Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 11(18): 4393-4399, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38946550

RESUMO

Birefringent crystals can manipulate the phase and polarization of light, so they are widely used as essential components in various optical devices. Common strategies to construct birefringent crystals are introducing metal cations that are either able to realize favorable coordination with functional anionic units or are susceptible to polarizability anisotropy. Herein, we report a metal-free crystal, NH4(H2C6N7O3)·2H2O, synthesized using the facile solution method. In the crystal structure of NH4(H2C6N7O3)·2H2O, (H2C6N7O3)- functional units are assembled in an optimal manner by cooperative non-covalent interactions, i.e., hydrogen bonding and π-π interactions. As a result, this metal-free crystal possesses exceptional birefringence up to 0.54@550 nm, which is larger than those of most metal-containing birefringent crystals. In addition, the interference color of this crystal does not change obviously from 243 K to 313 K, indicating that the birefringence is robust at different temperatures. This work will inspire useful insights into the role of non-covalent interactions in designing outstanding birefringent crystals for efficient polarized optical devices.

2.
J Environ Sci (China) ; 145: 205-215, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844320

RESUMO

Thermal treatment can effectively decontaminate soils but alter their properties. Previous research mainly focused on volatile organic compounds and metals, i.e. Hg, neglecting non-volatile metal(loid)s. This study aimed to investigate Cd and As transformation during aerobic and anaerobic calcination. The results showed that both aerobic and anaerobic calcination increased soil pH by reducing soil organic matter (SOM) content, which also influenced the cation exchange capacity (CEC) and the leaching behavior of Cd and As in the soil. The total concentrations of Cd and As in the calcined soils varied depending on the calcination temperature and atmosphere. When the aerobic calcination temperature exceeded 700 °C, Cd volatilized as CdCl2, while anaerobic calcination at relatively low temperatures (600 °C) involved reductive reactions, resulting in the formation of metallic Cd with a lower boiling point. Similarly, As volatilized at 800 °C aerobically and 600 °C anaerobically. The formation of As-based minerals, particularly Ca3(AsO4)2, hindered its gasification, whereas anaerobic calcination promoted volatilization efficiency through the generation of C-As(III) based gaseous components with lower boiling points. Contrasting trends were observed in the TCLP-extractable Cd and As contents of the calcined soils. Over 70% of TCLP-extractable Cd contents were suppressed after thermal treatment, attributed to the elevated pH and reduced CEC of the soil, as well as volatilization. However, TCLP-extractable As contents increased with elevated temperatures, likely due to the desorption of AsO43- and re-adsorption of gaseous As2O3 during cooling. These findings have implications for assessing the environmental impact of thermal treatment and provide insights for remediation strategies concerning Cd and As-contaminated soils.


Assuntos
Arsênio , Cádmio , Poluentes do Solo , Solo , Cádmio/química , Cádmio/análise , Poluentes do Solo/análise , Poluentes do Solo/química , Arsênio/análise , Arsênio/química , Solo/química , Recuperação e Remediação Ambiental/métodos , Temperatura Alta
3.
Sci Bull (Beijing) ; 69(14): 2205-2211, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38599957

RESUMO

There is a pressing demand for the development of novel birefringent crystals tailored for compact optical components, especially for crystals exhibiting large birefringence across a range of temperatures. This has commonly been achieved by introducing various deformable groups with high polarizability anisotropy. In this study, we combined both rigid and deformable groups to synthesise a new birefringent crystal, Al2Te2MoO10, which demonstrates an exceptional birefringence value of 0.29@550 nm at room temperature. Not only is this higher birefringence than that of commercial crystals, but Al2Te2MoO10 exhibits excellent birefringence stability over a wide temperature range, from 123 to 503 K. In addition, the first-principles theory calculations and structural analyses suggest that although the rigid AlO6 groups do not make much contribution to the prominent birefringence, they nonetheless played a role in maintaining the structural anisotropy at elevated temperatures. Based on these findings, this paper proposes a novel structural design strategy to complement conventional approaches for developing optimal birefringent crystals under various environmental conditions.

4.
J Environ Sci (China) ; 142: 226-235, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527888

RESUMO

In North China, iodine-rich groundwater has been extensively studied, but few in South China. This study aimed to investigate the characteristics of iodine-rich groundwater in South China and identify potential contamination sources. The results revealed that the average concentration of iodine in groundwater was 890 µg/L, with a maximum concentration of 6350 µg/L, exceeding the permitted levels recommended by the World Health Organization (5-300 µg/L). Notably, the enrichment of iodide occurred in acidic conditions (pH = 6.6) and a relatively low Eh environment (Eh = 198.4 mV). Pearson correlation and cluster analyses suggested that the enrichment of iodide could be attributed to the intensified redox process involving Mn(II), iodine (I2), or iodate (IO3-) in the soil. The strong affinity between Mn(II) and I2/IO3- facilitated their interaction, resulting in the formation and mobilization of I- from the soil to the groundwater. Leaching experiments further confirmed that reducing substances (such as sodium sulfides, ascorbic acids, and fulvic acids) in the soil with low dissolved oxygen (DO) levels (< 1.0 mg/L) enhanced the dissolution of iodine species. Conversely, higher DO content (> 3.8 mg/L) promoted the oxidation of I- into I2 or IO3-, leading to its stabilization. This research provides new insights into the characteristics and mechanisms of I- enrichment in groundwater in South China, and emphasizes the significance of the redox reactions involving Mn(II) and I2/IO3-, as well as the influence of soil properties in regulating the occurrence and transportation of iodine species within groundwater systems.


Assuntos
Água Subterrânea , Iodo , Poluentes Químicos da Água , Iodo/análise , Iodetos/análise , Água Subterrânea/química , Solo , China , Poluentes Químicos da Água/análise , Monitoramento Ambiental
5.
Small ; 20(9): e2306158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37863830

RESUMO

Birefringent crystals have important applications in optoelectronics areas due to their ability to modulate and polarize light. Despite increasing discovery of the birefringence potential of new crystals, it remains a great challenge to optimize both birefringence and bandgap simultaneously. Herein, a 1D chain-like hybrid perovskite birefringent crystal designed by 3D-to-1D dimensional tailoring, (GAM)2 PbI7 ·H2 O (GAM = C5 N10 H10 ), is presented, showing enlarged birefringence of 0.49@550 nm and enlarged optical bandgap (2.48 eV). Consequently, the birefringent quality factor of (GAM)2 PbI7 ·H2 O is up to 2.8 times that of the template MAPbI3 . In particular, the birefringence is much larger than those of commercial birefringent crystals and surpasses that of the vast majority of hybrid perovskite known to date. Theoretical calculations reveal that the strongly anisotropic arrangement of (GAM)2.5+ π-conjugated cations and ordered PbI6 octahedra contributes to the large birefringence and wide bandgap of (GAM)2 PbI7 ·H2 O. It is believed that this work will provide a new pathway toward the rational design and synthesis of hybrid perovskite birefringent crystals for compact wide-bandgap polarization dependent devices.

6.
Angew Chem Int Ed Engl ; 62(46): e202311086, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37766424

RESUMO

Birefringent crystals that can switch light polarization have important applications in optoelectronics. In the last decades, birefringence is mostly optimized by chemical strategies. Recently, switching birefringence by physical means has attracted much attention. Here, this work reports the observation of heat switching birefringence in a 2D layered hybrid halide perovskite (C2 N3 H4 )2 PbCl4 ((C2 N3 H4 )+ =1,2,4-triazolium). This heat switching birefringence leads to a significant change in the interference color for the crystal plate under the illumination of orthogonal polarized light. Structure analyses reveal a heat dependent structure transition in (C2 N3 H4 )2 PbCl4 , whose birefringence is switched by the change in the distortion degree of PbCl6 octahedron. This discovery may be beneficial to the further development of stimuli-responsive polarization optical devices.

7.
Small ; 19(50): e2304333, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37616508

RESUMO

It is in great demand to discover new materials with large birefringence for the miniaturization of optical communication devices. In this work, a new one-dimensional hybrid halide perovskite, (C6 N10 H8 )Pb2 Br6 , is obtained successfully through structural design of dimension reduction from the notable three-dimensional halide perovskite CsPbBr3 . Remarkably, (C6 N10 H8 )Pb2 Br6 exhibits a significantly enhanced birefringence of ∆n = 0.42@550 nm, which is the largest among halide perovskites so far. Furthermore, its birefringence performance is robust in a wide temperature range of 300-440 K. Theoretical calculations reveal that this outstanding birefringence results from the synergistic effect of [PbBr6 ]4- octahedra and [C6 N10 H8 ]2+ cations with expanding π-delocation. According to further structural analyses, the structural dimension reduction cooperating with the increase of [PbBr6 ]4- octahedral distortion leads to the enhanced birefringence. This work uncovers the great promise of hybrid halide perovskites as robust birefringent crystals in future optical communication and would shed useful insights on the design and synthesis of new birefringent crystals.

8.
Chemosphere ; 338: 139573, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37474037

RESUMO

In the Pearl River Delta of China, many sites are likely contaminated with aniline in the soil and arsenic (As) in the groundwater because of a high As background level and the prevailing printing and dyeing industry. This study is to explore the remediation performance of thermally activated persulfate oxidation for the sites with these two contaminants, aniline and As. The As influence on the aniline degradation and vice versa are also systematically investigated. When the molar ratio of aniline to persulfate is 1: 4.65, over 85% of aniline can be degraded at 40 °C in 24 h, and 100 µg L-1 As(III) in solution can be completely adsorbed by the soil. A higher pH favored the aniline degradation but disfavored the As(III) oxidation. Due to the strong buffer capacity of the soil, aniline in the soil could be more quickly degraded than those in the solution. The As(III), however, seem more easily oxidized in the absence of soil. The coexisting Fe2+ can substantially improve As(III) oxidation and immobilization, although the dilute Fe2+ solution may suppress the aniline degradation. The presence of aniline severely inhibited the As(III) oxidation and adsorption, likely due to the competition for the generated free radicals and the adsorption sites on the soils. In contrast, the existing As(III) has a slight effect on aniline degradation. These findings are believed to provide the theoretical basis for the remediation of aniline-arsenic contaminated sites.


Assuntos
Arsênio , Sulfatos , Solo , Oxirredução , Compostos de Anilina
9.
Inorg Chem ; 61(43): 17002-17006, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36265201

RESUMO

As one type of material containing multiple anions, oxysulfides can combine the advantages of oxides and sulfides and are deeply studied as nonlinear-optical (NLO) materials. Herein, a new melilite-type pentanary oxysulfide Sr2CoGe2OS6 is studied. It crystallizes in the noncentrosymmetric tetragonal space group P4̅21m, and its structure features GeOS3 and CoS4 tetrahedra-built {[CoGe2OS6]4-}∞ layers. Its powder sample exhibits a moderate phase-matchable NLO response and a high laser-induced damage threshold. The NLO response is mainly determined by CoS4 tetrahedra according to the theoretical calculation results. This work indicates that transition-metal oxysulfides can also be considered as potential infrared NLO materials.

10.
Dalton Trans ; 51(12): 4619-4622, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35262145

RESUMO

Both borates and sulfides are important inorganic multifunctional materials. Encouraged by this background, thioborates attract considerable interest. However, their investigations are highly hindered by the scarcity of the available ones and the synthetic difficulty of the new ones. Here, we report a new thioborate KEu2In3B12S13 (1), which was obtained via a facile solid-state reaction in KI flux. It crystallizes in the trigonal R3̄m structure, and the three-dimensional structure features a six InS6 octahedron consolidated B12 icosahedron built {[In3B12S12]5-}∞ polyanionic framework and a unique In6S6 12-membered ring, representing a new type of compound. The B12S12 cluster is also different from the other known thioborates. The structural chemistry, optical and magnetic properties, as well as theoretical calculations of 1 were systematically studied. This study not only provides a new type of thioborate but also makes a breakthrough in the synthesis of thioborates.

11.
Inorg Chem ; 61(14): 5479-5483, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35344370

RESUMO

Second-order nonlinear optical (NLO) materials are extensively applied in laser-related techniques. For developing IR NLO materials, chalcogenides are the main candidates. Here, NaGa3Se5 was explored as inspired by its unique anionic structure. It crystallizes with the orthorhombic chiral P212121 structure, featuring 12 types of GaSe4 tetrahedra built into a three-dimensional {[Ga3Se5]-}∞ anionic network, representing a new NLO-functional motif. NaGa3Se5 exhibits large and phase-matchable NLO response 1.37 × AgGaS2. It has the largest band gap among the noncentrosymmetric A-MIII-Se (A = alkali metal; M = Ga, In) compounds. The NLO properties' origin is explored via theoretical analysis. The success of NaGa3Se5 contributes a practical case for exploring new NLO materials.

12.
Inorg Chem ; 61(1): 431-438, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890197

RESUMO

Novel nonlinear optical (NLO) materials possessing simple chemical compositions and facile syntheses are competitive when considering their practical application. Here, a series of ternary selenides GaxIn2-xSe3 (x = 0.07, 0.38, 0.45, and 0.81) that crystallize in a chiral P65 structure are obtained by melting Ga, In, and Se elements. Their three-dimensional structures are built by (Ga/In)Se4 tetrahedra and InSe5 trigonal bipyramids. The hexagonal modification's phase stability is analyzed by energy calculation, and their optical band gaps are determined to be 1.72-1.99 eV. They exhibit large NLO responses that are 1.41-1.64 times that of the benchmark AgGaS2. The results of density functional theory calculations suggest that introduction of Ga onto the In site in (InSe4)5- units can form a deformed tetrahedron with more distortion in the structure, and the (InSe5)7- units contribute a large amount of birefringence to the structure. This work is the first to investigate the ternary chalcogenides M2Q3 (M = Ga or In; Q = S or Se) as new types of infrared NLO crystals with excellent performances, which will stimulate more interest in those possessing simple compositions and outstanding performances.

13.
Sci Total Environ ; 772: 144953, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33770903

RESUMO

In this work, manganese oxide­carbon nanocomposite catalytic materials (MnO@CNs) with a "core-shell" structure were synthesized in the one-step synthesis using sodium alginate as a template. XRD and Raman spectroscopy proved that high calcination temperatures were beneficial to the graphitization of carbon and the formation of Mn7C3. Both SEM and TEM images of MnO@CNs identified that MnO nanoparticles were encapsulated in a three-dimensional carbon matrix and simultaneously protected by a "carbon-shell" with an adherent graphite structure, which could facilitate electron transfer. The MnO@CNs could activate PS to degrade BPF completely within 30 min in solutions with a wide pH range or coexisting anions and organics. The valence change of Mn could promote the generation and conversion of various free radicals and non-radicals, of which O2·- played a leading role in the decomposition of BPF. In addition, the potential degradation pathways and degradation mechanisms of BPF in the MnO@CNs/PS system were also explored according to DFT calculations and product detection results.

14.
ACS Appl Mater Interfaces ; 12(15): 17699-17705, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32223191

RESUMO

The balance between second harmonic generation (SHG) intensity and laser-induced damage threshold (LIDT), together with phase-matchable behavior, is the key point for exploration of novel nonlinear optical (NLO) materials. In this work, the NLO property of defect wurtzite-type hexagonal-In2Se3 (γ) is extensively explored first. It exhibits a strong SHG intensity of 2.6 × AgGaS2 (AGS) at 2.1 µm, and a high powder LIDT of 7.3 × AGS. From wurtzite to γ-In2Se3, the birefringence changes from 0.003 to 0.075, resulting in the phase-matchable phenomenon of γ-In2Se3. This is well ascribed to the contribution of the unique InSe5 unit in γ-In2Se3 from the result of birefringence calculation and analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...