Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 379: 114870, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897539

RESUMO

BACKGROUND AND PURPOSE: The pathophysiological features of acute ischemic stroke (AIS) often involve dysfunction of the blood-brain barrier (BBB), characterized by the degradation of tight junction proteins (Tjs) leading to increased permeability. This dysfunction can exacerbate cerebral injury and contribute to severe complications. The permeability of the BBB fluctuates during different stages of AIS and is influenced by various factors. Developing effective therapies to restore BBB function remains a significant challenge in AIS treatment. High levels of vascular endothelial growth factor (VEGF) in the early stages of AIS have been shown to worsen BBB breakdown and stroke progression. Our study aimed to investigate the protective effects of the VEGF receptor inhibitor Axitinib on BBB dysfunction and cerebral ischemia/reperfusion-induced injury. METHODS: BEnd3 cell exposed to oxygen-glucose deprivation (OGD) model was constructed to estimate pharmacological activity of Axitinib (400 ng/ml) on anti-apoptosis and pathological barrier function recovery. In vivo, rats were subjected to a 1 h transient middle cerebral artery occlusion and 23 h reperfusion (tMCAO/R) to investigate the permeability of BBB and cerebral tissue damage. Axitinib was administered through the tail vein at the beginning of reperfusion. BBB integrity was assessed by Evans blue leakage and the expression levels of Tjs claudin-5 and occludin. RESULTS: Our research revealed that co-incubation with Axitinib enhanced the cell viability of OGD-insulted bEnd3 cells, decreased LDH leakage rate, and suppressed the expression of apoptosis-related proteins cytochrome C and Bax. Axitinib also mitigated the damage to Tjs and facilitated the restoration of transepithelial electrical resistance in OGD-insulted bEnd.3 cells. In vivo, Axitinib administration reduced intracerebral Evans blue leakage and up-regulated the expression of Tjs in the penumbra brain tissue in tMCAO/R rats. Notably, 10 mg/kg Axitinib exerted a significant anti-ischemic effect by decreasing cerebral infarct volume and brain edema volume, improving neurological function, and reducing pro-inflammatory cytokines IL-6 and TNF-α in the brain. CONCLUSIONS: Our study highlights Axitinib as a potent protectant of blood-brain barrier function, capable of promoting pathological blood-brain barrier recovery through VEGF inhibition and increased expression of tight junction proteins in AIS. This suggests that VEGF antagonism within the first 24 h post-stroke could be a novel therapeutic approach to enhance blood-brain barrier function and mitigate ischemia-reperfusion injury.

2.
Asian J Pharm Sci ; 19(2): 100904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601010

RESUMO

The challenge in the clinical treatment of Parkinson's disease lies in the lack of disease-modifying therapies that can halt or slow down the progression. Peptide drugs, such as exenatide (Exe), with potential disease-modifying efficacy, have difficulty in crossing the blood-brain barrier (BBB) due to their large molecular weight. Herein, we fabricate multi-functionalized lipid nanoparticles (LNP) Lpc-BoSA/CSO with BBB targeting, permeability-increasing and responsive release functions. Borneol is chemically bonded with stearic acid and, as one of the components of Lpc-BoSA/CSO, is used to increase BBB permeability. Immunofluorescence results of brain tissue of 15-month-old C57BL/6 mice show that Lpc-BoSA/CSO disperses across the BBB into brain parenchyma, and the amount is 4.21 times greater than that of conventional LNP. Motor symptoms of mice in Lpc-BoSA/CSO-Exe group are significantly improved, and the content of dopamine is 1.85 times (substantia nigra compacta) and 1.49 times (striatum) that of PD mice. α-Synuclein expression and Lewy bodies deposition are reduced to 51.85% and 44.72% of PD mice, respectively. Immunohistochemical mechanism studies show AKT expression in Lpc-BoSA/CSO-Exe is 4.23 times that of PD mice and GSK-3ß expression is reduced to 18.41%. Lpc-BoSA/CSO-Exe could reduce the production of α-synuclein and Lewy bodies through AKT/GSK-3ß pathway, and effectively prevent the progressive deterioration of Parkinson's disease. In summary, Lpc-BoSA/CSO-Exe increases the entry of exenatide into brain and promotes its clinical application for Parkinson's disease therapy.

3.
Adv Healthc Mater ; 13(8): e2302939, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38117094

RESUMO

Alzheimer's disease (AD) is a neurodegenerative illness characterized by intracellular tau-phosphorylation, ß-amyloid (Aß) plaques accumulation, neuroinflammation, and impaired behavioral ability. Owing to the lack of effective brain delivery approaches and the presence of the blood-brain barrier (BBB), current AD therapeutic endeavors are severely limited. Herein, a multifunctional delivery system (RVG-DDQ/PDP@siBACE1) is elaborately combined with a protein kinase B (AKT) agonist (SC79) for facilitating RVG-DDQ/PDP@siBACE1 to target and penetrate BBB, enter brain parenchyma, and further accumulate in AD brain lesion. Moreover, compared with the unitary dose of RVG-DDQ/PDP@siBACE1, this collaborative therapy strategy exhibits a distinctive synergistic function including scavenging reactive oxygen species (ROS), decreasing of Aß production, alleviating neuroinflammation by promoting the polarized microglia into the anti-inflammatory M2-like phenotype and significantly enhancing the cognitive functions of AD mice. More strikingly, according to these results, an innovative signaling pathway "lncRNA MALAT1/miR-181c/BCL2L11" is found that can mediate the neuronal apoptosis of AD. Taken together, combining the brain targeted delivery system with noninvasive BBB opening can provide a promising strategy and platform for targeting treatment of AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/terapia , Barreira Hematoencefálica/patologia , Doenças Neuroinflamatórias , Peptídeos beta-Amiloides/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Nanoscale ; 15(27): 11625-11646, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37377137

RESUMO

Ischemic stroke is characterized by high morbidity, disability, and mortality. Unfortunately, the only FDA-approved pharmacological thrombolytic, alteplase, has a narrow therapeutic window of only 4.5 h. Other drugs like neuroprotective agents have not been clinically used because of their low efficacy. To improve the efficacy of neuroprotective agents and the effectiveness of rescue therapies for hyperacute ischemic stroke, we investigated and verified the variation trends of the blood-brain barrier (BBB) permeability and regional cerebral blood flow over 24 h in rats that had ischemic strokes. Hypoperfusion and the biphasic increase of BBB permeability are still the main limiting factors for lesion-specific drug distribution and drug brain penetration. Herein, the nitric oxide donor hydroxyurea (HYD) was reported to downregulate the expression of tight junction proteins and upregulate intracellular nitric oxide content in the brain microvascular endothelial cells subjected to oxygen-glucose deprivation, which was shown to facilitate the transport of liposomes across  brain endothelial monolayer in an in vitro model. HYD also increased the BBB permeability and promoted microcirculation in the hyperacute phase of stroke. The neutrophil-like cell-membrane-fusogenic hypoxia-sensitive liposomes exhibited excellent performance in targeting the inflamed brain microvascular endothelial cells, enhancing cell association, and promoting rapid hypoxic-responsive release in the hypoxic microenvironment. Overall, the combined HYD and hypoxia-sensitive liposome dosing regimen effectively decreased the cerebral infarction volume and relieved neurological dysfunction in rats that had ischemic strokes; these therapies were involved in the anti-oxidative stress effect and the neurotrophic effect mediated by macrophage migration inhibitory factor.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Ratos , Animais , Lipossomos/metabolismo , Hidroxiureia/farmacologia , Hidroxiureia/metabolismo , Hidroxiureia/uso terapêutico , AVC Isquêmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Células Endoteliais , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Hipóxia , Isquemia Encefálica/tratamento farmacológico
5.
Zhonghua Yi Xue Za Zhi ; 95(31): 2537-41, 2015 Aug 18.
Artigo em Chinês | MEDLINE | ID: mdl-26711387

RESUMO

OBJECTIVE: To assess the use of Physical and Operative Severity Score for the Enumeration of Mortality and Morbidity (POSSUM) scoring system in predicting outcomes of patients undergoing orthopedic surgery and provide guidance for operation treatment decisions. METHODS: From April 2009 to September 2010, a total of 779 cases went operation in Beijing Hospital were collected.They were divided into two groups according to the presence or absence of complications.The patients' postoperative complications were predicted by POSSUM and compared to the actual morbidity to verify the effectiveness of the equation.Logistic regression was taken to make appropriate improvements for the POSSUM equation.ROC curve was drawn to describe the compliance of the original and new equations. RESULTS: In the 779 cases, the morbidity predicted by POSSUM is 212 cases while the actual morbidity is 65 cases.Of all risk factors, echocardiography ejection fraction showed a close relationship with postoperative complications (P<0.01). In the original equation, actual complication group compared with non-complication group, the difference was statistically significant (P<0.01). In the modified equation, complication group compared with non-complication group, the difference was statistically significant (P<0.01). Compared with the original one , the modified POSSUM had better predictive value on postoperative morbidity, and the comparison of AUC between the two groups was statistically significant ((0.67 ± 0.12) vs (0.75 ± 0.08), P<0.01). CONCLUSION: POSSUM over predicted morbidity of patients undergoing orthopedic surgery, it can be more accurate when modified appropriately.


Assuntos
Procedimentos Ortopédicos , Humanos , Morbidade , Complicações Pós-Operatórias , Período Pós-Operatório , Prognóstico , Curva ROC , Fatores de Risco
6.
Chem Commun (Camb) ; 51(61): 12231-4, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26134469

RESUMO

Fullerene-decorated gold nanoparticles were used to catalyse the Fenton reaction and the electron transfer cycle of the catalyst shifts the gold surface plasmon resonance back and forth. The plasmonic swing frequency is in accord with the redox reaction rate and could be applied for detection of organics in water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...