Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Ann Med Surg (Lond) ; 86(7): 4206-4208, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38989188

RESUMO

Introduction and importance: Myiasis, a rare affliction, is distinguished by the infestation of human organs by larvae of the Diptera species. Although myiasis is commonly observed in the skin, eyes, ears, and nasopharynx, the occurrence of human genital myiasis is infrequent. Instances of vulvar and prolapsed uterus myiasis have been previously documented. Case presentation: In this study, the authors present a case of vaginal myiasis in a young female residing in the warm and humid climate of south China. The treatment approach involved manual extraction of the maggots and vaginal irrigation with a 0.01% potassium permanganate solution for 7 days. As 1 month followed up, she was cured and then changed residence, and the vaginal myiasis was not recurrence. Clinical discussion: In reported myiasis cases, mechanical extraction of maggots, debridement of necrotic tissue, and irrigation with antiseptic solutions, such as 1% ivermectin solution in propylene glycol were the treatment of myiasis. In this case, a low-concentration solution of potassium permanganate, serving as an oxidizing agent, was utilized as a vaginal douching agent, and had a good effect. Conclusion: Vaginal infestation of maggots likely occurred due to unsanitary intercourse in a suitable environment, removal of maggots and vaginal irrigation with low-concentration solution of potassium permanganate may be an effective therapy.

2.
Nat Commun ; 15(1): 4415, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789444

RESUMO

Organic room-temperature phosphorescence materials have attracted extensive attention, but their development is limited by the stability and processibility. Herein, based on the on-line derivatization strategy, we report the urea-formaldehyde room-temperature phosphorescence materials which are constructed by polycondensation of aromatic diamines with urea and formaldehyde. Excitingly, urea-formaldehyde room-temperature phosphorescence materials achieve phosphor lifetime up to 3326 ms. There may be two ways to enhance phosphorescence performance, one is that the polycondensation of aromatic diamine with urea and formaldehyde promotes spin-orbit coupling, and another is that the imidazole derivatives derived from the condensation of aromatic o-diamine with formaldehyde maintains low levels of energy level difference and spin-orbit coupling, thus achieving ultra-long afterglow. Surprisingly, urea-formaldehyde room-temperature phosphorescence materials exhibit tunable phosphorescence emission in electrostatic field. Accordingly, 1,4-phenylenediamine, urea, and formaldehyde are copolymerized and self-assembled into phosphorescence microspheres with different electrostatic potential strengths. By mixing 1 wt% 1,4-phenylenediamine polycondensation microspheres with 1,4-phenylenediamine free microspheres, phosphor lifetime of the composite could be regulated from 27 ms to 123 ms. Moreover, vulcanization process enables precise shaping of urea-formaldehyde room-temperature phosphorescence materials. This work not only demonstrates that urea-formaldehyde room-temperature phosphorescence materials are promising candidates for organic phosphors, but also exhibits the phenomenon of electrostatically regulated phosphorescence.

3.
Chem Sci ; 15(11): 4171-4178, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487222

RESUMO

Achieving long-lived room-temperature phosphorescence from pure organic amorphous polymers is attractive, and afterglow materials with colour-tunable and multiple-stimuli-responsive afterglow are particularly important, but only few materials with these characteristics have been reported so far. Herein, a facile and general method is reported to construct a series of ε-polylysine (ε-PL)-based afterglow materials with tunable colour (from blue to red) and long life. By doping guest molecules into ε-PL to obtain composite materials, the polymer matrix provides a rigid environment for luminescent groups, resulting in amorphous polymers with different RTPs. In this system, the materials even have impressive humidity-stimulated responses, and the phosphorescence emission exhibits excitation-dependent and time-dependent properties. The humidity-responsive afterglow is caused by the destruction of hydrogen bonds and quenching of triplet excitons. The time-dependent afterglow should stem from the formation of diversified RTP emissive species with comparable but different lifetimes. 9,10-diaminophene has Ex-De properties in the film doping state. With the change of excitation wavelength (254 nm to 365 nm), the emission wavelength shifts from 461 nm to 530 nm, accompanied by the change of emission colour from blue to green. In addition, the phosphorescence life of the film is the longest, up to 2504.7 ms, and the afterglow lasts up to 15 s, which is conducive to its applications in anti-counterfeiting and information encryption.

4.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341796

RESUMO

We study the dynamics of the end monomers of a real chain confined in a spherical cavity to search for a small target on the cavity surface using Langevin dynamics simulation. The results are compared and contrasted with those of a Rouse chain to understand the influence of excluded volume interactions on the search dynamics, as characterized by the first passage time (FPT). We analyze how the mean FPT depends on the cavity size Rb, the target size a, and the degree of confinement quantified by Rg/Rb, with Rg being the polymer radius of gyration in free space. As a basic finding, the equilibrium distribution of the end monomers of a real chain in a closed spherical cavity differs from that of a Rouse chain at a given Rg/Rb, which leads to the differences between the mean FPTs of real and Rouse chains. Fitting the survival probability S(t) by a multi-exponential form, we show that the S(t) of real chains exhibits multiple characteristic times at large Rg/Rb. Our simulation results indicate that the search dynamics of a real chain exhibit three characteristic regimes as a function of Rg/Rb, including the transition from the Markovian to non-Markovian process at Rg/Rb ≈ 0.39, along with two distinct regimes at 0.39 < Rg/Rb < 1.0 and Rg/Rb > 1.0, respectively, where S(t) exhibits a single characteristic time and multiple characteristic times.

5.
Heliyon ; 10(3): e24806, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314285

RESUMO

Cervical squamous cell carcinoma (CESC) ranks among the primary contributors to global cancer-associated mortality. However, the role mediated by synaptotagmin 7 (SYT7) in CESC remains unclear. Our study employed immunohistochemistry to assess the level of SYT7 expression in the tissue microarray. Furthermore, lentiviral shRNA transduction was utilized to establish SYT7 knockdown cell line models based on HeLa and SiHa cell lines. The functional impacts of silencing SYT7 expression in vitro were evaluated. A subcutaneous xenograft model was employed to examine the tumorigenic potential of cells with or without SYT7. The content of SYT7 in CESC tissues was significantly elevated compared to adjacent normal tissues. Functionally, silencing SYT7 in HeLa and SiHa cells suppressed cell proliferation, colony formation ability, and apoptosis enhancement. Additionally, cells with suppressed SYT7 also exhibited inhibited cell migration and invasion. In vivo experiments demonstrated the loss of tumorigenic ability in SYT7 knockdown cells and suppressed tumor growth. Quantitative PCR PrimeView PathArray and apoptosis antibody array analyses revealed that upon elimination of SYT7, there was a significant upregulation observed in Caspase 8, TNF-R1 (TNF receptor superfamily member 1A), and HSPA5 (heat shock protein family A [Hsp70] member 5), while TGFBI (transforming growth factor beta-induced), RPL31 (ribosomal protein L31), LUM (lumican), HSDL2 (hydroxysteroid dehydrogenase-like 2), ITGB5 (integrin subunit beta 5), and Smad2 (SMAD family member2) were downregulated. Overall, we have demonstrated the tumor-promoting functions of SYT7 in CESC.

6.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38265089

RESUMO

We utilized molecular dynamic simulation to investigate the glass formation of star polymer melts in which the topological complexity is varied by altering the number of star arms (f). Emphasis was placed on how the "confinement effect" of repulsive inter-arm interactions within star polymers influences the thermodynamics and dynamics of star polymer melts. All the characteristic temperatures of glass formation were found to progressively increase with increasing f, but unexpectedly the fragility parameter KVFT was found to decrease with increasing f. As previously observed, stars having more than 5 or 6 arms adopt an average particle-like structure that is more contracted relative to the linear polymer size having the same mass and exhibit a strong tendency for intermolecular and intramolecular segregation. We systematically analyzed how varying f alters collective particle motion, dynamic heterogeneity, the decoupling exponent ζ phenomenologically linking the slow ß- and α-relaxation times, and the thermodynamic scaling index γt. Consistent with our hypothesis that the segmental dynamics of many-arm star melts and thin supported polymer films should exhibit similar trends arising from the common feature of high local segmental confinement, we found that ζ increases considerably with increasing f, as found in supported polymer films with decreasing thickness. Furthermore, increasing f led to greatly enhanced elastic heterogeneity, and this phenomenon correlates strongly with changes in ζ and γt. Our observations should be helpful in building a more rational theoretical framework for understanding how molecular topology and geometrical confinement influence the dynamics of glass-forming materials more broadly.

7.
J Infect Dev Ctries ; 17(12): 1667-1673, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252719

RESUMO

INTRODUCTION: Systematic evaluation of the diagnostic value of next generation sequencing (NGS) in sepsis etiology. METHODOLOGY: We conducted a systematic search on four databases (Web of Science, Cochrane, PubMed, and Embase) and compiled diagnostic experiments using NGS to evaluate sepsis etiology. Two researchers conducted research and obtained data independently. RESULTS: Nine documents were included comprising 747 patients, 988 blood samples, 175 bronchoalveolar lavage fluid (BALF) samples, 16 cerebrospinal fluid samples, and one urine sample. The combined sensitivity of each study was 0.89 (95% CI: 0.82-0.95). The combined specificity was 0.40 (95% CI: 0.25-0.55). The combined positive likelihood ratio was 1.51 (95% CI: 1.18-1.98). The combined negative likelihood ratio was 0.28 (95% CI: 0.11-0.48). The diagnostic odds ratio (DOR) was 6.38 (95% CI: 2.53-15.32) and the area under the curve (AUC) was 0.84, (95% CI: 0.62-0.94). CONCLUSIONS: Based on the data we collected, we found that compared with the blood culture technology, NGS has the advantages of high sensitivity and wide detection range, but its specificity was low. Further study is needed to confirm the value of NGS in the etiological diagnosis of patients with sepsis.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Sepse , Humanos , Sepse/diagnóstico , Área Sob a Curva , Hemocultura , Líquido da Lavagem Broncoalveolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...