Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 34, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185653

RESUMO

BACKGROUND: Drought stress can substantially restrict maize growth and productivity, and global warming and an increasing frequency of extreme weather events are likely to result in more yield losses in the future. Therefore, unraveling the molecular mechanism underlying the response to drought stress is essential for breeding drought-resilient crops. RESULTS: In this study, we subjected the 3-leaf-period plants of two maize inbred lines, a drought-tolerant line (si287) and a drought-sensitive line (X178), to drought stress for seven days while growing in a chamber. Subsequently, we measured physiological traits and analyzed transcriptomic and metabolic profiles of two inbred lines. Our KEGG analysis of genes and metabolites revealed significant differences in pathways related to glycolysis/gluconeogenesis, flavonoid biosynthesis, starch and sucrose metabolism, and biosynthesis of amino acids. Additionally, our joint analysis identified proline, tryptophan and phenylalanine are crucial amino acids for maize response to drought stress. Furthermore, we concentrated on tryptophan (Trp), which was found to enhance tolerance via IAA-ABA signaling, as well as SA and nicotinamide adenine dinucleotide (NAD) consequent reactive oxygen species (ROS) scavenging. We identified three hub genes in tryptophan biosynthesis, indole-3-acetaldehyde oxidase (ZmAO1, 542,228), catalase 1 (ZmCAT1, 542,369), and flavin-containing monooxygenase 6 (ZmYUC6, 103,629,142), High expression of these genes plays a significant role in regulating drought tolerance. Two metabolites related to tryptophan biosynthesis, quinolinic acid, and kynurenine improved maize tolerance to drought stress by scavenging reactive oxygen species. CONCLUSIONS: This study illuminates the mechanisms underlying the response of maize seedlings to drought stress. Especially, it identifies novel candidate genes and metabolites, enriching our understanding of the role of tryptophan in drought stress. The identification of distinct resistance mechanisms in maize inbred lines will facilitate the exploration of maize germplasm and the breeding of drought-resilient hybrids.


Assuntos
Plântula , Zea mays , Plântula/genética , Zea mays/genética , Secas , Triptofano , Espécies Reativas de Oxigênio , Melhoramento Vegetal , Perfilação da Expressão Gênica , Aminoácidos
2.
Sci Rep ; 13(1): 18800, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914756

RESUMO

Due to the ongoing global warming, maize production worldwide is expected to be heavily inflicted by droughts. The grain yield of maize hybrids is an important factor in evaluating their suitability and stability. In this study, we utilized the AMMI model and GGE biplot to analyze grain yield of 20 hybrids from the three tested environments in Inner Mongolia in 2018 and 2019, aiming at selecting drought-tolerant maize hybrids. AMMI variance analysis revealed highly significant difference on main effects for genotype, environment, and their interaction. Furthermore, G11 (DK159) and G15 (JKY3308) exhibited favorable productivity and stability across all three test environments. Moreover, G10 (LH1) emerged as the most stable hybrid according to the AMMI analysis and the GGE biplot. Bayannur demonstrated the highest identification ability among the three tested sites. Our study provides accurate identification for drought-resilient maize hybrids in different rain-fed regions. These findings can contribute to the selection of appropriate hybrids that exhibit productivity, stability, and adaptability in drought-prone conditions.


Assuntos
Ammi , Zea mays , Zea mays/genética , Secas , Grão Comestível/genética , China
3.
Comput Intell Neurosci ; 2022: 2309317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401724

RESUMO

In order to reveal the dissolution behavior of iron tailings in blast furnace slag, the main component of iron tailings, SiO2, was used for research. Aiming at the problem of information loss and inaccurate extraction of tracking molten SiO2 particles in high temperature, a method based on the improved DeepLab v3+ network was proposed to track, segment, and extract small object particles in real time. First, by improving the decoding layer of the DeepLab v3+ network, construct dense ASPP (atrous spatial pyramid pooling) modules with different dilation rates to optimize feature extraction, increase the shallow convolution of the backbone network, and merge it into the upper convolution decoding part to increase detailed capture. Secondly, integrate the lightweight network MobileNet v3 to reduce network parameters, further speed up image detection, and reduce the memory usage to achieve real-time image segmentation and adapt to low-level configuration hardware. Finally, improve the expression of the loss function for the binary classification model of small object in this paper, combining the advantages of the Dice Loss binary classification segmentation and the Focal Loss balance of positive and negative samples, solving the problem of unbalanced dataset caused by the small proportion of positive samples. Experimental results show that MIoU (mean intersection over union) of the proposed model for small object segmentation is 6% higher than that of the original model, the overall MIoU is increased by 3%, and the execution time and memory consumption are only half of the original model, which can be well applied to real-time tracking and segmentation of small particles.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Ferro , Projetos de Pesquisa , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...