Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
J Environ Sci (China) ; 148: 665-682, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095198

RESUMO

Emission characteristics of biogenic volatile organic compounds (BVOCs) from dominant tree species in the subtropical pristine forests of China are extremely limited. Here we conducted in situ field measurements of BVOCs emissions from representative mature evergreen trees by using dynamic branch enclosures at four altitude gradients (600-1690 m a.s.l.) in the Nanling Mountains of southern China. Composition characteristics as well as seasonal and altitudinal variations were analyzed. Standardized emission rates and canopy-scale emission factors were then calculated. Results showed that BVOCs emission intensities in the wet season were generally higher than those in the dry season. Monoterpenes were the dominant BVOCs emitted from most broad-leaved trees, accounting for over 70% of the total. Schima superba, Yushania basihirsuta and Altingia chinensis had relatively high emission intensities and secondary pollutant formation potentials. The localized emission factors of isoprene were comparable to the defaults in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), while emission factors of monoterpenes and sesquiterpenes were 2 to 58 times of those in the model. Our results can be used to update the current BVOCs emission inventory in MEGAN, thereby reducing the uncertainties of BVOCs emission estimations in forested regions of southern China.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Florestas , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , China , Poluentes Atmosféricos/análise , Árvores , Estações do Ano
2.
Mol Neurobiol ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39271627

RESUMO

"Brain fog," a persistent cognitive impairment syndrome, stands out as a significant neurological aftermath of coronavirus disease 2019 (COVID-19). Yet, the underlying mechanisms by which COVID-19 induces cognitive deficits remain elusive. In our study, we observed an upregulation in the expression of genes linked to the inflammatory response and oxidative stress, whereas genes associated with cognitive function were downregulated in the brains of patients infected with COVID-19. Through single-nucleus RNA sequencing (snRNA-seq) analysis, we found that COVID-19 infection triggers the immune responses in microglia and astrocytes and exacerbates oxidative stress in oligodendrocytes, oligodendrocyte progenitors (OPCs), and neurons. Further investigations revealed that COVID-19 infection elevates LUC7L2 expression, which inhibits mitochondrial oxidative phosphorylation (OXPHOS) and suppresses the expression of mitochondrial complex genes such as MT-ND1, MT-ND2, MT-ND3, MT-ND4L, MT-CYB, MT-CO3, and MT-ATP6. A holistic approach to protect mitochondrial complex function, rather than targeting a single molecular, should be an effective therapeutic strategy to prevent and treat the long-term consequences of "long COVID."

3.
Sci Total Environ ; 952: 175948, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39222808

RESUMO

Tire wear particles (TWPs) have been an emerging threat to the soil ecosystem, while impact of the TWPs aging on soil microbial communities remains poorly understood. This study investigated the dynamic responses of soil microbial communities to the TWPs aging under both wet and flooded conditions. We found that different soil moisture conditions resulted in distinct microbial community structures. Soil bacteria were more sensitive to wet conditions, while soil fungi were more sensitive to flooded conditions. The family Symbiobacteraceae was predominant in the TWP-sphere under both wet and flooded conditions after 60 days, followed by Brevibacillaceae. Notably, we observed that TWPs input significantly increased nitrous oxide (N2O) emission from dryland soil. Several taxa including Cyanobacteriales, Blastocatellaceae and Pyrinomonadaceae were identified as TWP-biomarkers in soils and potentially played significant roles in N2O emissions from drylands. Their responses to the TWPs input correlated closely with changes in the relative abundance of genes involved in ammonia oxidation (amoA/B), nitrite reduction (nirS/K) and N2O reduction (nosZ) in drylands. Our results demonstrate that soil moisture-dependent TWP aging influences N2O emission by altering both the associated microbial communities and the relevant genes.


Assuntos
Microbiota , Óxido Nitroso , Microbiologia do Solo , Solo , Óxido Nitroso/análise , Solo/química , Bactérias , Monitoramento Ambiental
4.
Langmuir ; 40(39): 20443-20451, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39292618

RESUMO

Porous microspheres with desired pore size and distribution are in high demand for loading various guest materials, especially various pollutants that are several nanometers in size or stably suspended in liquid. Herein, multilevel porous SiO2 microspheres with arbitrarily adjustable core-shell ratios are prepared by solely regulating the time interval between the start of the hydrolysis reaction and the addition of organic solvent. The core-shell ratio of the SiO2 microspheres increases gradually with prolongation of the addition time interval; meanwhile, the specific surface area can be adjusted from 543.2 m2 g-1 to 992.9 m2 g-1, and the average pore diameter varies from 2.3 to 5.7 nm together with a high pore volume reaching 0.91 cm3 g-1. Moreover, the hierarchical core-shell SiO2 microspheres with an adjustable core-shell ratio, a large specific surface area, and a multilevel pore size could be obtained on a large scale. These SiO2 microspheres demonstrate excellent performance in coloading platinum nanoparticles and various dye molecules, suggesting their great potential in treating various pollutants in printing and dyeing wastewater.

5.
Drug Des Devel Ther ; 18: 3951-3958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247794

RESUMO

Background: Ciprofol is a new intravenous sedative / anesthetic drug. In recent years, many clinical studies have also confirmed the sedative effect of ciprofol. However, more clinical research is still needed on its clinical application characteristics in special populations. Objective: The aim of this study was to compare the clinical effects of ciprofol and propofol in general anesthesia induction of elderly patients. Methods: 60 elderly (aged ≥ 75 years) patients underwent hip fracture surgery were randomly into two groups of a 1:1 ratio. Group C (ciprofol group): 0.3mg/kg ciprofol was infused. Group P (propofol group): 1.5mg/kg propofol was infused. The observation period was from the infusion of test drug to 5 min after endotracheal intubation. The primary outcomes included the incidence of severe hypotension and hypotension during the observation period. The secondary outcomes were as follows: the success rate of general anesthesia induction, the number of additional sedation, the time of loss of consciousness (LOC), Δ MAP, Δ HR, adverse events and the frequency of vasoactive drugs used. Results: Finally, 60 subjects completed the study. Compared with Group P, the incidence of severe hypotension in Group C was lower (26.7% vs 53.3%, P = 0.035), the incidence of hypotension was also lower (36.7% vs 63.3%, P = 0.037), Δ MAP in Group C was significantly lower (31.4 ± 11.4 vs 39.6 ± 15.7, P = 0.025), the frequency of ephedrine used and the incidence of injection pain in Group C were also significantly lower. Conclusion: Ciprofol showed similar efficacy to propofol when used for general anesthesia induction in elderly patients underwent hip fracture surgery and could maintain more stable blood pressure.


Assuntos
Anestesia Geral , Fraturas do Quadril , Propofol , Humanos , Fraturas do Quadril/cirurgia , Anestesia Geral/efeitos adversos , Idoso , Masculino , Feminino , Propofol/administração & dosagem , Propofol/efeitos adversos , Idoso de 80 Anos ou mais , Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/efeitos adversos
6.
Sci Total Environ ; 954: 176341, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299329

RESUMO

Microplastics are a potential threat to agricultural sustainability. However, the effects of microplastics at environmentally relevant concentrations on the plant-soil-microbiota system in realistic field conditions are largely unknown. Herein, we conducted a two-year field trial to study the effects of polyethylene (PE) microplastics at 0, 100, and 600 mg/kg on crop growth, soil properties, and the composition and function of microbial communities in a farmland with rice-wheat rotation. PE did not affect wheat growth but it increased the rice grain weight by 42.5 % at 600 mg/kg, and enhanced rice height by 35.4 % and 30.2 % at 100 and 600 mg/kg, respectively. The presence of PE significantly decreased soil available phosphorus during the wheat season, while it reduced soil total nitrogen, NH4+-N and available phosphorus during the rice season. There were five and sixteen bacterial orders identified changed by PE in wheat and rice soils, respectively. Specifically, PE at different concentrations differentially altered the abundances of sulfate-reducing bacteria Thermodesulfovibrionia, Thermoactinomycetales and Syntrophobacterales, and further modified soil sulfate respiration in wheat soils. During the rice season, PE (100 mg/kg) increased the abundance of Xanthomonadales by 98.0 % and enriched the functional groups of intracellular parasites, while PE (600 mg/kg) inhibited twelve cluster of orthologous group function classes and disturbed bacterial metabolism. This study suggests that PE exhibits a greater impact on the plant-soil-microbiota system during the rice season compared to the previous year's wheat season, highlighting the importance of crop type and cultivation practices in determining the environmental risks of microplastics in agroecosystems.

7.
Sci Total Environ ; 952: 175887, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39216761

RESUMO

Biogenic volatile organic compounds (BVOCs) significantly impact atmospheric chemistry, with emissions potentially influenced by nitrogen (N) deposition. The response of BVOC emissions to increasing N deposition remains debated. In this study, we examined Eucalyptus urophylla (E. urophylla) using three N treatments: N0, N50, and N100 (0, 50, and 100 kg N hm-2 yr-1 N addition). These treatments were applied to mature E. urophylla trees in a plantation subjected to over 10 years of soil N addition in southern China, a region with severe N deposition. Seventeen BVOCs were measured, with isoprene (36.99 %), α-pinene (38.80 %), and d-limonene (14.27 %) being the predominant compounds under natural conditions. Total BVOC emissions under N50 were nearly double those under N0 and N100, with leaf net CO2 assimilation identified as the most critical photosynthetic parameter. Isoprene and α-pinene emissions significantly increased under N50 compared to N0, while d-limonene emission decreased under N100. Stronger correlations for individual BVOCs under N50 and N100 compared to N0 might be due to differences in BVOC biosynthetic pathways and storage structures. The localized canopy-scale emission factors (EFs) under N50 were significantly higher than the default values in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), suggesting the model might underestimate BVOC emissions from Eucalyptus in southern China under increased N deposition. Additionally, the secondary pollutant formation potentials of BVOCs were evaluated, identifying isoprene and monoterpenes as primary precursors of ozone and secondary organic aerosols. This study provides insights into the impacts of increased N deposition on BVOC emissions and their contribution to secondary atmospheric pollution. Updating localized BVOC EFs for subtropical tree species in southern China is crucial to reduce uncertainties in BVOC estimations under current and future N deposition scenarios.


Assuntos
Poluentes Atmosféricos , Eucalyptus , Nitrogênio , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Nitrogênio/análise , China , Poluentes Atmosféricos/análise , Projetos Piloto , Monitoramento Ambiental , Butadienos , Hemiterpenos
8.
Mol Med Rep ; 30(4)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39155878

RESUMO

Glycolysis occurs in all living organisms as a form of energy supply. Pyruvate kinase M2 (PKM2) is one of the rate­limiting enzymes in the glycolytic process. PKM2 is considered to serve an important role in several terminal diseases, including sepsis. However, to the best of our knowledge, the specific mechanistic role of PKM2 in sepsis remains to be systematically summarised. Therefore, the present review aims to summarise the roles of PKM2 in sepsis progression. In addition, potential treatment strategies for patients with sepsis are discussed. The present review hopes to lay the groundwork for studying the role of PKM2 and developing therapeutic strategies against metabolic disorders that occur during sepsis.


Assuntos
Piruvato Quinase , Sepse , Humanos , Sepse/metabolismo , Piruvato Quinase/metabolismo , Glicólise , Animais , Proteínas de Ligação a Hormônio da Tireoide , Hormônios Tireóideos/metabolismo
9.
Autophagy ; : 1-12, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39162855

RESUMO

Selective macroautophagy/autophagy in metazoans involves the conserved receptors NBR1 and SQSTM1/p62. Both autophagy receptors manage ubiquitinated cargo recognition, while SQSTM1 has an additional, distinct role of facilitating liquid-liquid phase separation (LLPS) during autophagy. Given that plants lack SQSTM1, it is postulated that plant NBR1 may combine activities of both metazoan NBR1 and SQSTM1. However, the precise mechanism by which plant NBR1 recognizes non-ubiquitinated substrates and its ability to undergo LLPS during selective autophagy remain elusive. Here, we implicate both the ZZ-type zinc finger motif and the four-tryptophan domain of Arabidopsis NBR1 (AtNBR1) in the recognition of non-ubiquitinated cargo proteins. Additionally, we reveal that AtNBR1 indeed undergoes LLPS prior to ATG8-mediated autophagosome formation, crucial for heat stress resistance in Arabidopsis. Our findings unveil the dual roles of AtNBR1 in both cargo recognition and LLPS during plant autophagy and advance our understanding of NBR1-mediated autophagy in plants compared to metazoans.Abbreviations: ATG8: autophagy 8; Co-IP: co-immunoprecipitation; EXO70E2: exocyst subunit EXO70 family protein E2; FRAP: fluorescence recovery after photobleaching; FW domain: four-tryptophan domain; GFP: green fluorescent protein; HS: heat stress; LLPS: liquid-liquid phase separation; LIR: LC3-interacting region; NBR1: next to BRCA1 gene 1; PAS: phagophore assembly site; PB1 domain: Phox and Bem1 domain; RFP: red fluorescent protein; ROF1: rotamase FKBP 1; SARs: selective autophagy receptors; UBA domain: ubiquitin-associated domain; Y2H: yeast two-hybrid; ZZ domain: ZZ-type zinc finger motif domain.

10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 1085-1090, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39192402

RESUMO

OBJECTIVE: To investigate the effects of selinexor, a inhibitor of nuclear export protein 1 (XPO1) on the proliferation inhibition and apoptosis of Kasumi-1 cells in acute myeloid leukemia (AML). METHODS: MTS method was used to detect the inhibitory effect of different concentrations of selinexor on the proliferation of Kasumi-1 cells at different time points. The apoptosis rate and cell cycle changes after treatment with different concentration of selinexor were detected by flow cytometry. RESULTS: Selinexor inhibited the growth of Kasumi-1 cells at different time points in a concentration-dependent manner (r 24 h=0.7592, r 48 h=0.9456, and r 72 h=0.9425). Selinexor inhibited Kasumi-1 cells growth in a time-dependent manner (r =0.9057 in 2.5 µmol/L group, r =0.9897 in 5 µmol/L group and r =0.9994 in 10 µmol/L group). Selinexor could induce apoptosis of Kasumi-1 cells in a dose-dependent manner (r =0.9732), and the apoptosis of Kasumi-1 cells was more obvious with the increase of drug concentration. The proportion of G0/G1 phase was significantly increased and the proportion of S phase was significantly decreased after the treatment of Kasumi-1 cells by selinexor. With the increase of drug concentration, the proportion of Kasumi-1 cells cycle arrest in G0/G1 phase was increased and the cell synthesis was decreased. CONCLUSION: Selinexor can promote the death of tumor cells by inhibiting Kasumi-1 cells proliferation, inducing apoptosis and blocking cell cycle.


Assuntos
Apoptose , Proliferação de Células , Hidrazinas , Leucemia Mieloide Aguda , Triazóis , Hidrazinas/farmacologia , Triazóis/farmacologia , Apoptose/efeitos dos fármacos , Humanos , Proliferação de Células/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Linhagem Celular Tumoral , Ciclo Celular/efeitos dos fármacos , Proteína Exportina 1 , Carioferinas
11.
J Hazard Mater ; 477: 135402, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096632

RESUMO

Biochar is an effective and economical strategy for in situ soil cadmium (Cd) remediation. It is essential to comprehensively investigate how biochar mitigates Cd uptake of the main rice subspecies. A pot experiment was established via adding corn stalk biochar into Cd-contaminated soil growing indica Yangdao 6 (YD) and japonica Nangeng 9108 (9108). 9108 had lower shoot biomass (-17.9%) but higher root biomass (+14.4%) and shoot Cd concentration (+29.4%) than YD. Biochar decreased soil available Cd by 25.2% and shoot Cd concentration by 13.6% through the liming and passivation effects. Biochar also favored Cd mitigation by recruiting Fe reducer, Cd remover and plant growth-promoting rhizobacteria (e.g. Bacteroides, Deferrisomatota, Bacillus and Allorhizobium). Besides, biochar reduced Cd uptake by stimulating iron plaques formation for 9108. Moreover, biochar did not reduce Cd uptake by inhibiting Cd transporter genes' expressions and it increased OsHMA2 expression in YD. In conclusion, biochar had great capacity in mitigating Cd pollution and rice subspecies responded differently to biochar in iron plaque formation and Cd transporter genes. The research established a comprehensive understanding of the mechanisms underlying Cd mitigation by biochar and helped to breed low Cd-accumulated rice cultivars to safeguard rice production.


Assuntos
Cádmio , Carvão Vegetal , Ferro , Oryza , Microbiologia do Solo , Poluentes do Solo , Oryza/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Oryza/microbiologia , Cádmio/metabolismo , Cádmio/toxicidade , Poluentes do Solo/metabolismo , Ferro/metabolismo , Solo/química , Biodegradação Ambiental , Bactérias/metabolismo , Bactérias/genética , Bactérias/efeitos dos fármacos
12.
J Am Chem Soc ; 146(32): 22134-22139, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39083626

RESUMO

Open hollow dodecahedral cage clusters have long been a coveted target in synthetic chemistry, yet their creation poses immense challenges. Here we report two open hollow dodecahedral lanthanide-aluminum (Ln-Al) heterometallic cage clusters, namely, [Ln210Al140(µ2-OH)210(µ3-OH)540(OAc)180(H2O)156](ClO4)120·(MeCN)x·(H2O)y, (Ln = Dy and x = 27, y = 300 for 1; Ln = Y and x = 28, y = 420 for 2). Remarkably, the 350 metal atoms in 1 and 2 display a Keplerate-type four-shell structure of truncated icosidodecahedron@dodecahedron@dodecahedron@icosidodecahedron. The diameter of the cationic cluster in 1 is approximately 5.0 nm, with an inner cavity diameter of about 2.8 nm and a window diameter of roughly 0.66 nm. The cluster in 1 boasts an accessible inner void volume of up to 15,000 Å3. Notably, these cage clusters maintain stability in water, and the truncated icosidodecahedrons in 1 and 2 are the first of their kind synthesized to date. Given that the open hollow dodecahedral Ln-Al cage cluster has never been reported before, this work represents a member in the family of hollow open dodecahedral cages.

13.
Plants (Basel) ; 13(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39065462

RESUMO

Lycium barbarum has been widely planted in arid and semi-arid areas due to its drought-resistant ability, which is of great economic value as a medicinal and edible homology plant. In this study, the metabolome of the L. barbarum variety "Ningqi 7" under different drought stress conditions was compared and analyzed by the non-targeted UPLC-MS (ultra-high performance liquid chromatography with mass spectrometry) technique. The results showed that drought stress significantly decreased the water content of leaves, increased the activity of antioxidant enzymes in plants, and up-regulated the metabolites and pathways involved in osmoregulation, antioxidant stress, energy metabolism, and signal transduction. Under moderate drought (40-45% FC), L. barbarum accumulated osmoregulatory substances mainly through the up-regulation of the arginine metabolism pathway. At the same time, phenylalanine metabolism and cutin, suberine, and wax biosynthesis were enhanced to improve the antioxidant capacity and reduce water loss. However, in severe drought (10-15% FC), L. barbarum shifted to up-regulate purine metabolism and lysine degradation and redistributed energy and nitrogen resources. In addition, vitamin B6 metabolism was significantly upregulated in both groups of stress levels, playing a key role in antioxidant and growth regulation. These observations delineate the metabolic adaptations of L. barbarum "Ningqi 7" in response to drought stress.

14.
J Am Chem Soc ; 146(29): 20116-20121, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39007298

RESUMO

Adiabatic demagnetization refrigeration (ADR) is a promising cooling technology with high efficiency and exceptional stability in achieving ultralow temperatures, playing an indispensable role at the forefront of fundamental and applied science. However, a significant challenge for ADR is that existing magnetic refrigerants struggle to concurrently achieve low magnetic ordering temperatures (T0) and substantial magnetic entropy changes (-ΔSm) at ultralow temperatures. In this work, we propose the combination of Gd3+ and Yb3+ to effectively regulate both -ΔSm and T0 in ultralow temperatures. Notably, the -ΔSm values for Gd0.1Yb0.9F3 (1) and Gd0.3Yb0.7F3 (2) in the 0.4-1.0 K range exceed those of all previously reported magnetic refrigerants within this temperature interval, positioning them as the most efficient magnetic refrigerants for the third stage to date. Although the -ΔSm values for Gd0.5Yb0.5F3 (3) in 1-4 K are less than those of the leading magnetic refrigerant Gd(OH)F2, the -ΔSm values for Gd0.7Yb0.3F3 (4) in 1-4 K at 2 T surpass those of all magnetic refrigerants previously documented within the same temperature range, making it the superior magnetic refrigerant for the fourth stage identified thus far.

15.
Environ Pollut ; 358: 124477, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950845

RESUMO

6 PPD-Q (6 PPD-Quinone) is an ozone-induced byproduct derived from the degradation of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6 PPD), commonly found in road dust resulting from tire wear. However, the extent of 6 PPD-Q pollution in urban soil remains unclear. This study investigates the spatial and temporal accumulation patterns of 6 PPD-Q in greenbelt soils in Ningbo, and explores the correlation between 6 PPD-Q accumulation and soil microbial community composition and functions. Our findings indicate that 6 PPD-Q is present (ranging from 0.85 to 12.58 µg/kg) in soil samples collected from both sides of urban traffic arteries. Soil fungi exhibit higher sensitivity to 6 PPD-Q accumulation compared to bacteria, and associated fungi (Basidiomycota) may be potential biomarkers for environmental 6 PPD-Q contamination. Co-occurrence network analysis reveals that the bacterial microbial network in summer exhibits greater stability and resilience in response to 6 PPD-Q inputs than in winter. However, 6 PPD-Q accumulation disrupts the network structure of fungal communities to some extent, leading to reduced diversity in fungal microbial communities. Long-term accumulation of 6 PPD-Q weakens the nitrogen and phosphorus cycling potential within urban soil, while the enhancement of carbon cycling may further promote 6 PPD-Q degradation in urban soil. Taken together, this study provides new insights into the ecological risks of 6 PPD-Q in urban soils.


Assuntos
Monitoramento Ambiental , Microbiota , Microbiologia do Solo , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Solo/química , Bactérias/metabolismo , Fungos , China
16.
Environ Pollut ; 356: 124313, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838808

RESUMO

N-1,3-Dimethylbutyl-N'-phenyl-p-quinone diamine (6PPDQ) is a derivative of 6PPD, a synthetic antioxidant used in tire manufacturing to control the degradation caused by oxidation and heat aging. Its discovery in 2020 has raised important environmental concern, particularly regarding its association with acute mortality in coho salmon, prompting surge in research on its occurrence, fate, and transport in aquatic ecosystems. Despite this attention, there remain notable gaps in grasping the knowledge, demanding an in depth overview. Thus, this review consolidates recent studies to offer a thorough investigation of 6PPDQ's environmental dynamics, pathways into aquatic ecosystems, toxicity to aquatic organisms, and human health implications. Various aquatic species exhibit differential susceptibility to 6PPDQ toxicity, manifesting in acute mortalities, disruption of metabolic pathways, oxidative stress, behavioral responses, and developmental abnormalities. Whereas, understanding the species-specific responses, molecular mechanisms, and broader ecological implications requires further investigation across disciplines such as ecotoxicology, molecular biology, and environmental chemistry. Integration of findings emphasizes the complexity of 6PPDQ toxicity and its potential risks to human health. However, urgent priorities should be given to the measures like long-term monitoring studies to evaluate the chronic effects on aquatic ecosystems and the establishment of standardized toxicity testing protocols to ensure the result comparability and reproducibility. This review serves as a vital resource for researchers, policymakers, and environmental professionals seeking appraisals into the impacts of 6PPDQ contamination on aquatic ecosystems and human health.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Humanos , Animais , Monitoramento Ambiental/métodos , Quinonas/toxicidade , Ecossistema
17.
Environ Res ; 258: 119492, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936499

RESUMO

To enhance tire durability, the antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is used in rubber, but it converts into the toxic 6PPD quinone (6PPD-Q) when exposed to oxidants like ozone (O3), causing ecological concerns. This review synthesizes the existing data to assess the transformation, bioavailability, and potential hazards of two tire-derived pollutants 6PPD and 6PPD-Q. The comparative analysis of different thermal methods utilized in repurposing waste materials like tires and plastics into valuable products are analyzed. These methods shed light on the aspects of pyrolysis and catalytic conversion processes, providing valuable perspectives into optimizing the waste valorization and mitigating environmental impacts. Furthermore, we have examined the bioavailability and potential hazards of chemicals used in tire manufacturing, based on the literature included in this review. The bioavailability of these chemicals, particularly the transformation of 6PPD to 6PPD-Q, poses significant ecological risks. 6PPD-Q is highly bioavailable in aquatic environments, indicating its potential for widespread ecological harm. The persistence and mobility of 6PPD-Q in the environment, along with its toxicological effects, highlight the critical need for ongoing monitoring and the development of effective mitigation strategies to reduce its impact on both human health and ecosystem. Future research should focus on understanding the chronic effects of low-level exposure to these compounds on both terrestrial and aquatic ecosystems, as well as the potential for bioaccumulation in the food chain. Additionally, this review outlines the knowledge gaps, recommending further research into the toxicity of tire-derived pollutants in organisms and the health implications for humans and ecosystems.


Assuntos
Borracha , Borracha/química , Poluentes Ambientais/análise , Monitoramento Ambiental
18.
Int J Biol Sci ; 20(8): 3219-3235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904020

RESUMO

The sirtuins constitute a group of histone deacetylases reliant on NAD+ for their activity that have gained recognition for their critical roles as regulators of numerous biological processes. These enzymes have various functions in skeletal muscle biology, including development, metabolism, and the body's response to disease. This comprehensive review seeks to clarify sirtuins' complex role in skeletal muscle metabolism, including glucose uptake, fatty acid oxidation, mitochondrial dynamics, autophagy regulation, and exercise adaptations. It also examines their critical roles in developing skeletal muscle, including myogenesis, the determination of muscle fiber type, regeneration, and hypertrophic responses. Moreover, it sheds light on the therapeutic potential of sirtuins by examining their impact on a range of skeletal muscle disorders. By integrating findings from various studies, this review outlines the context of sirtuin-mediated regulation in skeletal muscle, highlighting their importance and possible consequences for health and disease.


Assuntos
Músculo Esquelético , Sirtuínas , Músculo Esquelético/metabolismo , Humanos , Sirtuínas/metabolismo , Animais , Desenvolvimento Muscular/fisiologia , Doenças Musculares/metabolismo
19.
ACS Appl Mater Interfaces ; 16(25): 32394-32401, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38875495

RESUMO

Adiabatic demagnetization refrigeration is known to be the only cryogenic refrigeration technology that can achieve ultralow temperatures (≪1 K) at gravity-free conditions. The key indexes to evaluate the performance of magnetic refrigerants are their magnetic entropy changes (-ΔSm) and magnetic ordering temperature (T0). Although, based on the factors affecting the -ΔSm of magnetic refrigerants, one has been able to judge if a magnetic refrigerant has a large -ΔSm, how to accurately predict their T0 remains a huge challenge due to the fact that the T0 of magnetic refrigerants is related to not only magnetic exchange but also single-ion anisotropy and magnetic dipole interaction. Here, we, taking GdCO3F (1), Gd(HCOO)F2, Gd2(SO4)3·8H2O, GdF3, Gd(HCOO)3 and Gd(OH)3 as examples, demonstrate that the T0 of magnetic refrigerants with very weak magnetic interactions and small anisotropy can be accurately predicted by integrating mean-field approximation with quantum Monte Carlo simulations, providing an effective method for predicting the T0 of ultralow-temperature magnetic refrigerants. Thus, the present work lays a solid foundation for the rational design and preparation of ultralow-temperature magnetic refrigerants in the future.

20.
Sci Adv ; 10(25): eadj9251, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905347

RESUMO

Quantum entanglement is crucial for quantum information processing, prominently used in quantum communication, computation, and metrology. Recent studies have shifted toward high-dimensional entangled states, offering greater information capacity and enabling more complex applications. Here, we experimentally prepared a three-photon asymmetric maximally entangled state, comprising two two-dimensional photons and one four-dimensional photon. Using this state, we conducted a proof-of-principle experiment, successfully transferring a four-dimensional quantum state from two photons to another photon with fidelities ranging from 0.78 to 0.86. These results exceed theoretical limits, demonstrating genuine four-dimensional quantum state transfer. The asymmetric entangled state demonstrated here holds promise for future quantum networks as a quantum interface facilitating information transfer across quantum systems with different dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...