Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 527
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38992486

RESUMO

BACKGROUND: Morphological awareness (MA) deficit is strongly associated with Chinese developmental dyslexia (DD). However, little is known about the white matter substrates underlying the MA deficit in Chinese children with DD. METHODS: In the current study, 34 Chinese children with DD and 42 typical developmental (TD) children were recruited to complete a diffusion magnetic resonance imaging scan and cognitive tests for MA. We conducted linear regression to test the correlation between MA and DTI metrics, the structural abnormalities of the tracts related to MA, and the interaction effect of DTI metrics by group on MA. RESULTS: First, MA was significant related to the right inferior occipito-frontal fascicle (IFO) and inferior longitudinal fsciculus (ILF), the bilateral thalamo-occipital (T_OCC) and the left arcuate fasciculus (AF); second, compared to TD children, Chinese children with DD had lower axial diffusivity (AD) in the right IFO and T_OCC; third, there were significant interactions between metrics (fractional anisotropy (FA) and radial diffusivity (RD)) of the right IFO and MA in groups. The FA and RD of the right IFO were significantly associated with MA in children with DD but not in TD children. CONCLUSION: In conclusion, compared to TD children, Chinese children with DD had axonal degeneration not only in the ventral tract (the right IFO) but also the visuospatial tract (the right T_OCC) which were associated with their MA deficit. And Chinese MA involved not only the ventral tracts, but also the visuospatial pathway and dorsal tracts.


Assuntos
Imagem de Tensor de Difusão , Dislexia , Substância Branca , Humanos , Dislexia/diagnóstico por imagem , Dislexia/patologia , Masculino , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Criança , Conscientização , China , Povo Asiático , Imagem de Difusão por Ressonância Magnética , Testes Neuropsicológicos , Anisotropia , População do Leste Asiático
2.
Eur J Neurosci ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044301

RESUMO

Chemerin is an adipokine that contributes to metabolism regulation. Nucleus tractus solitarius (NTS) is the first relay station in the brain for accepting various visceral afferent activities for regulating cardiovascular activity. However, the roles of chemerin in the NTS in regulating sympathetic activity and blood pressure are almost unknown. This study aimed to determine the role and potential mechanism of chemerin in the NTS in modulating sympathetic outflow and blood pressure. Bilateral NTS microinjections were performed in anaesthetized adult male Sprague-Dawley rats. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were continuously recorded. Chemerin and its receptor chemokine-like receptor 1 (CMKLR1) were highly expressed in caudal NTS (cNTS). Microinjection of chemerin-9 to the cNTS increased RSNA, MAP and HR, which were prevented by CMKLR1 antagonist α-NETA, superoxide scavenger tempol or N-acetyl cysteine, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors diphenyleneiodonium or apocynin. Chemerin-9 increased superoxide production and NADPH oxidase activity in the cNTS. The increased superoxide production induced by chemerin-9 was inhibited by α-NETA. The effects of cNTS microinjection of chemerin-9 on the RSNA, MAP and HR were attenuated by the pretreatment with paraventricular nucleus (PVN) microinjection of NMDA receptor antagonist MK-801 rather than AMPA/kainate receptor antagonist CNQX. These results indicate that chemerin-9 in the NTS increases sympathetic outflow, blood pressure and HR via CMKLR1-mediated NADPH oxidase activation and subsequent superoxide production in anaesthetized normotensive rats. Glutamatergic inputs in the PVN are needed for the chemerin-9-induced responses.

3.
Nanomicro Lett ; 16(1): 254, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052161

RESUMO

Symmetric Na-ion cells using the NASICON-structured electrodes could simplify the manufacturing process, reduce the cost, facilitate the recycling post-process, and thus attractive in the field of large-scale stationary energy storage. However, the long-term cycling performance of such batteries is usually poor. This investigation reveals the unavoidable side reactions between the NASICON-type Na3V2(PO4)3 (NVP) anode and the commercial liquid electrolyte, leading to serious capacity fading in the symmetric NVP//NVP cells. To resolve this issue, an all-solid-state composite electrolyte is used to replace the liquid electrolyte so that to overcome the side reaction and achieve high anode/electrolyte interfacial stability. The ferroelectric engineering could further improve the interfacial ion conduction, effectively reducing the electrode/electrolyte interfacial resistances. The NVP//NVP cell using the ferroelectric-engineered composite electrolyte can achieve a capacity retention of 86.4% after 650 cycles. Furthermore, the electrolyte can also be used to match the Prussian-blue cathode NaxFeyFe(CN)6-z·nH2O (NFFCN). Outstanding long-term cycling stability has been obtained in the all-solid-state NVP//NFFCN cell over 9000 cycles at a current density of 500 mA g-1, with a fading rate as low as 0.005% per cycle.

4.
Biomedicines ; 12(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062086

RESUMO

BACKGROUND: The involvement of neutrophil-related genes (NRGs) in patients with osteosarcoma (OS) has not been adequately explored. In this study, we aimed to examine the association between NRGs and the prognosis as well as the tumor microenvironment of OS. METHODS: The OS data were obtained from the TARGET-OS and GEO database. Initially, we extracted NRGs by intersecting 538 NRGs from single-cell RNA sequencing (scRNA-seq) data between aneuploid and diploid groups, as well as 161 up-regulated differentially expressed genes (DEGs) from the TARGET-OS datasets. Subsequently, we conducted Least Absolute Shrinkage and Selection Operator (Lasso) analyses to identify the hub genes for constructing the NRG-score and NRG-signature. To assess the prognostic value of the NRG signatures in OS, we performed Kaplan-Meier analysis and generated time-dependent receiver operating characteristic (ROC) curves. Gene enrichment analysis (GSEA) and gene set variation analysis (GSVA) were utilized to ascertain the presence of tumor immune microenvironments (TIMEs) and immunomodulators (IMs). Additionally, the KEGG neutrophil signaling pathway was evaluated using ssGSEA. Subsequently, PCR and IHC were conducted to validate the expression of hub genes and transcription factors (TFs) in K7M2-induced OS mice. RESULTS: FCER1G and C3AR1 have been identified as prognostic biomarkers for overall survival. The findings indicate a significantly improved prognosis for OS patients. The effectiveness and precision of the NRG signature in prognosticating OS patients were validated through survival ROC curves and an external validation dataset. The results clearly demonstrate that patients with elevated NRG scores exhibit decreased levels of immunomodulators, stromal score, immune score, ESTIMATE score, and infiltrating immune cell populations. Furthermore, our findings substantiate the potential role of SPI1 as a transcription factor in the regulation of the two central genes involved in osteosarcoma development. Moreover, our analysis unveiled a significant correlation and activation of the KEGG neutrophil signaling pathway with FCER1G and C3AR1. Notably, PCR and IHC demonstrated a significantly higher expression of C3AR1, FCER1G, and SPI1 in Balb/c mice induced with K7M2. CONCLUSIONS: Our research emphasizes the significant contribution of neutrophils within the TIME of osteosarcoma. The newly developed NRG signature could serve as a good instrument for evaluating the prognosis and therapeutic approach for OS.

5.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948845

RESUMO

Childhood and adolescence are associated with protracted developmental remodeling of cortico-cortical structural connectivity. However, how heterochronous development in white matter structural connectivity spatially and temporally unfolds across the macroscale human connectome remains unknown. Leveraging non-invasive diffusion MRI data from both cross-sectional (N = 590) and longitudinal (baseline: N = 3,949; two-year follow-up: N = 3,155) developmental datasets, we found that structural connectivity development diverges along a pre-defined sensorimotor-association (S-A) connectional axis from ages 8.1 to 21.9 years. Specifically, we observed a continuum of developmental profiles that spans from an early childhood increase in connectivity strength in sensorimotor-sensorimotor connections to a late adolescent increase in association-association connectional strength. The S-A connectional axis also captured spatial variations in associations between structural connectivity and both higher-order cognition and general psychopathology. Together, our findings reveal a hierarchical axis in the development of structural connectivity across the human connectome.

6.
Adv Sci (Weinh) ; : e2400061, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005232

RESUMO

Although white matter (WM) accounts for nearly half of adult brain, its wiring diagram is largely unknown. Here, an approach is developed to construct WM networks by estimating interregional morphological similarity based on structural magnetic resonance imaging. It is found that morphological WM networks showed nontrivial topology, presented good-to-excellent test-retest reliability, accounted for phenotypic interindividual differences in cognition, and are under genetic control. Through integration with multimodal and multiscale data, it is further showed that morphological WM networks are able to predict the patterns of hamodynamic coherence, metabolic synchronization, gene co-expression, and chemoarchitectonic covariance, and associated with structural connectivity. Moreover, the prediction followed WM functional connectomic hierarchy for the hamodynamic coherence, is related to genes enriched in the forebrain neuron development and differentiation for the gene co-expression, and is associated with serotonergic system-related receptors and transporters for the chemoarchitectonic covariance. Finally, applying this approach to multiple sclerosis and neuromyelitis optica spectrum disorders, it is found that both diseases exhibited morphological dysconnectivity, which are correlated with clinical variables of patients and are able to diagnose and differentiate the diseases. Altogether, these findings indicate that morphological WM networks provide a reliable and biologically meaningful means to explore WM architecture in health and disease.

7.
J Colloid Interface Sci ; 675: 580-591, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38986331

RESUMO

Single-atom nanozymes (SANZs) have emerged as new media for enhancing chemodynamic therapy (CDT) to achieve desirable enzyme-like effects and excellent nanoscale specificity. However, non-optimal adsorption of Fenton-like reaction intermediates prevents SANZs from exerting kinetic activity and hinders the CDT effect. Herein, we demonstrate that heteroatom-doped Co single-atom nanozymes (SACNZs) with intrinsic charge transfer exhibit peroxidase-like properties and significantly improve the ability of CDT to treat Staphylococcus aureus-infected wounds. Density functional theory calculations showed that the S-induced charge transfer effect regulated the electronic distribution of the central metal more efficiently than P, thereby lowering the energy levels for the generation of OH and increasing the catalytic effect. Polyvinylpyrrolidone-modified SACNZs showed effects consistent with this theory in both in vitro antibacterial and in vivo ward management assays. This study systematically investigated the relationship between heteroatom-doping and the catalytic activity of metal centres, opening a new perspective for the application of CDT.

8.
J Leukoc Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953166

RESUMO

Ethnopharmacological treatments have shown beneficial effects in the clinical practice of autoimmune disorders. However, the underlying mechanism of immunomodulatory effects remains challenging, given the complicate composition of herbal medicines. Here, we developed an immunological approach to interrogate the T helper cell response. Through data mining we hypothesized that Chinese medicine formula, Yu-Ping-Feng (YPF) might be a promising candidate for treating primary Sjögren's syndrome (pSS), a common autoimmune disease manifested by exocrine gland dysfunction. We took advantage of a mouse model of experimental Sjögren's syndrome (ESS) that we previously established for YPF formula treatment. YPF therapy ameliorated the ESS pathology in mice with active disease, showing improved salivary function and decreased serum levels of autoantibodies. Phenotypic analysis suggested that both effector T and B cells were significantly suppressed. Using co-culture assay and adoptive transfer models, we demonstrated that YPF formula directly restrained effector/memory T cell expansion and differentiation into Th17 and T follicular helper (Tfh) cells, the key subsets in ESS pathogenesis. Importantly, we recruited 20 pSS patients and conducted a pilot study of 8-week therapy of YPF formula. YPF treatment effectively improved fatigue symptoms, exocrine gland functions and reduced serum IgG/IgA levels, while effector T and B cell subsets were significantly decreased. There was a trend of reduction on disease activity, but not statistically significant. Together, our findings suggested a novel approach to assess the immunomodulatory effects of YPF formula, which may be favorable for patients with autoimmune disorders.

9.
J Gastrointest Oncol ; 15(3): 1224-1244, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989433

RESUMO

Background: Matrix metalloproteinase 11 (MMP11) plays a vital role in cell proliferation, apoptosis, tumor angiogenesis, migration, and other basic processes. Currently, few studies have examined the value of MMP11 in pancreatic cancer in relation to prognostic risk, diagnostic indicators, and immunotherapy. This study aims to explore the association between MMP11 and the tumor immune microenvironment in pancreatic adenocarcinoma (PAAD). Methods: We selected clinical samples and data downloaded from The Cancer Genome Atlas and Genotype-Tissue Expression, in addition, we use other online data for further analysis. Through a comprehensive bioinformatics investigation, we systematically analyzed the clinical significance and expression level of MMP11 in pancreatic cancer. Results: MMP11 was overexpressed in many cancers, and a higher expression of MMP11 was associated with a poorer prognosis in pancreatic cancer. Conversely, the hypermethylation of MMP11 was associated with better overall survival. The MMP11 expression network had widespread effects on the prognosis and immune activation of PAAD. The expression of MMP11 was significantly associated with a variety of tumor-infiltrating immune cells. An association was also found between MMP11 expression and chemokines in PAAD. High MMP11 expression might be involved in immune cell migration to the tumor microenvironment. Conclusions: MMP11 is a prognostic biomarker for patients in pancreatic cancer and may regulate the tumor immune microenvironment. The potential effects and mechanisms of MMP11 in PAAD require further exploring.

10.
Adv Sci (Weinh) ; : e2401919, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976567

RESUMO

Renal cell carcinoma (RCC) is a substantial pathology of the urinary system with a growing prevalence rate. However, current clinical methods have limitations for managing RCC due to the heterogeneity manifestations of the disease. Metabolic analyses are regarded as a preferred noninvasive approach in clinics, which can substantially benefit the characterization of RCC. This study constructs a nanoparticle-enhanced laser desorption ionization mass spectrometry (NELDI MS) to analyze metabolic fingerprints of renal tumors (n = 456) and healthy controls (n = 200). The classification models yielded the areas under curves (AUC) of 0.938 (95% confidence interval (CI), 0.884-0.967) for distinguishing renal tumors from healthy controls, 0.850 for differentiating malignant from benign tumors (95% CI, 0.821-0.915), and 0.925-0.932 for classifying subtypes of RCC (95% CI, 0.821-0.915). For the early stage of RCC subtypes, the averaged diagnostic sensitivity of 90.5% and specificity of 91.3% in the test set is achieved. Metabolic biomarkers are identified as the potential indicator for subtype diagnosis (p < 0.05). To validate the prognostic performance, a predictive model for RCC participants and achieve the prediction of disease (p = 0.003) is constructed. The study provides a promising prospect for applying metabolic analytical tools for RCC characterization.

11.
Front Psychol ; 15: 1384635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957883

RESUMO

Introduction: The development of advanced sewage technologies empowers the industry to produce high-quality recycled water, which greatly influences human's life and health. Thus, this study investigates the mechanism of individuals' adoption of recycled water from the technology adoption perspective. Methods: Employing the mixed method of structural equation modeling and artificial neural network analysis, we examined a research model developed from the extended Unified Theory of Acceptance and Use of Technology (UTAUT2) framework. To examine the research model, this study employs a leading web-survey company (Sojump) to collect 308 valid samples from the residents in mainland China. Results: The structural equation modeling results verified the associations between the six predictors (performance expectancy, effort expectancy, social influence, facilitating conditions, environmental motivation, and price value), individuals' cognitive and emotional attitudes, and acceptance intention. The artificial neural network analysis validates and complements the structural equation modeling results by unveiling the importance rank of the significant determinants of the acceptance decisions. Discussion: The study provides theoretical implications for recycled water research and useful insights for practitioners and policymakers to reduce the environmental hazards of water scarcity.

12.
PLoS One ; 19(6): e0303451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870195

RESUMO

Infrared target detection is widely used in industrial fields, such as environmental monitoring, automatic driving, etc., and the detection of weak targets is one of the most challenging research topics in this field. Due to the small size of these targets, limited information and less surrounding contextual information, it increases the difficulty of target detection and recognition. To address these issues, this paper proposes YOLO-ISTD, an improved method for infrared small target detection based on the YOLOv5-S framework. Firstly, we propose a feature extraction module called SACSP, which incorporates the Shuffle Attention mechanism and makes certain adjustments to the CSP structure, enhancing the feature extraction capability and improving the performance of the detector. Secondly, we introduce a feature fusion module called NL-SPPF. By introducing an NL-Block, the network is able to capture richer long-range features, better capturing the correlation between background information and targets, thereby enhancing the detection capability for small targets. Lastly, we propose a modified K-means clustering algorithm based on Distance-IoU (DIoU), called K-means_DIOU, to improve the accuracy of clustering and generate anchors suitable for the task. Additionally, modifications are made to the detection heads in YOLOv5-S. The original 8, 16, and 32 times downsampling detection heads are replaced with 4, 8, and 16 times downsampling detection heads, capturing more informative coarse-grained features. This enables better understanding of the overall characteristics and structure of the targets, resulting in improved representation and localization of small targets. Experimental results demonstrate significant achievements of YOLO-ISTD on the NUST-SIRST dataset, with an improvement of 8.568% in mAP@0.5 and 8.618% in mAP@0.95. Compared to the comparative models, the proposed approach effectively addresses issues of missed detections and false alarms in the detection results, leading to substantial improvements in precision, recall, and model convergence speed.


Assuntos
Algoritmos , Raios Infravermelhos , Análise por Conglomerados , Reconhecimento Automatizado de Padrão/métodos
13.
PeerJ ; 12: e17446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827306

RESUMO

Objectives: To investigate the interaction between tramadol and representative tyrosine kinase inhibitors, and to study the inhibition mode of drug-interaction. Methods: Liver microsomal catalyzing assay was developed. Sprague-Dawley rats were administrated tramadol with or without selected tyrosine kinase inhibitors. Samples were prepared and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for analysis. Besides, liver, kidney, and small intestine were collected and morphology was examined by hematoxyline-eosin (H&E) staining. Meanwhile, liver microsomes were prepared and carbon monoxide differential ultraviolet radiation (UV) spectrophotometric quantification was performed. Results: Among the screened inhibitors, crizotinib takes the highest potency in suppressing the metabolism of tramadol in rat/human liver microsome, following non-competitive inhibitory mechanism. In vivo, when crizotinib was co-administered, the AUC value of tramadol increased compared with the control group. Besides, no obvious pathological changes were observed, including cell morphology, size, arrangement, nuclear morphology with the levels of alanine transaminase (ALT) and aspartate transaminase (AST) increased after multiple administration of crizotinib. Meanwhile, the activities of CYP2D1 and CYP3A2 as well as the total cytochrome P450 abundance were found to be decreased in rat liver of combinational group. Conclusions: Crizotinib can inhibit the metabolism of tramadol. Therefore, this recipe should be vigilant to prevent adverse reactions.


Assuntos
Crizotinibe , Citocromo P-450 CYP3A , Microssomos Hepáticos , Ratos Sprague-Dawley , Tramadol , Animais , Tramadol/farmacologia , Crizotinibe/farmacologia , Ratos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Masculino , Interações Medicamentosas , Humanos , Espectrometria de Massas em Tandem , Família 2 do Citocromo P450/metabolismo , Família 2 do Citocromo P450/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Analgésicos Opioides/farmacologia
15.
Front Pharmacol ; 15: 1392849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855755

RESUMO

The purpose of this study is to clarify the drug interaction profile of aumolertinib, and the influence of CYP3A4 genetic polymorphism on aumolertinib metabolic characteristics. Through microsomal enzyme reactions, we screened 153 drugs and identified 15 that significantly inhibited the metabolism of aumolertinib. Among them, telmisartan and carvedilol exhibited potent inhibitory activities in rat liver microsomes (RLM) and human liver microsomes (HLM). In vivo, the pharmacokinetic parameters of aumolertinib, including AUC and Cmax, were significantly altered when co-administered with carvedilol, with a notable decrease in the clearance rate CLz/F. Interestingly, the pharmacokinetic parameters of the metabolite HAS-719 exhibited a similar trend as aumolertinib when co-administered. Mechanistically, both telmisartan and carvedilol exhibited a mixed-type inhibition on the metabolism of aumolertinib. Additionally, we used a baculovirus-insect cell expression system to prepare 24 recombinant CYP3A4 microsomes and obtained enzymatic kinetic parameters using aumolertinib as a substrate. Enzyme kinetic studies obtained the kinetic parameters of various CYP3A4 variant-mediated metabolism of aumolertinib. Based on the relative clearance rates, CYP3A4.4, 5, 7, 8, 9, 12, 13, 14, 17, 18, 19, 23, 24, 33, and 34 showed significantly lower clearance rates compared to the wild-type. Among the different CYP3A4 variants, the inhibitory potency of telmisartan and carvedilol on the metabolism of aumolertinib also varied. The IC50 values of telmisartan and carvedilol in CYP3A4.1 were 6.68 ± 1.76 µM and 0.60 ± 0.25 µM, respectively, whereas in CYP3A4.12, the IC50 exceeded 100 µM. Finally, we utilized adeno-associated virus to achieve liver-specific high expression of CYP3A4*1 and CYP3A4*12. In the group with high expression of the less active CYP3A4*12, the magnitude of the drug-drug interaction was significantly attenuated. In conclusion, CYP3A4 genetic polymorphism not only influences the pharmacokinetic characteristics of aumolertinib, but also the inhibitory potency of telmisartan and carvedilol on it.

16.
Genomics ; 116(5): 110883, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857813

RESUMO

Pigmented potato tubers are abundant in chlorogenic acids (CGAs), a metabolite with pharmacological activity. This article comprehensively analyzed the transcriptome and metabolome of pigmented potato Huaxingyangyu and Jianchuanhong at four altitudes of 1800 m, 2300 m, 2800 m, and 3300 m. A total of 20 CGAs and intermediate CGA compounds were identified, including 3-o-caffeoylquinic acid, 4-o-caffeoylquinic acid, and 5-o-caffeoylquinic acid. CGA contents in Huaxinyangyu and Jianchuanhong reached its maximum at an altitude of 2800 m and slightly decreased at 3300 m. 48 candidate genes related to the biosynthesis pathway of CGAs were screened through transcriptome analysis. Weighted gene co-expression network analysis (WGCNA) identified that the structural genes of phenylalanine deaminase (PAL), coumarate-3 hydroxylase (C3H), cinnamic acid 4-hydroxylase (C4H) and the transcription factors of MYB and bHLH co-regulate CGA biosynthesis. The results of this study provide valuable information to reveal the changes in CGA components in pigmented potato at different altitudes.

17.
J Med Chem ; 67(13): 10783-10794, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38888591

RESUMO

Marine natural product (MNP) pretrichodermamide B (Pre B, 9) was identified as a novel STAT3 inhibitor in our previous work, while its metabolic instability hindered its further development. To address this drawback, ligand structure-based drug design was adopted leading to a series of Pre B derivatives. Among them, MNP trichodermamide B (tri B, 24) obtained by skeletal rearrangement exhibited more potent antiproliferative activity with an IC50 value of 0.12 µM against HCT116. Notably, 24 stood out with improved metabolic stability (T1/2 = 31 min) and more favorable oral bioavailability (F = 37.5%). Further studies indicated that 24 blocked JAK/STAT3 signaling in dose- and time-dependent manner. In vivo, 24 suppressed tumor growth (TGI = 65%) at a dose of 20 mg/kg in a HCT116-derived xenograft mouse model. Overall, 24 might be a promising lead compound for colon cancer and is worthy of further investigation.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias do Colo , Janus Quinases , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/síntese química , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Hepatology ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861680

RESUMO

BACKGROUND AND AIMS: Biliary tract cancers are aggressive gastrointestinal malignancies characterized by a dismal 5-year overall survival rate <20%. Current diagnostic modalities suffer from limitations regarding sensitivity and specificity. This study aimed to develop a bile metabolite-based platform for precise discrimination between malignant and benign biliary diseases. APPROACH AND RESULTS: Samples were collected from 336 patients with biliary tract cancer or benign biliary diseases across 3 independent cohorts. Untargeted metabolic fingerprinting was performed on 300 bile samples using novel nanoparticle-enhanced laser desorption/ionization mass spectrometry. Subsequently, a diagnostic assay was developed based on the exploratory cohort using a selected bile metabolic biomarker panel, with performance evaluated in the validation cohort. Further external validation of disease-specific metabolites from bile samples was conducted in a prospective cohort (n = 36) using quantitative analysis. As a result, we established a novel bile-based assay, BileMet, for the rapid and precise detection of malignancies in the biliary tract system with an AUC of 0.891. We identified 6-metabolite biomarker candidates and discovered the critical role of the chenodeoxycholic acid glycine conjugate as a protective metabolite associated with biliary tract cancer. CONCLUSIONS: Our findings confirmed the improved diagnostic capabilities of BileMet assay in a clinical setting. If applied, the BileMet assay enables intraoperative testing and fast medical decision-making for cases with suspected malignancy where brush cytology detection fails to support malignancy, ultimately reducing the economic burden by over 90%.

20.
Biomaterials ; 311: 122672, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38897029

RESUMO

Gastric cancer constitutes a malignant neoplasm characterized by heightened invasiveness, posing significant global health threat. Inspired by the analysis that gastric cancer patients with Helicobacter pylori (H. pylori) infection have higher overall survival, whether H. pylori can be used as therapeutics agent and oral drug delivery system for gastric cancer. Hence, we constructed engineered H. pylori for gastric cancer treatment. A type Ⅱ H. pylori with low pathogenicity, were conjugated with photosensitizer to develop the engineered living bacteria NIR-triggered system (Hp-Ce6). Hp-Ce6 could maintain activity in stomach acid, quickly infiltrate through mucus layer and finally migrate to tumor region owing to the cell morphology and urease of H. pylori. H. pylori, accumulated in the tumor site, severed as vaccine to activate cGAS-STING pathway, and synergistically remodel the macrophages phenotype. Upon irradiation within stomach, Hp-Ce6 directly destroyed tumor cells via photodynamic effect inherited by Ce6, companied by inducing immunogenic tumor cell death. Additionally, Hp-Ce6 exhibited excellent biosafety with fecal elimination and minimal blood absorption. This work explores the feasibility and availability of H. pylori-based oral delivery platforms for gastric tumor and further provides enlightening strategy to utilize H. pylori invariably presented in the stomach as in-situ immunomodulator to enhance antitumor efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...