregulated S100A8/A9 was responsible for α-synuclein degradation by autophagy and the suppression of the pro-inflammatory response in microglia after Usp14 knockdown. Consequently, our study suggests that USP14 could serve as a novel therapeutic target in PD.


Assuntos
Calgranulina A , Calgranulina B , Camundongos Transgênicos , Doença de Parkinson , Ubiquitina Tiolesterase , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Animais , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/deficiência , Humanos , Camundongos , Feminino , Masculino , Calgranulina B/metabolismo , Calgranulina B/genética , Calgranulina A/metabolismo , Calgranulina A/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
6.
Nat Commun ; 15(1): 1034, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310105

RESUMO

Obesity, a global health challenge, is a major risk factor for multiple life-threatening diseases, including diabetes, fatty liver, and cancer. There is an ongoing need to identify safe and tolerable therapeutics for obesity management. Herein, we show that treatment with artesunate, an artemisinin derivative approved by the FDA for the treatment of severe malaria, effectively reduces body weight and improves metabolic profiles in preclinical models of obesity, including male mice with overnutrition-induced obesity and male cynomolgus macaques with spontaneous obesity, without inducing nausea and malaise. Artesunate promotes weight loss and reduces food intake in obese mice and cynomolgus macaques by increasing circulating levels of Growth Differentiation Factor 15 (GDF15), an appetite-regulating hormone with a brainstem-restricted receptor, the GDNF family receptor α-like (GFRAL). Mechanistically, artesunate induces the expression of GDF15 in multiple organs, especially the liver, in mice through a C/EBP homologous protein (CHOP)-directed integrated stress response. Inhibition of GDF15/GFRAL signalling by genetic ablation of GFRAL or tissue-specific knockdown of GDF15 abrogates the anti-obesity effect of artesunate in mice with diet-induced obesity, suggesting that artesunate controls bodyweight and appetite in a GDF15/GFRAL signalling-dependent manner. These data highlight the therapeutic benefits of artesunate in the treatment of obesity and related comorbidities.


Assuntos
Fator 15 de Diferenciação de Crescimento , Obesidade , Camundongos , Masculino , Animais , Artesunato/farmacologia , Artesunato/uso terapêutico , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Primatas , Macaca/metabolismo
7.
NPJ Parkinsons Dis ; 10(1): 31, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296953

RESUMO

Aquaporin-4 (AQP4) is essential for normal functioning of the brain's glymphatic system. Impaired glymphatic function is associated with neuroinflammation. Recent clinical evidence suggests the involvement of glymphatic dysfunction in LRRK2-associated Parkinson's disease (PD); however, the precise mechanism remains unclear. The pro-inflammatory cytokine interferon (IFN) γ interacts with LRRK2 to induce neuroinflammation. Therefore, we examined the AQP4-dependent glymphatic system's role in IFNγ-mediated neuroinflammation in LRRK2-associated PD. We found that LRRK2 interacts with and phosphorylates AQP4 in vitro and in vivo. AQP4 phosphorylation by LRRK2 R1441G induced AQP4 depolarization and disrupted glymphatic IFNγ clearance. Exogeneous IFNγ significantly increased astrocyte expression of IFNγ receptor, amplified AQP4 depolarization, and exacerbated neuroinflammation in R1441G transgenic mice. Conversely, inhibiting LRRK2 restored AQP4 polarity, improved glymphatic function, and reduced IFNγ-mediated neuroinflammation and dopaminergic neurodegeneration. Our findings establish a link between LRRK2-mediated AQP4 phosphorylation and IFNγ-mediated neuroinflammation in LRRK2-associated PD, guiding the development of LRRK2 targeting therapy.

8.
J Pharm Pharmacol ; 76(2): 154-161, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38104254

RESUMO

OBJECTIVES: Arctigenin (ATG) is a natural product with a variety of biological activity, which can improve the pathological changes of Alzheimer's disease (AD) model mice through multiple mechanisms. This study aims to further elucidate the potential mechanism by which ATG improves memory impairment in AD mice. METHODS: Here, we used pR5 mice as an experimental model, and ATG was administered continuously for 90 days. Novel object recognition, Y-maze, and Morris water maze were used to evaluate the therapeutic effect of ATG on memory impairment in AD mice. Immunohistochemical and immunofluorescence analyses were used to evaluate the effects of ATG on tau hyperphosphorylation and neuroinflammation, respectively. Finally, proteomics techniques were used to explore the possible mechanism of ATG. KEY FINDINGS: ATG significantly improved memory impairment in pR5 mice and inhibited tau phosphorylation in the hippocampus and neuroinflammation in the cortex. According to the proteomic analysis, the altered cognitive function of ATG was associated with the proteins of the tricarboxylic acid cycle and the electron transport chain. CONCLUSION: These results suggest that ATG is a potential therapeutic agent for diseases related to aberrant energy metabolism that can treat AD by improving mitochondrial function.


Assuntos
Doença de Alzheimer , Furanos , Lignanas , Memória Espacial , Camundongos , Animais , Memória Espacial/fisiologia , Proteínas tau/metabolismo , Doenças Neuroinflamatórias , Proteômica , Aprendizagem em Labirinto , Doença de Alzheimer/metabolismo , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Hipocampo , Mitocôndrias/metabolismo , Metabolismo Energético , Camundongos Transgênicos , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
9.
Crit Rev Immunol ; 43(6): 15-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943150

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with memory decline and cognitive impairment, which is related to hallmark protein aggregates, amyloid-ß (Аß) plaques and neurofibrillary tangles; the latter are accumulated with hyperphosphorylated Tau protein. Immune cells play an important role in AD pathogenesis. Although the role of T cells in AD remains controversial, studies have shown that T cell deficiency is associated with increased AD pathology. In contrast, transplantation of T cells reduces AD pathology. T cells can help B cells generate anti-Ðß antibody to neutralize the toxin of Ðß and hyperphosphorylated Tau. T cells also activate macrophages to phagocytose misfolded proteins including Ðß and Tau. Recent data have also shown that AD animals have a damaged thymic microenvironment, especially thymic epithelial cells (TECs), resulting in decreased T cell numbers, which contribute to AD pathology. Therefore, regulation of T cell regeneration, for example by rejuvenating the thymic microenvironment, has the potential to be used in the treatment of AD.


Assuntos
Doença de Alzheimer , Humanos , Animais , Doença de Alzheimer/etiologia , Linfócitos T , Timo , Linfócitos B , Células Epiteliais
10.
Curr Pharm Des ; 29(30): 2426-2437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859325

RESUMO

BACKGROUND: The overexpression, accumulation, and cell-to-cell transmission of α-synuclein leads to the deterioration of Parkinson's disease (PD). Previous studies suggest that Baicalein (BAI) can bind to α-synuclein and inhibit α-synuclein aggregation and secretion. However, it is still unclear whether BAI can intervene with the pathogenic molecules in α-synuclein-mediated PD pathways beyond directly targeting α-synuclein per se. METHODS: This study aimed to systematically investigate BAI's potential targets in PD-related A53T mutant α-synuclein-mediated pathways by integrating data mining, network pharmacological analysis, and molecular docking simulation techniques. RESULTS: The results suggest that BAI may target genes that are dysregulated in synaptic transmission, vesicle trafficking, gene transcription, protein binding, extracellular matrix formation, and kinase activity in α-synucleinmediated pathways. NFKB1, STAT3, and CDKN1A are BAI's potential hub targets in these pathways. CONCLUSION: Our findings highlight BAI's potentiality to modulate α-synuclein-mediated pathways beyond directly targeting α-synuclein per se.


Assuntos
Flavanonas , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Simulação de Acoplamento Molecular , Flavanonas/farmacologia , Subunidade p50 de NF-kappa B/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fator de Transcrição STAT3/metabolismo
11.
Eur J Cardiothorac Surg ; 64(5)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37713465

RESUMO

OBJECTIVES: Sublobar resection, including wedge resection and segmentectomy, is non-inferior to lobectomy in early-stage non-small cell lung cancer treatment. We aimed to compare the risk of postoperative cognitive dysfunction (POCD) between sublobar resection and lobectomy. METHODS: We conducted a prospective cohort study. Patients with sublobar resection or lobectomy were divided into the sublobar group or the lobar group, respectively. Cognition was assessed before and after surgery with Montreal Cognitive Assessment and Minimum Mental State Examination tests. POCD is defined as Z score of Montreal Cognitive Assessment change ≤-1.96. Propensity score matching (PSM) was performed to make demographics well-balanced between the 2 groups. RESULTS: A total of 335 patients were enrolled. Both the postoperative 1-day POCD rate (sublobar 5.5% vs lobar 18.2%, P < 0.001) and the postoperative 1-month POCD rate (sublobar 7.9% vs lobar 21.8%, P < 0.001) were significantly lower in the sublobar group compared with lobar group, with demographics unbalanced between the 2 groups. In the 133 demographics-matched pairs obtained by PSM, both the postoperative 1-day POCD rate (sublobar 5.3% vs lobar 17.3%, P = 0.005) and the postoperative 1-month POCD rate (sublobar 8.3% vs lobar 18.8%, P = 0.018) remained significantly lower in the sublobar group than in the lobar group. The incidences of postoperative 1-day (P = 0.109) and postoperative 1-month (P = 0.026) Minimum Mental State Examination abnormity were also lower in the sublobar group than in the lobar group but only the latter was with statistical significance after PSM. CONCLUSIONS: Sublobar resection has an advantage over lobectomy in preventing POCD. Our findings might be a reference for selecting the most suitable type of resection for non-small-cell lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Complicações Cognitivas Pós-Operatórias , Humanos , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/cirurgia , Complicações Cognitivas Pós-Operatórias/cirurgia , Estudos Prospectivos , Pneumonectomia , Estudos Retrospectivos , Estadiamento de Neoplasias
12.
Brain Sci ; 13(8)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37626522

RESUMO

BACKGROUND: Abnormal accumulation of lipids is found in dopamine neurons and resident microglia in the substantia nigra of patients with Parkinson's disease (PD). The accumulation of lipids is an important risk factor for PD. Previous studies have mainly focussed on lipid metabolism in peripheral blood, but little attention has been given to cerebrospinal fluid (CSF). We drew the lipidomic signature in CSF from PD patients and evaluated the role of lipids in CSF as biomarkers for PD diagnosis. METHODS: Based on lipidomic approaches, we investigated and compared lipid metabolism in CSF from PD patients and healthy controls without dyslipidaemia in peripheral blood and explored the relationship of lipids between CSF and serum by Pearson correlation analysis. RESULTS: A total of 231 lipid species were detected and classified into 13 families in the CSF. The lipid families, including phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol ester (CE), had significantly increased expression compared with the control. Hierarchical clustering was performed to distinguish PD patients based on the significantly changed expression of 34 lipid species. Unsupervised and supervised methods were used to refine this classification. A total of 12 lipid species, including 3-hydroxy-dodecanoyl-carnitine, Cer(d18:1/24:1), CE(20:4), CE(22:6), PC(14:0/18:2), PC(O-18:3/20:2), PC(O-20:2/24:3), SM(d18:0/16:0), SM(d18:2/14:0), SM(d18:2/24:1), SM(d18:1/20:1) and SM(d18:1/12:0), were selected to draw the lipidomic signature of PD. Correlation analysis was performed and showed that the CE family and CE (22:6) in CSF had a positive association with total cholesterol in the peripheral blood from PD patients but not from healthy controls. CONCLUSIONS: Our results revealed that the lipidomic signature in CSF may be considered a potential biomarker for PD diagnosis, and increased CE, PC and SM in CSF may reveal pathological changes in PD patients, such as blood-brain barrier leakage.

13.
Neurosci Lett ; 813: 137426, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37544580

RESUMO

BACKGROUND: The synaptic vesicle glycoprotein 2 (SV2) has been implicated in synaptic function throughout the brain. Accumulating evidence investigated that SV2C contributed to dopamine release and the disrupted expression of SV2C was considered to be a unique feature of PD that may facilitate dopaminergic neuron dysfunction. OBJECTIVE: This study aimed to examine the relationship between the SV2C rs1423099 single nucleotide polymorphism and sporadic Parkinson's disease (PD) in the Chinese Han population. MATERIALS AND METHODS: This study enrolled 351 patients with sporadic PD and 240 normal controls in Chinese Han population. Peripheral blood DNA was extracted by DNA extraction kits and the rs1423099 genotype was analyzed by Agena MassARRAY DNA mass spectrometry. The differences in genotype and allele distribution frequencies between PD patients and control groups were compared using chi-squared tests or Fisher's exact tests. RESULTS: No statistical difference was revealed in age and sex distribution between the cases and control groups, and the distribution of genotype and allele frequencies was consistent with the Hardy-Weinberg equilibrium test. In SV2C rs1423099 dominant model, the frequency of the CC/CT genotype was significantly higher in the PD group compared to the control group (OR = 4.065,95% CI: 2.801-10.870, p = 0.002). Nevertheless, in the recessive model, CC or CT/TT genotypes have no statistical difference in the two groups (p = 0.09). Additionally, in allelic analysis, the C allele was investigated to increase the risk of PD (OR = 1.346, 95% CI: 1.036-1.745, p = 0.026); Furthermore, subgroup analysis suggested that those carrying the C allele in the male subgroup were at a higher risk to afflicted with PD (OR = 1.637, 95% CI: 1.147-2.336, p = 0.006). CONCLUSION: SV2C rs1423099 single nucleotide polymorphism was associated with sporadic Parkinson's disease in the Chinese Han population, particularly in males.


Assuntos
Doença de Parkinson , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Estudos de Casos e Controles , China , Frequência do Gene , Predisposição Genética para Doença/genética , Genótipo , Glicoproteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Feminino
14.
Biomed Pharmacother ; 165: 115100, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418977

RESUMO

The use of oral agents that can modify the gut microbiota (GM) could be a novel preventative or therapeutic option for Parkinson's disease (PD). Maslinic acid (MA), a pentacyclic triterpene acid with GM-dependent biological activities when it is taken orally, has not yet been reported to be effective against PD. The present study found both low and high dose MA treatment significantly prevented dopaminergic neuronal loss in a classical chronic PD mouse model by ameliorating motor functions and improving tyrosine hydroxylase expressions in the substantia nigra pars compacta (SNpc) and increasing dopamine and its metabolite homovanillic acid levels in the striatum. However, the effects of MA in PD mice were not dose-responsive, since similar beneficial effects for low and high doses of MA were observed. Further mechanism studies indicated that low dose MA administration favored probiotic bacterial growth in PD mice, which helped to increase striatal serotonin, 5-hydroxyindole acetic acid, and γ-aminobutyric acid levels. High dose MA treatment did not influence GM composition in PD mice but significantly inhibited neuroinflammation as indicated by reduced levels of tumor necrosis factor alpha and interleukin 1ß in the SNpc; moreover, these effects were mainly mediated by microbially-derived acetic acid in the colon. In conclusion, oral MA at different doses protected against PD via distinct mechanisms related to GM. Nevertheless, our study lacked in-depth investigations of the underlying mechanisms involved; future studies will be designed to further delineate the signaling pathways involved in the interactive actions between different doses of MA and GM.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Doença de Parkinson/metabolismo , Substância Negra , Dopamina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo
15.
J Neurochem ; 166(3): 609-622, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37309980

RESUMO

N6-methyladenosine (m6A), an emerging modification of messenger RNA, has been implicated in many biological processes. However, its role in Parkinson's disease (PD) remains largely unknown. Here, we investigated the role of m6A modification and its underlying mechanism in PD. First, 86 individuals with PD and 86 healthy controls were recruited from a pilot multicenter cohort. Levels of m6A and its modulators in peripheral blood mononuclear cells of patients with PD and controls were measured using an m6A RNA methylation quantification kit and quantitative real-time PCR. The underlying mechanism of m6A modification in PD was investigated in vitro through RNA immunoprecipitation assay, RNA stability assay, gene silencing or overexpression, western blot, and confocal immunoassay. The results show that mRNA levels of m6A, METTL3, METTL14, and YTHDF2 in patients with PD were significantly lower than in healthy controls, and METTL14 was the main factor involved in abnormal m6A modification. Area under the curve (AUC) analysis suggests METTL14 may provide excellent diagnostic capability for PD, especially when combined with plasma α-synuclein (α-syn). Spearman correlation analysis identified that METTL14 was moderately negatively correlated with plasma α-syn and the motor function of PD. Mechanistic experiments demonstrated that Mettl14 targets and regulates the expression of the α-syn gene using its methylation function. Overexpression of Mettl14 dramatically increased m6 A modification of α-syn mRNA and weakened its stability. Further results suggest that α-syn mRNA was modified by Mettl14 binding of an m6 A motif in the coding region of α-syn mRNA, while the reading protein Ythdf2 was involved in recognizing m6 A-modified α-syn mRNA. Taken together, our results reveal the potential of METTL14 as a novel diagnostic biomarker for PD and identify modification of pathogenic α-syn protein by METTL14 via an m6 A-YTHDF2-dependent mechanism.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , Leucócitos Mononucleares , Metiltransferases/genética , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , RNA , Fatores de Transcrição
16.
BMC Neurol ; 23(1): 226, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301871

RESUMO

BACKGROUND: The glucocerebrosidase (GBA) and leucine-rich repeat kinase 2 (LRRK2) genes are associated with the risk of sporadic Parkinson's disease (PD). As an environmental factor, hypoxic insults may impair dopamine neurons in the substantia nigra and exacerbate PD symptoms. However, covariants of GBA and LRRK2 combined with hypoxic insults in clinical cases of Parkinsonism have not yet been reported. CASE PRESENTATION: A 69-year-old male patient with PD and his relatives were clinically characterized and sequenced using the whole-exome technique. A novel covariant, c.1448 T > C (p. L483P, rs421016) on GBA and c.691 T > C (p. S231P, rs201332859) on LRRK2 were identified in this patient who first developed bradykinesia and rigidity in the neck at one month after an acute hypoxic insult during mountaineering. The patient presented with a mask-like face, festinating gait, asymmetric bradykinesia, and moderate rigidity. These symptoms were treated with levodopa and pramipexole, resulting in a 65% improvement in the Unified Parkinson's Disease Rating Scale (UPDRS) motor score. These parkinsonian symptoms persisted and developed with hallucinations, constipation, and rapid eye movement sleep behavior disorder. After 4 years, the patient exhibited a wearing-off phenomenon and died from pulmonary infection 8 years after disease onset. His parents, wife, and siblings were not diagnosed with PD, and his son carried p. L483P without Parkinsonism-like symptoms. CONCLUSIONS: This is a case report of PD after hypoxic insult in a patient carrying a covariant of GBA and LRRK2. This study may help us understand the interaction between genetic and environmental factors in clinical PD.


Assuntos
Doença de Parkinson , Masculino , Humanos , Idoso , Doença de Parkinson/complicações , Doença de Parkinson/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Glucosilceramidase/genética , Hipocinesia , Mutação
17.
Cell Mol Life Sci ; 80(6): 155, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204481

RESUMO

Parkinson's disease (PD) is a progressive movement disorder characterized by dopaminergic (DA) neuron degeneration and the existence of Lewy bodies formed by misfolded α-synuclein. Emerging evidence supports the benefits of dietary interventions in PD due to their safety and practicality. Previously, dietary intake of α-ketoglutarate (AKG) was proved to extend the lifespan of various species and protect mice from frailty. However, the mechanism of dietary AKG's effects in PD remains undetermined. In the present study, we report that an AKG-based diet significantly ameliorated α-synuclein pathology, and rescued DA neuron degeneration and impaired DA synapses in adeno-associated virus (AAV)-loaded human α-synuclein mice and transgenic A53T α-synuclein (A53T α-Syn) mice. Moreover, AKG diet increased nigral docosahexaenoic acid (DHA) levels and DHA supplementation reproduced the anti-α-synuclein effects in the PD mouse model. Our study reveals that AKG and DHA induced microglia to phagocytose and degrade α-synuclein via promoting C1q and suppressed pro-inflammatory reactions. Furthermore, results indicate that modulating gut polyunsaturated fatty acid metabolism and microbiota Lachnospiraceae_NK4A136_group in the gut-brain axis may underlie AKG's benefits in treating α-synucleinopathy in mice. Together, our findings propose that dietary intake of AKG is a feasible and promising therapeutic approach for PD.


Assuntos
Doença de Parkinson , Sinucleinopatias , Camundongos , Animais , Humanos , Doença de Parkinson/patologia , Ácidos Cetoglutáricos/farmacologia , Camundongos Transgênicos , Degeneração Neural/patologia , Dopamina , Ingestão de Alimentos , Modelos Animais de Doenças
18.
Cell Death Dis ; 14(4): 285, 2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087484

RESUMO

Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder, which is characterized by dopaminergic (DA) neuron death and the aggregation of neurotoxic α-synuclein. Cntnap4, a risk gene of autism, has been implicated to participate in PD pathogenesis. Here we showed Cntnap4 lacking exacerbates α-synuclein pathology, nigrostriatal DA neuron degeneration and motor impairment, induced by injection of adeno-associated viral vector (AAV)-mediated human α-synuclein overexpression (AAV-hα-Syn). This scenario was further validated in A53T α-synuclein transgenic mice injected with AAV-Cntnap4 shRNA. Mechanistically, α-synuclein derived from damaged DA neuron stimulates astrocytes to release complement C3, activating microglial C3a receptor (C3aR), which in turn triggers microglia to secrete complement C1q and pro-inflammatory cytokines. Thus, the astrocyte-microglia crosstalk further drives DA neuron death and motor dysfunction in PD. Furthermore, we showed that in vivo depletion of microglia and microglial targeted delivery of a novel C3aR antagonist (SB290157) rescue the aggravated α-synuclein pathology resulting from Cntnap4 lacking. Together, our results indicate that Cntnap4 plays a key role in α-synuclein pathogenesis by regulating glial crosstalk and may be a potential target for PD treatment.


Assuntos
Proteínas de Membrana , Degeneração Neural , Proteínas do Tecido Nervoso , Doença de Parkinson , Camundongos Transgênicos , Animais , Camundongos , Humanos , Masculino , Camundongos Endogâmicos C57BL , alfa-Sinucleína/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Complemento C3/metabolismo , Receptores de Complemento/metabolismo , Neurônios Dopaminérgicos/metabolismo , Astrócitos/metabolismo , Degeneração Neural/patologia , Microglia/metabolismo , Doença de Parkinson/fisiopatologia , Ferroptose , Mitocôndrias , Inflamação
19.
CNS Neurosci Ther ; 29(1): 140-157, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36284437

RESUMO

INTRODUCTION: Recent advances have highlighted the relationships between gut dysbiosis and Parkinson's disease (PD). Microbiota transplantation from PD patients to mice can induce increased alpha-synuclein-mediated motor deficits. Human studies have identified differences in the gut microbiota of PD patients compared to healthy controls. We undertook a systematic review to evaluate the available evidence for the involvement of gut bacteria in the etiology of PD. METHODS: The PubMed databank, the China National Knowledge Infrastructure databank, and Wanfang Data were searched from inception until June 2021 to identify human case-control studies that investigated relationships between PD and microbiota quantified from feces. We evaluated the resulting studies focusing on bacterial taxa that were different between PD patients and healthy controls. RESULTS: Twenty-six studies were found in which 53 microbial families and 98 genera exhibited differences between patients with PD and healthy controls. The genera identified by more than two studies as increased in PD were Bifidobacterium, Alistipes, Christensenella, Enterococcus, Oscillospira, Bilophila, Desulfovibrio, Escherichia/Shigella, and Akkermansia, while Prevotella, Blautia, Faecalibacterium, Fusicatenibacter, and Haemophilus had three or more reports of being lower in PD patients. More than one report demonstrated that Bacteroides, Odoribacter, Parabacteroides, Butyricicoccus, Butyrivibrio, Clostridium, Coprococcus, Lachnospira, Lactobacillus, Megasphaera, Phascolarctobacterium, Roseburia, Ruminococcus, Streptococcus, and Klebsiella were altered in both directions. CONCLUSION: Our review shows that the involvement of the gut microbiome in the etiology of PD may involve alterations of short-chain fatty acids (SCFAs)-producing bacteria and an increase in putative gut pathobionts. SCFAs-producing bacteria may vary above or below an "optimal range," causing imbalances. Considering that Bifidobacterium, Lactobacillus, and Akkermansia are beneficial for human health, increased Bifidobacterium and Lactobacillus in the PD gut microbiome may be associated with PD medications, especially COMT inhibitors, while a high level of Akkermansia may be associated with aging.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Humanos , Animais , Camundongos , Bactérias , Fezes/microbiologia , Ácidos Graxos Voláteis
20.
CNS Drugs ; 36(11): 1217-1227, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36346534

RESUMO

BACKGROUND: Levodopa remains the gold standard for the treatment of Parkinson's disease, but its long-term use is associated with motor complications whose management is still a significant challenge. Safinamide is a multimodal drug with proven efficacy as an adjunct to levodopa. OBJECTIVE: The objective of this study was to investigate the efficacy and safety of safinamide as an add-on to levodopa in Chinese patients with Parkinson's disease with motor fluctuations. METHODS: The XINDI study was a phase III, randomized, double-blind, placebo-controlled, multicenter study, with a 2-week screening period and a 16-week treatment period. The starting dose of safinamide (or placebo) was 50 mg once daily, increased to 100 mg once daily at day 15. Patients aged ≥  18 years, with idiopathic Parkinson's disease of >3 years duration, Hoehn and Yahr stage 1-4, and daily OFF time ≥  1.5 h, were eligible. Patients should follow a stable oral levodopa regimen and may receive concomitant treatment with stable doses of other anti-Parkinson drugs, except monoamine oxidase-B inhibitors. Patients with severe disabling peak-dose or biphasic dyskinesia, unpredictable or widely swinging fluctuations, other forms of parkinsonism, a history of dementia or severe cognitive dysfunction, major psychiatric illnesses, and/or clinically significant medical illnesses were excluded. The primary efficacy endpoint was the change from baseline to week 16 in the mean daily OFF time. Secondary efficacy endpoints included the Unified Parkinson's Disease Rating Scale, the Numerical Rating Scale, the Clinical Global Impression scale, and the 39-Item Parkinson's Disease Questionnaire scale. The statistical analysis of the efficacy parameters was conducted using an analysis of co-variance, except for the Clinical Global Impression scale scores that were assessed using the Wilcoxon-Mann-Whitney test. Safety was evaluated through the frequency of adverse events and serious adverse events, physical examination, vital signs, 12-lead electrocardiograms, and laboratory exams. All safety endpoints were summarized using descriptive statistics. RESULTS: The trial enrolled 307 patients. At week 16, the difference in the change of the mean total daily OFF time between safinamide and placebo groups was 1.10 h (p < 0.0001). This change was significantly greater in the safinamide group starting from week 2, suggesting a rapid onset of drug efficacy. ON time, Unified Parkinson's Disease Rating Scale, Clinical Global Impression scale, and the 39-Item Parkinson's Disease Questionnaire showed statistically significant improvements. There were no significant between-group differences for adverse events or serious adverse events. CONCLUSIONS: Safinamide, as add-on therapy to levodopa, significantly reduced motor fluctuations and improved motor symptoms and quality of life of Chinese patients with idiopathic Parkinson's disease. The improvements observed in the Unified Parkinson's Disease Rating Scale total and motor scores were also clinically significant. No safety concerns were identified, confirming the good tolerability profile of the drug. CLINICAL TRIAL REGISTRATION: NCT03881371, registered on 19 March, 2019, https://clinicaltrials.gov/NCT03881371 .


Assuntos
Levodopa , Doença de Parkinson , Humanos , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Qualidade de Vida , Antiparkinsonianos/efeitos adversos , Método Duplo-Cego , China , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...