Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 327: 103145, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615561

RESUMO

Friction and lubrication are ubiquitous in all kinds of movements and play a vital role in the smooth operation of production machinery. Water is indispensable both in the lubrication systems of natural organisms and in hydration lubrication systems. There exists a high degree of similarity between these systems, which has driven the development of hydration lubrication from biomimetic to artificial manufacturing. In particular, significant advancements have been made in the understanding of the mechanisms of hydration lubrication over the past 30 years. This enhanced understanding has further stimulated the exploration of biomimetic inspiration from natural hydration lubrication systems, to develop novel artificial hydration lubrication systems that are cost-effective, easily transportable, and possess excellent capability. This review summarizes the recent experimental and theoretical advances in the understanding of hydration-lubrication processes. The entire paper is divided into three parts. Firstly, surface interactions relevant to hydration lubrication are discussed, encompassing topics such as hydrogen bonding, hydration layer, electric double layer force, hydration force, and Stribeck curve. The second part begins with an introduction to articular cartilage in biomaterial lubrication, discussing its compositional structure and lubrication mechanisms. Subsequently, three major categories of bio-inspired artificial manufacturing lubricating material systems are presented, including hydrogels, polymer brushes (e.g., neutral, positive, negative and zwitterionic brushes), hydration lubricant additives (e.g., nano-particles, polymers, ionic liquids), and their related lubrication mechanism is also described. Finally, the challenges and perspectives for hydration lubrication research and materials development are presented.

2.
J Obstet Gynaecol ; 43(1): 2179915, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37001548

RESUMO

The current study sought to investigate the effect of nimotuzumab combined with concurrent chemoradiotherapy (CCRT + Nim) on T lymphocyte subsets in middle-advanced CC. Firstly, patients with middle-advanced CC were administered CCRT or CCRT + Nim. Next, levels of T lymphocytes in peripheral blood of CC patients pre- or post-treatment and healthy females were determined by flow cytometry. The short-term efficacy was evaluated, and overall survival (OS) and progression-free survival (PFS) of patients were recorded. In addition, the correlation of T lymphocyte subsets post-treatment with OS/PFS was assessed with Pearson analysis. CC patients exhibited decreased total T cells/T helper cells/CD4+/CD8+ ratio and increased T suppressor cells/Tregs in peripheral blood. Meanwhile, CCRT and CCRT + Nim improved T lymphocyte subset imbalance, with CCRT + Nim exhibiting better efficacy. CCRT + Nim exhibited better short-term efficacy and higher PFS than CCRT, with no evident difference in OS. The levels of total T cells/T helper cells/T suppressor cells/Tregs were not significantly-correlated with OS/PFS, and the CD4+/CD8+ ratio was correlated with PFS but not OS. Collectively, CCRT + nimotuzumab ameliorate the imbalance of T lymphocyte subsets in peripheral blood of middle-advanced CC patients, and the CD4+/CD8+ ratio after therapy is correlated with PFS.IMPACT STATEMENTWhat is already known on this subject? The utilisation of Nimotuzumab targeting epidermal growth factor receptor (EGFR) combined with concurrent chemoradiotherapy (CCRT) as an efficient treatment for middle-advanced cervical cancer (CC) has garnered the attention of numerous researchers over the years. T cells represent a major immune cell type in the tumour microenvironment and serve as the basis for maintaining cellular immune functions.What do the results of this study add? Our findings revealed that nimotuzumab combined with CCRT improves the abnormality of T lymphocyte subsets in peripheral blood of patients with middle-advanced CC, such that the CD4+/CD8+ ratio after treatment was significantly correlated with progression-free survival (PFS).What are the implications of these findings for clinical practice and/or further research? CCRT of CC may have a short-term negative impact on the peripheral T-cell immune micro-environment, and the combination of nimotuzumab, cisplatin-based chemotherapy, and radiotherapy enhances the frequency of Tregs in peripheral blood. Our findings illustrated that nimotuzumab combined with CCRT can improve the imbalance of T lymphocyte subsets in peripheral blood of patients with middle-advanced CC. A better understanding of the mechanisms of these therapies will optimise the selection of patients most likely to benefit from treatment, serving as a reference for further research on the relationship between EGFR-specific T cells and clinical benefit in patients treated with nimotuzumab in combination with CCRT.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/patologia , Quimiorradioterapia/métodos , Subpopulações de Linfócitos T/patologia , Receptores ErbB , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Microambiente Tumoral
3.
J Colloid Interface Sci ; 582(Pt A): 187-200, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818713

RESUMO

Functional hydrogels have attracted enormous interest as wet adhesives for biomedical research and engineering applications. However, reversible hydrogel adhesives that can be used for gelid conditions were rarely reported. In this work, we have developed a freezing-tolerant (freezing temperature < -50 °C), ultra-stretchable (stretch strain > 30000% at 25 °C) glycerol-ionic hydrogel via the ultraviolet curing of acrylamide monomer and hyper-branched polyethylenimine polymer in CaCl2-water-glycerol solution. The fabricated hydrogel exhibited reversible gelid adhesion, rapid self-healing (recover in 3 s) and weight-retaining (>2 weeks) properties. The hydrogel allows two iron substrates to adhere together at -40 °C with the lap-shear adhesion strength as high as ~1 MPa. Such strong adhesion measured was reversible, specifically achieving ~100% of initial adhesion strength at 25 °C and ~36% at -40 °C. Additionally, decreasing the testing temperature significantly improved the tensile strength but decreased the fracture strain of the hydrogel. Interestingly, lap-shear adhesion tests suggested that the gelid adhesion strength was enhanced by 130 times as the testing temperature decreased from 25 °C to -40 °C, which was mainly attributed to the enhanced mechanical strength of the bulk hydrogel as well as the increased surface interaction at gel-substrate interfaces. More importantly, the adhesion failure gradually changed from cohesive failure to adhesive failure as the temperature decreased. This work provides new practical and fundamental insights into developing multifunctional freezing-tolerant hydrogel adhesive for gelid conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...