Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 311: 122645, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38850717

RESUMO

Immunotherapy through the activation of the stimulator of interferon genes (STING) signaling pathway is increasingly recognized for its robust anti-tumor efficacy. However, the effectiveness of STING activation is often compromised by inadequate anti-tumor immunity and a scarcity of primed immune cells in the tumor microenvironment. Herein, we design and fabricate a co-axial 3D-printed scaffold integrating a non-nucleotide STING agonist, SR-717, and an AKT inhibitor, MK-2206, in its respective shell and core layers, to synergistically enhance STING activation, thereby suppressing tumor recurrence and growth. SR-717 initiates the STING activation to enhance the phosphorylation of the factors along the STING pathway, while MK-2206 concurrently inhibits the AKT phosphorylation to facilitate the TBK1 phosphorylation of the STING pathway. The sequential and sustained release of SR-717 and MK-2206 from the scaffold results in a synergistic STING activation, demonstrating substantial anti-tumor efficacy across multiple tumor models. Furthermore, the scaffold promotes the recruitment and enrichment of activated dendritic cells and M1 macrophages, subsequently stimulating anti-tumor T cell activity, thereby amplifying the immunotherapeutic effect. This precise and synergistic activation of STING by the scaffold offers promising potential in tumor immunotherapy.

2.
Adv Sci (Weinh) ; : e2309940, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874114

RESUMO

Liver fibrosis is a chronic pathological condition lacking specific clinical treatments. Stem cells, with notable potential in regenerative medicine, offer promise in treating liver fibrosis. However, stem cell therapy is hindered by potential immunological rejection, carcinogenesis risk, efficacy variation, and high cost. Stem cell secretome-based cell-free therapy offers potential solutions to address these challenges, but it is limited by low delivery efficiency and rapid clearance. Herein, an innovative approach for in situ implantation of smart microneedle (MN) arrays enabling precisely controlled delivery of multiple therapeutic agents directly into fibrotic liver tissues is developed. By integrating cell-free and platinum-based nanocatalytic combination therapy, the MN arrays can deactivate hepatic stellate cells. Moreover, they promote excessive extracellular matrix degradation by more than 75%, approaching normal levels. Additionally, the smart MN arrays can provide hepatocyte protection while reducing inflammation levels by ≈70-90%. They can also exhibit remarkable capability in scavenging almost 100% of reactive oxygen species and alleviating hypoxia. Ultimately, this treatment strategy can effectively restrain fibrosis progression. The comprehensive in vitro and in vivo experiments, supplemented by proteome and transcriptome analyses, substantiate the effectiveness of the approach in treating liver fibrosis, holding immense promise for clinical applications.

3.
Adv Sci (Weinh) ; 11(17): e2309899, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38380546

RESUMO

The emerging stem cell-derived hepatocyte-like cells (HLCs) are the alternative cell sources of hepatocytes for treatment of highly lethal acute liver failure (ALF). However, the hostile local environment and the immature cell differentiation may compromise their therapeutic efficacy. To this end, human adipose-derived mesenchymal stromal/stem cells (hASCs) are engineered into different-sized multicellular spheroids and co-cultured with 3D coaxially and hexagonally patterned human umbilical vein endothelial cells (HUVECs) in a liver lobule-like manner to enhance their hepatic differentiation efficiency. It is found that small-sized hASC spheroids, with a diameter of ≈50 µm, show superior pro-angiogenic effects and hepatic differentiation compared to the other counterparts. The size-dependent functional enhancements are mediated by the Wnt signaling pathway. Meanwhile, co-culture of hASCs with HUVECs, at a HUVECs/hASCs seeding density ratio of 2:1, distinctly promotes hepatic differentiation and vascularization both in vitro and in vivo, especially when endothelial cells are patterned into hollow hexagons. After subcutaneous implantation, the mini-liver, consisting of HLC spheroids and 3D-printed interconnected vasculatures, can effectively improve liver regeneration in two ALF animal models through amelioration of local oxidative stress and inflammation, reduction of liver necrosis, as well as increase of cell proliferation, thereby showing great promise for clinical translation.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Células-Tronco Mesenquimais , Impressão Tridimensional , Esferoides Celulares , Esferoides Celulares/citologia , Humanos , Animais , Células-Tronco Mesenquimais/citologia , Camundongos , Diferenciação Celular/fisiologia , Engenharia Tecidual/métodos , Fígado , Hepatócitos/citologia , Modelos Animais de Doenças , Falência Hepática/terapia , Técnicas de Cocultura/métodos
4.
Chem Commun (Camb) ; 60(17): 2301-2319, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251733

RESUMO

The emerging field of liquid biopsy has garnered significant interest in precision diagnostics, offering a non-invasive and repetitive method for analyzing bodily fluids to procure real-time diagnostic data. The precision and accuracy offered by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) technology have advanced and broadened the applications of liquid biopsy. Significantly, when combined with swiftly advancing nanotechnology, CRISPR/Cas-mediated nanodevices show vast potential in precise liquid biopsy applications. However, persistent challenges are still associated with off-target effects, and the current platforms also constrain the performance of the assays. In this review, we highlight the merits of CRISPR/Cas systems in liquid biopsy, tracing the development of CRISPR/Cas systems and their current applications in disease diagnosis particularly in liquid biopsies. We also outline ongoing efforts to design nanoscale devices with improved sensing and readout capabilities, aiming to enhance the performance of CRISPR/Cas detectors in liquid biopsy. Finally, we identify the critical obstacles hindering the widespread adoption of CRISPR/Cas liquid biopsy and explore potential solutions. This feature article presents a comprehensive overview of CRISPR/Cas-mediated liquid biopsies, emphasizing the progress in integrating nanodevices to improve specificity and sensitivity. It also sheds light on future research directions in employing nanodevices for CRISPR/Cas-based liquid biopsies in the realm of precision medicine.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Medicina de Precisão
5.
ACS Nano ; 17(24): 25243-25256, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38063365

RESUMO

Acute liver failure (ALF) is a critical life-threatening disease that occurs due to a rapid loss in hepatocyte functions. Hepatocyte transplantation holds great potential for ALF treatment, as it rapidly supports liver biofunctions and enhances liver regeneration. However, hepatocyte transplantation is still limited by renewable and ongoing cell sources. In addition, intravenously injected hepatocytes are primarily trapped in the lungs and have limited efficacy because of the rapid clearance in vivo. Here, we designed a Y-shaped DNA nanostructure to deliver microRNA-122 (Y-miR122), which could induce the hepatic differentiation and maturation of human mesenchymal stem cells. mRNA sequencing analysis revealed that the Y-miR122 promoted important hepatic biofunctions of the induced hepatocyte-like cells including fat and lipid metabolism, drug metabolism, and liver development. To further improve hepatocyte transplantation efficiency and therapeutic effects in ALF treatment, we fabricated protective microgels for the delivery of Y-miR122-induced hepatocyte-like cells based on droplet microfluidic technology. When cocultured with human umbilical vein endothelial cells in microgels, the hepatocyte-like cells exhibited an increase in hepatocyte-associated functions, including albumin secretion and cytochrome P450 activity. Notably, upon transplantation into the ALF mouse model, the multiple cell-laden microgels effectively induced the restoration of liver function and enhanced liver regeneration. Overall, this study presents an efficient approach from the generation of hepatocyte-like cells to hepatocyte transplantation in ALF therapy.


Assuntos
Falência Hepática Aguda , Transplante de Células-Tronco Mesenquimais , MicroRNAs , Microgéis , Camundongos , Animais , Humanos , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Microfluídica , Falência Hepática Aguda/terapia , Falência Hepática Aguda/induzido quimicamente , Hepatócitos/metabolismo , Fígado/metabolismo , Diferenciação Celular
6.
Sci Adv ; 9(32): eadh2413, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556535

RESUMO

Equipping multiple functionalities on adoptive effector cells is essential to overcome the complex immunological barriers in solid tumors for superior antitumor efficacy. However, current cell engineering technologies cannot endow these functionalities to cells within a single step because of the different spatial distributions of targets in one cell. Here, we present a core-shell anti-phagocytosis-blocking repolarization-resistant membrane-fusogenic liposome (ARMFUL) to achieve one-step multiplexing cell engineering for multifunctional cell construction. Through fusing with the M1 macrophage membrane, ARMFUL inserts an anti-CD47 (aCD47)-modified lipid shell onto the surface and simultaneously delivers colony-stimulating factor 1 receptor inhibitor BLZ945-loaded core into the cytoplasm. The surface-presenting aCD47 boosts macrophage's phagocytosis against the tumor by blocking CD47. The cytoplasm-located BLZ945 prompts its polarization resistance to M2 phenotype in the immunosuppressive microenvironment via inactivating the intracellular M2 polarization signaling pathway. This ARMFUL provides a versatile cell engineering platform to customize multimodal cellular functions for enhanced adoptive cell therapy.


Assuntos
Lipossomos , Neoplasias , Humanos , Lipossomos/metabolismo , Imunoterapia Adotiva , Linhagem Celular Tumoral , Fagocitose , Macrófagos/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
7.
Exploration (Beijing) ; 3(1): 20210170, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37323624

RESUMO

Global increasing demand for high life quality and length facilitates the development of tissue engineering and regenerative medicine, which apply multidisciplinary theories and techniques to achieve the structural reconstruction and functional recovery of disordered or damaged tissues and organs. However, the clinical performances of adopted drugs, materials, and powerful cells in the laboratory are inescapably limited by the currently available technologies. To tackle the problems, versatile microneedles are developed as the new platform for local delivery of diverse cargos with minimal invasion. The efficient delivery, as well as painless and convenient procedure endow microneedles with good patient compliance in clinic. In this review, we first categorize different microneedle systems and delivery models, and then summarize their applications in tissue engineering and regenerative medicine mainly involving maintenance and rehabilitation of damaged tissues and organs. In the end, we discuss the advantages, challenges, and prospects of microneedles in depth for future clinical translations.

8.
J Mater Chem B ; 11(28): 6595-6602, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37365998

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers with increasing incidence worldwide. However, it is still challenging to prevent the relapse of cSCC due to poor drug penetration across the stratum corneum. Herein, we report the design of a microneedle patch loaded with MnO2/Cu2O nanosheets and combretastatin A4 (MN-MnO2/Cu2O-CA4) for the enhanced therapy of cSCC. The prepared MN-MnO2/Cu2O-CA4 patch could effectively deliver adequate drugs locally into the tumor sites. Moreover, the glucose oxidase (GOx)-mimicking activity of MnO2/Cu2O could catalyze glucose to produce H2O2, which combined with the released Cu to induce a Fenton-like reaction to efficiently generate hydroxyl radicals for chemodynamic therapy. Meanwhile, the released CA4 could inhibit cancer cell migration and tumor growth by disrupting the tumor vasculature. Moreover, MnO2/Cu2O was endowed with the ability of photothermal conversion under the irradiation of near-infrared (NIR) laser, which could not only kill the cancer cells but also promote the efficiency of the Fenton-like reaction. Significantly, the photothermal effect did not compromise the GOx-like activity of MnO2/Cu2O, which guaranteed enough production of H2O2 for the sufficient generation of hydroxyl radicals. This work may open avenues for constructing MN-based multimodal treatment for the efficient therapy of skin cancers.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Peróxido de Hidrogênio , Terapia Fototérmica , Compostos de Manganês/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Óxidos/farmacologia , Radical Hidroxila
9.
Bioact Mater ; 28: 112-131, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37250866

RESUMO

Reactive oxygen species (ROS)-associated oxidative stress, inflammation storm, and massive hepatocyte necrosis are the typical manifestations of acute liver failure (ALF), therefore specific therapeutic interventions are essential for the devastating disease. Here, we developed a platform consisting of versatile biomimetic copper oxide nanozymes (Cu NZs)-loaded PLGA nanofibers (Cu NZs@PLGA nanofibers) and decellularized extracellular matrix (dECM) hydrogels for delivery of human adipose-derived mesenchymal stem/stromal cells-derived hepatocyte-like cells (hADMSCs-derived HLCs) (HLCs/Cu NZs@fiber/dECM). Cu NZs@PLGA nanofibers could conspicuously scavenge excessive ROS at the early stage of ALF, and reduce the massive accumulation of pro-inflammatory cytokines, herein efficiently preventing the deterioration of hepatocytes necrosis. Moreover, Cu NZs@PLGA nanofibers also exhibited a cytoprotection effect on the transplanted HLCs. Meanwhile, HLCs with hepatic-specific biofunctions and anti-inflammatory activity acted as a promising alternative cell source for ALF therapy. The dECM hydrogels further provided the desirable 3D environment and favorably improved the hepatic functions of HLCs. In addition, the pro-angiogenesis activity of Cu NZs@PLGA nanofibers also facilitated the integration of the whole implant with the host liver. Hence, HLCs/Cu NZs@fiber/dECM performed excellent synergistic therapeutic efficacy on ALF mice. This strategy using Cu NZs@PLGA nanofiber-reinforced dECM hydrogels for HLCs in situ delivery is a promising approach for ALF therapy and shows great potential for clinical translation.

10.
Adv Sci (Weinh) ; 10(22): e2300899, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156756

RESUMO

As a currently common strategy to treat cancer, surgical resection may cause tumor recurrence and metastasis due to residual postoperative tumors. Herein, an implantable sandwich-structured dual-drug depot is developed to trigger a self-intensified starvation therapy and hypoxia-induced chemotherapy sequentially. The two outer layers are 3D-printed using a calcium-crosslinked mixture ink containing soy protein isolate, polyvinyl alcohol, sodium alginate, and combretastatin A4 phosphate (CA4P). The inner layer is one patch of poly (lactic-co-glycolic acid)-based electrospun fibers loaded with tirapazamine (TPZ). The preferentially released CA4P destroys the preexisting blood vessels and prevents neovascularization, which obstructs the external energy supply to cancer cells but aggravates hypoxic condition. The subsequently released TPZ is bioreduced to cytotoxic benzotriazinyl under hypoxia, further damaging DNA, generating reactive oxygen species, disrupting mitochondria, and downregulating hypoxia-inducible factor 1α, vascular endothelial growth factor, and matrix metalloproteinase 9. Together these processes induce apoptosis, block the intracellular energy supply, counteract the disadvantage of CA4P in favoring intratumor angiogenesis, and suppress tumor metastasis. The in vivo and in vitro results and the transcriptome analysis demonstrate that the postsurgical adjuvant treatment with the dual-drug-loaded sandwich-like implants efficiently inhibits tumor recurrence and metastasis, showing great potential for clinical translation.


Assuntos
Antineoplásicos , Recidiva Local de Neoplasia , Humanos , Recidiva Local de Neoplasia/prevenção & controle , Fator A de Crescimento do Endotélio Vascular , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Tirapazamina/farmacologia , Hipóxia
11.
Adv Sci (Weinh) ; 10(18): e2207418, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092589

RESUMO

Resolving inflammation and promoting intestinal tissue regeneration are critical for inflammatory bowel disease (IBD) treatment. Bioactive glass (BG) is a clinically approved bone graft material and has been shown to modulate inflammatory response, but it is unknown whether BG can be applied to treat IBD. Here, it is reported that BG attenuates pro-inflammatory response of lipopolysaccharide (LPS)-stimulated macrophages and hence reduces inflammatory damage to intestinal organoids in vitro. In addition, zein/sodium alginate-based core-shell microspheres (Zein/SA/BG) are developed for oral delivery of BG, which helps prevent premature dissolution of BG in the stomach. The results show that Zein/SA/BG protects BG from a gastric-simulated environment while dissolved in an intestinal-simulated environment. When administered to acute and chronic colitis mice model, Zein/SA/BG significantly reduces intestinal inflammation, promotes epithelial tissue regeneration, and partially restores microbiota homeostasis. These findings are the first to reveal the therapeutic efficacy of BG against IBD, which may provide a new therapeutic approach at low cost for effective IBD treatment.


Assuntos
Doenças Inflamatórias Intestinais , Zeína , Camundongos , Animais , Microesferas , Hidrogéis , Doenças Inflamatórias Intestinais/tratamento farmacológico , Inflamação
12.
Biomaterials ; 294: 122014, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36709644

RESUMO

Engineering hepatocytes as multicellular cell spheroids can improve their viability after implantation in vivo for effective rescue of the devastating acute liver failure (ALF). However, there is still a lack of straightforward methods for efficient generation of functional hepatocyte spheroids. In this study, a magnetic system, consisting of magnetic microwell arrays and magnet blocks, is developed to realize magnetically controlled 3D cell capture and spatial confinement-mediated cell aggregation. The cell spheroids with smaller size show superior hepatic functions than the larger-sized counterparts. Notably, the intrinsic magnetism of magnetic microwell arrays can regulate superoxide anions in hepatocyte spheroids and herein promote various biological processes, including antioxidation, hepatocyte-related functions, and pro-angiogenic potential. Ectopic implantation of the functional cell spheroids in ALF-challenged mice significantly prolongs the animal survival, ameliorates inflammation, and promotes liver regeneration. Hence, application of the magnetic system for generation of functionally enhanced hepatocyte spheroids holds great potential for clinical translation in the future.


Assuntos
Hepatócitos , Falência Hepática Aguda , Camundongos , Animais , Falência Hepática Aguda/terapia , Esferoides Celulares , Fenômenos Físicos , Fenômenos Magnéticos
13.
Biomaterials ; 293: 121942, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36512863

RESUMO

Tumor-positive resection margins after surgery can result in tumor recurrence and metastasis. Although adjuvant postoperative radiotherapy and chemotherapy have been adopted in clinical practice, they lack efficacy and result in unavoidable side effects. Herein, a self-intensified in-situ therapy approach using electrospun fibers loaded with a biomimetic nanozyme and doxorubicin (DOX) is developed. The fabricated PEG-coated zeolite imidazole framework-67 (PZIF67) is demonstrated as a versatile nanozyme triggering reactions in cancer cells based on endogenous H2O2 and •O2-. The PZIF67-generated •OH induces reactive oxygen species (ROS) overload, implementing chemodynamic therapy (CDT). The O2 produced by PZIF67 inhibits the expression of hypoxia-up-regulated proteins, thereby suppressing tumor progression. PZIF67 also catalyzes the degradation of glutathione, further disturbing the intracellular redox homeostasis and enhancing CDT. Furthermore, the introduced DOX not only kills cancer cells individually, but also replenishes the continuously consumed substrates for PZIF67-catalyzed reactions. The PZIF67-weakened drug resistance strengthens the cytotoxicity of DOX. The combined application of PZIF67 and DOX also suppresses metastasis-associated genes. Both in vitro and in vivo results demonstrate that the self-intensified synergy of PZIF67 and DOX on electrospun fibers efficiently prevents postsurgical tumor recurrence and metastasis, offering a feasible therapeutic regimen for operable malignant tumors.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Biomimética , Recidiva Local de Neoplasia/prevenção & controle , Recidiva Local de Neoplasia/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Glutationa/metabolismo , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
14.
J Sci Food Agric ; 103(1): 205-212, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35866430

RESUMO

BACKGROUND: The formulation of phytosterol (PS)-enriched functional foods has attracted increasing interest in the recent years, owing to its potential health effects. However, the poor solubility and bioavailability greatly limit PS application in this regard. This study investigated whether soy protein isolate (SPI) could effectively perform as a nanocarrier for improving the water solubility, bioaccessibility, and cholesterol-lowering activity of PSs. RESULTS: In this work, we fabricated SPI-PS nanocomplexes, which not only can enhance the stability and bioaccessibility of PS, but also improve the cholesterol-lowering ability of SPI. This improvement was mainly due to the formation of protein-active substance complexes, through hydrophobic interactions. The complexation with PSs resulted in formation of nanosized particles with greater sizes, lower ζ-potential, and higher surface hydrophobicity. The encapsulation efficiency, loading amount, and solubility of PS were closely related to the applied PS concentration in the mixed dispersions, and the maximal PS solubility in the aqueous phase reached about 1.63 mg mL-1 at the highest PS concentration (2.0 mg mL-1 ). The PS molecules in the nanocomplexes were mainly present in the amorphous form. The enhanced in vitro cholesterol-lowering activity of PS nanocomplexes relative to free PS seemed to be closely related to its higher bioaccessibility. CONCLUSION: The findings are of relevance for the development of food-grade PS ingredients suitable for the formulations of PS-enriched functional foods. © 2022 Society of Chemical Industry.


Assuntos
Fitosteróis , Proteínas de Soja , Proteínas de Soja/química , Fitosteróis/química , Colesterol , Excipientes , Interações Hidrofóbicas e Hidrofílicas
15.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36297356

RESUMO

One of the great challenges of postoperative prostate cancer management is tumor recurrence. Although postoperative chemotherapy presents benefits to inhibit unexpected recurrence, it is still limited due to the drug resistance or intolerable complications of some patients. Electrospun nanofiber, as a promising drug carrier, demonstrating sustained drug release behavior, can be implanted into the tumor resection site during surgery and is conductive to tumor inhibition. Herein, we fabricated electrospun nanofibers loaded with doxorubicin (DOX) and ABT199 to synergistically prevent postoperative tumor recurrence. Enzymatic degradation of the biodegradable electrospun nanofibers facilitated the release of the two drugs. The primarily released DOX from the electrospun nanofibers effectively inhibited tumor recurrence. However, the sustained release of DOX led to drug resistance of the tumor cells, yielding unsatisfactory eradication of the residual tumor. Remarkably, the combined administration of DOX and ABT199, simultaneously released from the nanofibers, not only prolonged the chemotherapy by DOX but also overcame the drug resistance via inhibiting the Bcl-2 activation and thereby enhancing the apoptosis of tumor cells by ABT199. This dual-drug-loaded implant system, combining efficient chemotherapy and anti-drug resistance, offers a prospective strategy for the potent inhibition of postoperative tumor recurrence.

16.
ACS Nano ; 16(11): 18886-18897, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36288210

RESUMO

Timely clearance of myelin debris is the premise of neuroinflammation termination and tissue regeneration in multiple sclerosis (MS). Microglia are the main scavengers of myelin debris in MS lesions, but its phagocytic capability is limited in MS patients. Here, we develop neutrophil-derived nanovesicles (NNVs) to enhance the efficiency of myelin debris clearance in microglia for MS therapy. RNA sequencing (RNAseq) results demonstrate that NNVs treatment ameliorates lesional neuroinflammation of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Consequently, EAE mice exhibit favorable neurological functions and white matter integrity after NNVs treatment. Specifically, NNVs treatment upregulates the expression of nuclear factor E2-related factor 2 (NRF2) in microglia, as revealed by Assay for Transposase Accessible Chromatin using sequencing (ATACseq). We also demonstrate that NRF2 can activate the transcription of RUBCN (RUN domain and cysteine-rich domain containing Beclin 1-interacting protein), which in turn enhances LC3-associated phagocytosis (LAP) in microglia. As a result, myelin debris engulfed by microglia can be efficiently catabolized in NNVs-treated EAE mice without obvious side effects. Together, this study proves that NNVs can modulate neuroinflammation by clearing myelin debris and is a promising MS treatment strategy.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Microglia/metabolismo , Microglia/patologia , Neutrófilos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Camundongos Endogâmicos C57BL
17.
ACS Appl Mater Interfaces ; 14(24): 27525-27537, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35687834

RESUMO

Tumor recurrence is a critical conundrum in the postoperative therapy, on account of severe bleeding with disseminated tumor cells, residual tumor cells, and the rich nutrient and oxygen supply transported to tumors by the abundant blood vessels. Biodegradable drug-loaded implants, inserted in the resection cavity right away upon the surgery, possess bleeding prevention and efficient chemotherapeutic capabilities, considered to be a promising strategy to efficiently inhibit the recurrence of the solid tumor. Here, we developed a sandwich-like composite consisting of the combretastatin A4 (CA4)-loaded 3D-printed scaffold and doxorubicin (DOX)-loaded electrospun fiber (Scaffold-CA4@Fiber-DOX), presenting hemostatic, chemotherapeutic, and antibacterial potencies. The lyophilized 3D-printed scaffold with a porous structure rapidly absorbed and clotted the blood cells and disseminated tumor cells to prevent bleeding and tumor metastasis. Subsequently, the preferentially released CA4 from the scaffold disrupted the microtubules of the vascular endothelial cell, resulting in vascular deformation and consequent insufficient nutrient supply to the solid tumor. The sustained release of DOX from the sandwiched electrospun fiber dramatically inhibited the peripheral tumor cell proliferation. This all-in-one multifunctional implant system, combining efficient vascular disruption and chemotherapy, provides a promising strategy for postoperative tumor therapy.


Assuntos
Recidiva Local de Neoplasia , Estilbenos , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Estilbenos/farmacologia
18.
J Nanobiotechnology ; 20(1): 266, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672826

RESUMO

Surgical resection to achieve tumor-free margins represents a difficult clinical scenario for patients with hepatocellular carcinoma. While post-surgical treatments such as chemotherapy and radiotherapy can decrease the risk of cancer recurrence and metastasis, growing concerns about the complications and side effects have promoted the development of implantable systems for locoregional treatment. Herein, 3D printed hydrogel scaffolds (designed as Gel-SA-CuO) were developed by incorporating one agent with multifunctional performance into implantable devices to simplify the fabrication process for efficiently inhibiting postoperative tumor recurrence. CuO nanoparticles can be effectively controlled and sustained released during the biodegradation of hydrogel scaffolds. Notably, the released CuO nanoparticles not only function as the reservoir for releasing Cu2+ to produce intracellular reactive oxygen species (ROS) but also serve as photothermal agent to generate heat. Remarkably, the heat generated by photothermal conversion of CuO nanoparticles further promotes the efficiency of Fenton-like reaction. Additionally, ferroptosis can be induced through Cu2+-mediated GSH depletion via the inactivation of GPX4. By implanting hydrogel scaffolds in the resection site, efficient inhibition of tumor recurrence after primary resection can be achieved in vivo. Therefore, this study may pave the way for the development of advanced multifunctional implantable platform for eliminating postoperative relapsable cancers.


Assuntos
Ferroptose , Neoplasias Hepáticas , Nanopartículas , Linhagem Celular Tumoral , Glutationa , Humanos , Hidrogéis , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/prevenção & controle , Impressão Tridimensional
19.
Talanta ; 234: 122675, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364475

RESUMO

Hepatitis B virus (HBV) infection is one of the global healthcare burdens, and its early diagnosis is crucial for the prevention of HBV-induced chronic hepatitis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although different detection approaches have been reported, most of these methods either rely on sophisticated machines or procedures, which limit their use particularly in the high endemic, developing countries. In this work, we report a dual-sensing nanoplatform built on noble metal-molybdenum disulfide (MoS2) nanohybrids, and this platform can detect the HBV DNA target through either fluorometric or colorimetric readouts. The design with the silver nanocluster (AgNC)-MoS2 nanohybrid enables multiplex fluorescent detection, while the HBV DNA-regulated growth of platinum nanoparticles (PtNPs) on the MoS2 nanosheets offers signal-on colorimetric detection. Both AgNC-MoS2 and PtNP-MoS2 nanohybrids show high sensitivity with pico-molar detection limit and single nucleotide specificity, even with the spiked human serum. Collectively, the proposed nanohybrids possess their potential in the use of early HBV diagnosis, particularly suitable for the high endemic areas with limited medical and instrumental supports.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Colorimetria , DNA , Dissulfetos , Vírus da Hepatite B/genética , Humanos , Limite de Detecção , Molibdênio , Platina
20.
ACS Appl Mater Interfaces ; 13(16): 18488-18499, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856761

RESUMO

The postoperative tumor recurrence and chemotherapy resistance in clinical osteosarcoma treatment have raised an imperative need to develop local implants for selectively killing residual tumor cells and simultaneously provide a scaffold for effectively filling the tumor resection-induced bone defects. Herein, a multifunctional platform is developed through successively coating TiN microparticles and doxorubicin (DOX) on the surface of tricalcium phosphate (TCP) scaffolds to achieve synergetic effects of photothermal therapy and chemotherapy for osteosarcoma. The content of TiN and DOX in the scaffolds can be flexibly adjusted by immersing the scaffolds into the solution containing different concentrations of TiN and DOX. The excellent therapeutic effect was achieved both in vitro and in vivo through the precise photothermal therapy and localized controlled-release chemotherapy. Moreover, the overall bulk scaffolds provide the mechanical support for bone tissue when implanting scaffolds into bone defects resulting from surgical removal of osteosarcoma. Importantly, using the poly(d,l-lactide) (PDLLA) as the medium, the scaffolds can be exploited as a universal platform for loading different kinds of therapeutic agents. This study may provide insights into designing multifunctional local implantation for eradicating tumors after surgical interventions with mitigated side effects.


Assuntos
Cerâmica/química , Osteossarcoma/terapia , Impressão Tridimensional , Alicerces Teciduais/química , Fosfatos de Cálcio/química , Terapia Combinada , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Osteossarcoma/tratamento farmacológico , Fototerapia , Poliésteres/química , Propriedades de Superfície , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...