Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Genomics ; : 110942, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326641

RESUMO

The influence of the stroma on cancer progression has been underestimated, particularly the role of vascular pericytes in the tumor microenvironment. Herein, we identified 51 differentially expressed genes in tumor-derived pericytes (TPCs) by analyzing transcriptomic data from TCGA alongside our proteomic data. Using five key TPC-related genes, we constructed a prognostic risk model that accurately predicts prognosis and treatment responses in liver and lung cancers. Enrichment analyses linked these genes to blood vessel remodeling, function, and immune-related pathways. Single-cell RNA sequencing data from the GEO database validated these findings, showing significant upregulation of AKAP12 and RRAS in TPCs. Immunostaining confirmed increased expression of these genes in liver and lung tumors. Depletion of RRAS or AKAP12 in TPCs restored their blood vessel-supporting role. Overall, our findings suggest that TPC-related gene profiles can predict patient outcomes and therapeutic responses in solid cancers, and targeting these profiles could be an improved treatment strategy.

2.
J Periodontol ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210600

RESUMO

BACKGROUND: The polarization of macrophages into an anti-inflammatory phenotype is crucial for resolving periodontal inflammation. It has been reported that B10 cells can regulate the immune response of macrophages during inflammation and are also able to regulate inflammation in periodontitis. However, whether B10 cells' regulation function in periodontitis is related to macrophage polarization remains unclear. This study aims to investigate whether B10 cells can regulate macrophage polarization in periodontitis. METHODS: Macrophages were cocultured with B10 cells in vitro for 5 days. After coculture, macrophages were obtained for analysis directly or followed by stimulation with Pg-LPS/IFN-γ or IL-4/IL-13. Flow cytometry and/or reverse transcriptase-polymerase chain reaction (RT-PCR) were employed to detect the expression of IL-1ß, iNOS, TNF-α, CD206, and ARG-1 in macrophages. B10 cells were transferred on the 5th day after ligation in wild or macrophage-depletion mice. Toluidine blue and TRAP staining were used to evaluate alveolar bone resorption and osteoclast activation. Immunohistochemistry was employed to detect the expression of CD68, IL-1ß, TNF-α, iNOS, ARG-1, and IL-10. Immunofluorescence was used to detect the expression of CD68+CD86+M1 macrophages and CD68+CD206+M2 macrophages. RESULTS: In vitro, B10 cells inhibit the expression of IL-1ß, iNOS, and TNF-α in macrophages while increasing the expression of CD206 and ARG-1. In experimental periodontitis, B10 cells inhibit the polarization of CD68+CD86+M1 macrophages and iNOS expression but enhance the polarization of CD68+CD206+M2 macrophages and ARG-1 expression. Importantly, the depletion of macrophages partially weakened the regulation function of B10 cells in periodontitis. CONCLUSIONS: B10 cells promote M2 macrophage polarization, inhibit M1 macrophage polarization in periodontitis, and alleviate periodontitis partially by regulating macrophage polarization.

3.
Adv Sci (Weinh) ; 11(34): e2402025, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38976572

RESUMO

As a significant infectious disease in livestock, porcine reproductive and respiratory syndrome (PRRS) imposes substantial economic losses on the swine industry. Identification of diagnostic markers and therapeutic targets has been a focal challenge in PPRS prevention and control. By integrating metabolomic and lipidomic serum analyses of clinical pig cohorts through a machine learning approach with in vivo and in vitro infection models, lysophosphatidic acid (LPA) is discovered as a serum metabolic biomarker for PRRS virus (PRRSV) clinical diagnosis. PRRSV promoted LPA synthesis by upregulating the autotaxin expression, which causes innate immunosuppression by dampening the retinoic acid-inducible gene I (RIG-I) and type I interferon responses, leading to enhanced virus replication. Targeting LPA demonstrated protection against virus infection and associated disease outcomes in infected pigs, indicating that LPA is a novel antiviral target against PRRSV. This study lays a foundation for clinical prevention and control of PRRSV infections.


Assuntos
Biomarcadores , Lisofosfolipídeos , Aprendizado de Máquina , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Biomarcadores/metabolismo , Lisofosfolipídeos/metabolismo , Metabolômica/métodos , Multiômica
4.
Drug Resist Updat ; 76: 101095, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986165

RESUMO

BACKGROUND: Response to immunotherapy is the main challenge of head and neck squamous cancer (HNSCC) treatment. Previous studies have indicated that tumor mutational burden (TMB) is associated with prognosis, but it is not always a precise index. Hence, investigating specific genetic mutations and tumor microenvironment (TME) changes in TMB-high patients is essential for precision therapy of HNSCC. METHODS: A total of 33 HNSCC patients were enrolled in this study. We calculated the TMB score based on next-generation sequencing (NGS) sequencing and grouped these patients based on TMB score. Then, we examined the immune microenvironment of HNSCC using assessments of the bulk transcriptome and the single-cell RNA sequence (scRNA-seq) focusing on the molecular nature of TMB and mutations in HNSCC from our cohort. The association of the mutation pattern and TMB was analyzed in The Cancer Genome Atlas (TCGA) and validated by our cohort. RESULTS: 33 HNSCC patients were divided into three groups (TMB-low, -medium, and -high) based on TMB score. In the result of 520-gene panel sequencing data, we found that FAT1 and LRP1B mutations were highly prevalent in TMB-high patients. FAT1 mutations are associated with resistance to immunotherapy in HNSCC patients. This involves many metabolism-related pathways like RERE, AIRE, HOMER1, etc. In the scRNA-seq data, regulatory T cells (Tregs), monocytes, and DCs were found mainly enriched in TMB-high samples. CONCLUSION: Our analysis unraveled the FAT1 gene as an assistant predictor when we use TMB as a biomarker of drug resistance in HNSCC. Tregs, monocytes, and dendritic cells (DCs) were found mainly enriched in TMB-high samples.


Assuntos
Neoplasias de Cabeça e Pescoço , Imunoterapia , Mutação , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Imunoterapia/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Idoso , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Prognóstico , Proteínas de Membrana/genética , Caderinas
5.
Recent Pat Anticancer Drug Discov ; 19(3): 354-372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38214321

RESUMO

BACKGROUND: Ferroptosis is a new type of programmed apoptosis and plays an important role in tumour inhibition and immunotherapy. OBJECTIVE: In this study, we aimed to explore the potential role of ferroptosis-related genes (FRGs) and the potential therapeutic targets in oral cavity squamous cell carcinoma (OCSCC). METHODS: The transcription data of OCSCC samples were obtained from the Cancer Genome Atlas (TCGA) database as a training dataset. The prognostic FRGs were extracted by univariate Cox regression analysis. Then, we constructed a prognostic model using the least absolute shrinkage and selection operator (LASSO) and Cox analysis to determine the independent prognosis FRGs. Based on this model, risk scores were calculated for the OCSCC samples. The model's capability was further evaluated by the receiver operating characteristic curve (ROC). Then, we used the GSE41613 dataset as an external validation cohort to confirm the model's predictive capability. Next, the immune infiltration and somatic mutation analysis were applied. Lastly, single-cell transcriptomic analysis was used to identify the key cells. RESULTS: A total of 12 prognostic FRGs were identified. Eventually, 6 FRGs were screened as independent predictors and a prognostic model was constructed in the training dataset, which significantly stratified OCSCC samples into high-risk and low-risk groups based on overall survival. The external validation of the model using the GSE41613 dataset demonstrated a satisfactory predictive capability for the prognosis of OCSCC. Further analysis revealed that patients in the highrisk group had distinct immune infiltration and somatic mutation patterns from low-risk patients. Mast cell infiltrations were identified as prognostic immune cells and played a role in OCSCC partly through ferroptosis. CONCLUSION: We successfully constructed a novel 6 FRGs model and identified a prognostic immune cell, which can serve to predict clinical prognoses for OCSCC. Ferroptosis may be a new direction for immunotherapy of OCSCC.


Assuntos
Ferroptose , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ferroptose/genética , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Prognóstico , Análise de Sequência de RNA
6.
Nat Commun ; 14(1): 7033, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923799

RESUMO

Bile duct tumor thrombosis (BDTT) is a complication mostly observed in patients with advanced hepatocellular carcinoma (HCC), causing jaundice and associated with poor clinical outcome. However, its underlying molecular mechanism is unclear. Here, we develop spontaneous preclinical HCC animal models with BDTT to identify the role of BMI1 expressing tumor initiating cells (BMI1high TICs) in inducing BDTT. BMI1 overexpression transforms liver progenitor cells into BMI1high TICs, which possess strong tumorigenicity and increased trans-intrahepatic biliary epithelial migration ability by secreting lysosomal cathepsin B (CTSB). Orthotopic liver implantation of BMI1high TICs into mice generates tumors and triggers CTSB mediated bile duct invasion to form tumor thrombus, while CTSB inhibitor treatment prohibits BDTT and extends mouse survival. Clinically, the elevated serum CTSB level determines BDTT incidence in HCC patients. Mechanistically, BMI1 epigenetically up-regulates CTSB secretion in TICs by repressing miR-218-1-3p expression. These findings identify a potential diagnostic and therapeutic target for HCC patients with BDTT.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Trombose , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Catepsinas , Neoplasias dos Ductos Biliares/patologia , Trombose/patologia , Complexo Repressor Polycomb 1/genética , MicroRNAs/genética
7.
J Transl Med ; 21(1): 702, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814317

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is characterised by limited responses to chemoimmunotherapy attributed to highly desmoplastic tumor microenvironment. Disrupting the tumor-stromal cell crosstalk is considered as an improved PDAC treatment strategy, whereas little progress has been made due to poor understanding of its underlying mechanism. Here, we examined the cellular role of melanoma associated antigen A isoforms (MAGEA) in regulating tumor-stromal crosstalk mediated chemoresistance. METHODS: We used clinical samples to explore the correlation between MAGEA expression and patient prognosis in multiple cancers. We utilized cancer cell lines, patient derived organoids and orthotopic PDAC model to examine the function of MAGEA in chemoresistance. We performed biochemical, proteome profiler array and transcriptional analysis to uncover a mechanism that governs tumor-stromal crosstalk. We developed a multi-MAGEA antigen targeted DNA vaccine and tested its effect on PDAC tumor growth. RESULTS: We establish MAGEA as a regulator of the tumor-stromal crosstalk in PDAC. We provide strong clinical evidence indicating that high MAGEA expression, including MAGEA2, MAGEA3 and MAGEA10, correlates with worse chemotherapeutic response and poor prognosis in multiple cancers, while their expression is up-regulated in chemoresistant PDAC patient derived organoids and cancer cell lines. Mechanistically, MAGEA2 prohibits gemcitabine-induced JNK-c-Jun-p53 mediated cancer cell apoptosis, while gemcitabine stimulated pancreatic stellate cells secretes GDF15 to further enhance the gemcitabine resistance of MAGEA2 expressing cells by activating GFRAL-RET mediated Akt and ERK1/2 dependent survival pathway. Strikingly, immunization with a DNA vaccine that targeting multiple MAGEA antigens, including MAGEA2, MAGEA3 and MAGEA10, elicits robust immune responses against the growth of gemcitabine resistant tumors. CONCLUSIONS: These findings suggest that targeting MAGEA-mediated paracrine regulation of chemoresistance by immunotherapy can be an improved pancreatic cancer treatment strategy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Vacinas de DNA , Humanos , Vacinas de DNA/metabolismo , Vacinas de DNA/farmacologia , Vacinas de DNA/uso terapêutico , Desoxicitidina/farmacologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Gencitabina , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Imunização , Células Estromais/patologia , Resistencia a Medicamentos Antineoplásicos , Microambiente Tumoral , Neoplasias Pancreáticas
8.
NPJ Precis Oncol ; 7(1): 102, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821657

RESUMO

Conventional chemotherapy targets malignant cells without evaluating counter protection from the tumor microenvironment that often causes treatment failure. Herein, we establish chemoresistant fibroblasts (rCAFs) as regulators of neoadjuvant chemotherapeutic (NACT) response in head and neck squamous cell carcinoma (HNSCC). Clinically, high expression of CAF-related gene signature correlates with worse prognosis and chemotherapeutic response in multiple cancers, while the population of CAFs in the residual tumors of chemoresistant HNSCC patients remains unchanged after NACT treatment, compared to chemosensitive patients. Using a murine cancer model or patient-derived organoid, and primary CAFs isolated from chemo-sensitive (sCAFs) or -resistant patients, we show that rCAFs, but not sCAFs, are resistant to chemotherapy-induced apoptosis while reducing HNSCC cell chemosensitivity via paracrine signals. Combined multi-omics and biochemical analyses indicate an elevated PI3K/AKT/p65 driven cell survival and cytokine production in rCAFs, while rCAF-secreted TGFα promotes cancer cell chemoresistance by activating EGFR/Src/STAT3 survival signaling axis. Treatment with anti-EGFR cetuximab restores the chemosensitivity of tumors derived from co-injection of cancer cells and rCAFs in vivo, while the serum level of TGFα determines NACT response in HNSCC patients. Overall, our findings uncover a novel insight whereby the crosstalk between tumor cell and rCAF determines chemotherapeutic response and prognosis in cancer patients.

9.
Front Immunol ; 14: 1258778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691924

RESUMO

Introduction: The porcine reproductive and respiratory syndrome virus (PRRSV) continues to pose a significant threat to the global swine industry, attributed largely to its immunosuppressive properties and the chronic nature of its infection. The absence of effective vaccines and therapeutics amplifies the urgency to deepen our comprehension of PRRSV's intricate pathogenic mechanisms. Previous transcriptomic studies, although informative, are partially constrained by their predominant reliance on in vitro models or lack of long-term infections. Moreover, the role of circular RNAs (circRNAs) during PRRSV invasion is yet to be elucidated. Methods: In this study, we employed an in vivo approach, exposing piglets to a PRRSV challenge over varied durations of 3, 7, or 21 days. Subsequently, porcine alveolar macrophages were isolated for a comprehensive transcriptomic investigation, examining the expression patterns of mRNAs, miRNAs, circRNAs, and long non-coding RNAs (lncRNAs). Results: Differentially expressed RNAs from all four categories were identified, underscoring the dynamic interplay among these RNA species during PRRSV infection. Functional enrichment analyses indicate that these differentially expressed RNAs, as well as their target genes, play a pivotal role in immune related pathways. For the first time, we integrated circRNAs into the lncRNA-miRNA-mRNA relationship, constructing a competitive endogenous RNA (ceRNA) network. Our findings highlight the immune-related genes, CTLA4 and SAMHD1, as well as their associated miRNAs, lncRNAs, and circRNAs, suggesting potential therapeutic targets for PRRS. Importantly, we corroborated the expression patterns of selected RNAs through RT-qPCR, ensuring consistency with our transcriptomic sequencing data. Discussion: This study sheds lights on the intricate RNA interplay during PRRSV infection and provides a solid foundation for future therapeutic strategizing.


Assuntos
MicroRNAs , Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Longo não Codificante , Animais , Suínos , RNA Circular/genética , MicroRNAs/genética , RNA Mensageiro/genética , RNA Longo não Codificante/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Transcriptoma , Macrófagos Alveolares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...