Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357567

RESUMO

BACKGROUND: Despite appropriate treatment, up to 50% of patients with proximal deep vein thrombosis (DVT) will develop the post-thrombotic syndrome (PTS). Once PTS occurs, there is no specific treatment, and some patients constantly suffer from intolerable symptoms. How to prevent PTS is important. OBJECTIVES: Characterize vein wall remodeling after thrombus and investigate the effects of antiproliferative agent on post-thrombotic vein wall remodeling in murine and human subjects. METHODS: Features of post-thrombotic vein wall remodeling in murine and human subjects were characterized using imaging and histological examinations. Paclitaxel-loaded hydrogels were used to assess the effects of antiproliferative agent on the remodeling in murine model. Based on the above results, a pilot study was conducted to assess the effects of paclitaxel-coated balloon dilation in severe PTS patients suffering from intolerable symptoms. The control cohort was obtained by 1:1 propensity score matching from a prospective database. RESULTS: Structural and functional alterations in post-thrombotic vein wall were verified by imaging and histological examinations, and predominant active α-SMA+ cells and FSP-1+ cells proliferation was observed. In the murine model, the application of paclitaxel-loaded hydrogels inhibited the remodeling. In the pilot clinical study, patients receiving DCB demonstrated benefits in Villalta scores and VCSS scores compared with those not receiving DCB, and no severe adverse events reported except for thrombosis recurrence. CONCLUSION: Cell proliferation plays an important role in post-thrombotic vein wall remodeling. Inhibition of cell proliferation inhibits the remodeling in murine model, and may reduce signs and symptoms in severe PTS patients.

3.
BMC Cardiovasc Disord ; 24(1): 461, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198782

RESUMO

BACKGROUND: This study aims to identify a morphological indicator of aortic dissection (AD) based on the geometrical characteristics of the thoracic aorta. METHODS: We evaluated computed tomographic angiograms of 63 samples with AD (22 with type A AD, 41 with type B AD) and 71 healthy samples. Via centerline extraction and spatial transformation, the spatial entanglement of the aorta was minimized, and the expanded 2D aortic morphology was obtained. The 2D morphology of the thoracic aorta was fit to a circle. The applicability of the fitting circle method for identifying aortic dissection was verified by multivariable logistic regression analysis. RESULTS: Via the 3D coordinate transformation algorithm, the optimal aortic view was obtained. On this view, the geometrical characteristics of the thoracic aortas of the healthy controls were similar to a portion of a circle (sum of residuals: 3502.45 ± 2566.71, variance: 86.23 ± 56.60), while that of AD samples had poorer similarity to the circle (sum of residuals: 5404.78 ± 3891.69, variance: 129.90 ± 90.09). This difference was significant (p < 0.001). A logistic regression model showed that increased deformation of the thoracic aorta was a significant indicator of aortic dissection (odds ratio: 1.35, p = 0.034). CONCLUSIONS: The morphology of the healthy thoracic aorta could be fit to a circle, while that of the dissected aorta had poorer similarity to the circle. The statistics of the circle are an effective indicator of aortic deformation in AD. TRIAL REGISTRATION: This study is registered in the Chinese Clinical Trial Registry (ChiCTR2000029219).


Assuntos
Aorta Torácica , Aneurisma da Aorta Torácica , Dissecção Aórtica , Aortografia , Angiografia por Tomografia Computadorizada , Valor Preditivo dos Testes , Interpretação de Imagem Radiográfica Assistida por Computador , Humanos , Dissecção Aórtica/diagnóstico por imagem , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos de Casos e Controles , Adulto , Estudos Retrospectivos , Tomografia Computadorizada Multidetectores
4.
Digit Health ; 10: 20552076241269450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165387

RESUMO

Objective: Aortic dissection (AD) is a severe emergency with high morbidity and mortality, necessitating strict monitoring and management. This retrospective study aimed to identify prognostic factors and establish predictive models for in-hospital mortality among AD patients in the intensive care unit (ICU). Methods: We retrieved ICU admission records of AD patients from the Medical Information Mart for Intensive Care (MIMIC)-IV critical care data set and the eICU Collaborative Research Database. Functional data analysis was further applied to estimate continuous vital sign processes, and variables associated with in-hospital mortality were identified through univariate analyses. Subsequently, we employed multivariable logistic regression and machine learning techniques, including simple decision tree, random forest (RF), and eXtreme Gradient Boosting (XGBoost) to develop prognostic models for in-hospital mortality. Results: Given 643 ICU admissions from MIMIC-IV and 501 admissions from eICU, 29 and 28 prognostic factors were identified from each database through univariate analyses, respectively. For prognostic model construction, 507 MIMIC-IV admissions were divided into 406 (80%) for training and 101 (20%) for internal validation, and 87 eICU admissions were included as an external validation group. Of the four models tested, the RF consistently exhibited the best performance among different variable subsets, boasting area under the receiver operating characteristic curves of 0.870 and 0.850. The models highlighted the mean 24-h fluid intake as the most potent prognostic factor. Conclusions: The current prognostic models effectively forecasted in-hospital mortality among AD patients, and they pinpointed noteworthy prognostic factors, including initial blood pressure upon ICU admission and mean 24-h fluid intake.

5.
Acta Biochim Biophys Sin (Shanghai) ; 56(8): 1118-1129, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39066577

RESUMO

Protein O-glycosylation, also known as mucin-type O-glycosylation, is one of the most abundant glycosylation in mammalian cells. It is initially catalyzed by a family of polypeptide GalNAc transferases (ppGalNAc-Ts). The trimeric spike protein (S) of SARS-CoV-2 is highly glycosylated and facilitates the virus's entry into host cells and membrane fusion of the virus. However, the functions and relationship between host ppGalNAc-Ts and O-glycosylation on the S protein remain unclear. Herein, we identify 15 O-glycosites and 10 distinct O-glycan structures on the S protein using an HCD-product-dependent triggered ETD mass spectrometric analysis. We observe that the isoenzyme T6 of ppGalNAc-Ts (ppGalNAc-T6) exhibits high O-glycosylation activity for the S protein, as demonstrated by an on-chip catalytic assay. Overexpression of ppGalNAc-T6 in HEK293 cells significantly enhances the O-glycosylation level of the S protein, not only by adding new O-glycosites but also by increasing O-glycan heterogeneity. Molecular dynamics simulations reveal that O-glycosylation on the protomer-interface regions, modified by ppGalNAc-T6, potentially stabilizes the trimeric S protein structure by establishing hydrogen bonds and non-polar interactions between adjacent protomers. Furthermore, mutation frequency analysis indicates that most O-glycosites of the S protein are conserved during the evolution of SARS-CoV-2 variants. Taken together, our finding demonstrate that host O-glycosyltransferases dynamically regulate the O-glycosylation of the S protein, which may influence the trimeric structural stability of the protein. This work provides structural insights into the functional role of specific host O-glycosyltransferases in regulating the O-glycosylation of viral envelope proteins.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicosilação , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Células HEK293 , SARS-CoV-2/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/genética , Polissacarídeos/metabolismo , Polissacarídeos/química , Polipeptídeo N-Acetilgalactosaminiltransferase , Simulação de Dinâmica Molecular , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Multimerização Proteica , COVID-19/virologia , COVID-19/metabolismo
6.
Adv Sci (Weinh) ; 11(31): e2306237, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922800

RESUMO

Abdominal aortic aneurysm (AAA) is a common and potentially life-threatening condition. Chronic aortic inflammation is closely associated with the pathogenesis of AAA. Nerve injury-induced protein 1 (NINJ1) is increasingly acknowledged as a significant regulator of the inflammatory process. However, the precise involvement of NINJ1 in AAA formation remains largely unexplored. The present study finds that the expression level of NINJ1 is elevated, along with the specific expression level in macrophages within human and angiotensin II (Ang II)-induced murine AAA lesions. Furthermore, Ninj1flox/flox and Ninj1flox/floxLyz2-Cre mice on an ApoE-/- background are generated, and macrophage NINJ1 deficiency inhibits AAA formation and reduces macrophage infiltration in mice infused with Ang II. Consistently, in vitro suppressing the expression level of NINJ1 in macrophages significantly restricts macrophage adhesion and migration, while attenuating macrophage pro-inflammatory responses. Bulk RNA-sequencing and pathway analysis uncover that NINJ1 can modulate macrophage infiltration through the TLR4/NF-κB/CCR2 signaling pathway. Protein-protein interaction analysis indicates that NINJ1 can activate TLR4 by competitively binding with ANXA2, an inhibitory interacting protein of TLR4. These findings reveal that NINJ1 can modulate AAA formation by promoting macrophage infiltration and pro-inflammatory responses, highlighting the potential of NINJ1 as a therapeutic target for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Moléculas de Adesão Celular Neuronais , Modelos Animais de Doenças , Macrófagos , Receptor 4 Toll-Like , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Camundongos , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Macrófagos/metabolismo , Humanos , Anexina A2/metabolismo , Anexina A2/genética , Masculino , Transdução de Sinais/genética , Camundongos Endogâmicos C57BL , Angiotensina II/metabolismo , Camundongos Knockout , Fatores de Crescimento Neural
7.
Nat Biomed Eng ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714892

RESUMO

Messenger RNA vaccines lack specificity for dendritic cells (DCs)-the most effective cells at antigen presentation. Here we report the design and performance of a DC-targeting virus-like particle pseudotyped with an engineered Sindbis-virus glycoprotein that recognizes a surface protein on DCs, and packaging mRNA encoding for the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or for the glycoproteins B and D of herpes simplex virus 1. Injection of the DC-targeting SARS-CoV-2 mRNA vaccine in the footpad of mice led to substantially higher and durable antigen-specific immunoglobulin-G titres and cellular immune responses than untargeted virus-like particles and lipid-nanoparticle formulations. The vaccines also protected the mice from infection with SARS-CoV-2 or with herpes simplex virus 1. Virus-like particles with preferential uptake by DCs may facilitate the development of potent prophylactic and therapeutic vaccines.

8.
Comput Biol Med ; 170: 108071, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325212

RESUMO

BACKGROUND: Thoracic aortic aneurysm (TAA) refers to dilation and enlargement of the thoracic aorta caused by various reasons. Most patients have no apparent symptoms in the early stage and are subject to a poor prognosis once the aneurysm ruptures. It is crucial to identify individuals who are predisposed to TAA and to discover effective therapeutic targets for early intervention. METHODS: We conducted a label-free quantitative proteomic analysis among aorta tissue samples from TAA patients to screen differentially expressed proteins (DEPs) and key co-expression modules. Two datasets from Gene Expression Omnibus (GEO) database were included for integrative analysis, and the identified genes were subjected to immunohistochemistry (IHC) validation. Detailed vesicle transport related enrichment analysis was conducted and two FDA-approved drugs, chlorpromazine (CPZ) and chloroquine (CQ), were selected for in vivo inhibition of vesicle transport in mice TAA model. The diameter of thoracic aorta, mortality and histological differences after interventions were evaluated. RESULTS: We found significant enrichments in functions involved with vesicle transport, extracellular matrix organizing, and infection diseases in TAA. Endocytosis was the most essential vesicle transport process in TAA formation. Interventions with CPZ and CQ significantly reduced the aneurysm diameter and elastin degradation in vivo and enhanced the survival rates of TAA mice. CONCLUSIONS: We systematically screened the aberrantly regulated bioprocesses in TAA based on integrative multi-omics analyses, identified and demonstrated the importance of vesicle transport in the TAA formation. Our study provided pilot evidence that vesicular transport was a potential and promising target for the treatment of TAA.


Assuntos
Aneurisma da Aorta Torácica , Multiômica , Humanos , Animais , Camundongos , Proteômica , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Modelos Animais de Doenças
9.
Adv Healthc Mater ; 12(28): e2301316, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37531238

RESUMO

Critical limb ischemia, the final course of peripheral artery disease, is characterized by an insufficient supply of blood flow and excessive oxidative stress. H2 S molecular therapy possesses huge potential for accelerating revascularization and scavenging intracellular reactive oxygen species (ROS). Moreover, it is found that BMP6 is the most significantly up-expressed secreted protein-related gene in HUVECs treated with GYY4137, a H2 S donor, based on the transcriptome analysis. Herein, a UIO-66-NH2 @GYY4137@BMP6 co-delivery nanoplatform to strengthen the therapeutic effects of limb ischemia is developed. The established UIO-66-NH2 @GYY4137@BMP6 nanoplatform exerts its proangiogenic and anti-oxidation functions by regulating key pathways. The underlying molecular mechanisms of UIO-66-NH2 @GYY4137@BMP6 dual-loading system lie in the upregulation of phosphorylated YAP/TAZ and Jun to promote HUVECs proliferation and downregulation of phosphorylated p53/p21 to scavenge excessive ROS. Meanwhile, laser-doppler perfusion imaging (LDPI), injury severity evaluation, and histological analysis confirm the excellent therapeutic effects of UIO-66-NH2 @GYY4137@BMP6 in vivo. This work may shed light on the treatment of critical limb ischemia by regulating YAP, Jun, and p53 signaling pathways based on gas-protein synergistic therapy.


Assuntos
Isquemia Crônica Crítica de Membro , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Morfogenética Óssea 6/metabolismo
10.
Front Immunol ; 14: 1138126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138870

RESUMO

Background: The occurrence of abdominal aortic aneurysms (AAAs) is related to the disorder of immune microenvironment. Cuprotosis was reported to influence the immune microenvironment. The objective of this study is to identify cuprotosis-related genes involved in the pathogenesis and progression of AAA. Methods: Differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) in mouse were identified following AAA through high-throughput RNA sequencing. The enrichment analyses of pathway were selected through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG). The validation of cuprotosis-related genes was conducted through immunofluorescence and western blot analyses. Results: Totally, 27616 lncRNAs and 2189 mRNAs were observed to be differentially expressed (|Fold Change| ≥ 2 and q< 0.05) after AAA, including 10424 up-regulated and 17192 down-regulated lncRNAs, 1904 up-regulated and 285 down-regulated mRNAs. Gene ontology and KEGG pathway analysis showed that the DElncRNAs and DEmRNAs were implicated in many different biological processes and pathways. Furthermore, Cuprotosis-related genes (NLRP3, FDX1) were upregulated in the AAA samples compared with the normal one. Conclusion: Cuprotosis-related genes (NLRP3,FDX1) involved in AAA immune environment might be critical for providing new insight into identification of potential targets for AAA therapy.


Assuntos
Aneurisma da Aorta Abdominal , RNA Longo não Codificante , Animais , Camundongos , Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Aneurisma da Aorta Abdominal/metabolismo , Biomarcadores , Biologia Computacional
11.
BMJ Open ; 13(4): e066782, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012019

RESUMO

OBJECTIVES: To conduct a comprehensive analysis of demographic information, medical history, and blood pressure (BP) and heart rate (HR) variability during hospitalisation so as to establish a predictive model for preoperative in-hospital mortality of patients with acute aortic dissection (AD) by using machine learning techniques. DESIGN: Retrospective cohort study. SETTING: Data were collected from the electronic records and the databases of Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and the First Affiliated Hospital of Anhui Medical University between 2004 and 2018. PARTICIPANTS: 380 inpatients diagnosed with acute AD were included in the study. PRIMARY OUTCOME: Preoperative in-hospital mortality rate. RESULTS: A total of 55 patients (14.47%) died in the hospital before surgery. The results of the areas under the receiver operating characteristic curves, decision curve analysis and calibration curves indicated that the eXtreme Gradient Boosting (XGBoost) model had the highest accuracy and robustness. According to the SHapley Additive exPlanations analysis of the XGBoost model, Stanford type A, maximum aortic diameter >5.5 cm, high variability in HR, high variability in diastolic BP and involvement of the aortic arch had the greatest impact on the occurrence of in-hospital deaths before surgery. Moreover, the predictive model can accurately predict the preoperative in-hospital mortality rate at the individual level. CONCLUSION: In the current study, we successfully constructed machine learning models to predict the preoperative in-hospital mortality of patients with acute AD, which can help identify high-risk patients and optimise the clinical decision-making. Further applications in clinical practice require the validation of these models using a large-sample, prospective database. TRIAL REGISTRATION NUMBER: ChiCTR1900025818.


Assuntos
Dissecção Aórtica , Pacientes Internados , Humanos , Mortalidade Hospitalar , Estudos Retrospectivos , China , Dissecção Aórtica/cirurgia , Aprendizado de Máquina
12.
Oxid Med Cell Longev ; 2023: 8134027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743697

RESUMO

N6-methyladenosine (m6A) is one of the most prevalent, abundant, and internal transcriptional modification and plays essential roles in diverse cellular and physiological processes. Low fluid shear stress (FSS) is a key pathological factor for many cardiovascular diseases, which directly forces on the endothelial cells of vessel walls. So far, the alterations and functions of m6A modifications in vascular endothelial cells at the low FSS are still unknown. Herein, we performed the transcriptome-wide m6A modification profiling of HUVECs at different FSS. We found that the m6A modifications were altered earlier and more sensitive than mRNA expressions in response to FSS. The low FSS increased the m6A modifications at CDS region but decreased the m6A modifications at 3' UTR region and regulated both the mRNA expressions and m6A modifications of the m6A regulators, such as the RBM15 and EIF3A. Functional annotations enriched by the hypermethylated and hypomethylated genes at low FSS revealed that the m6A modifications were clustered in the aging-related signaling pathways of mTOR, PI3K-AKT, insulin, and ERRB and in the oxidative stress-related transcriptional factors, such as HIF1A, NFAT5, and NFE2L2. Our study provided a pilot view of m6A modifications in vascular endothelial cells at low FSS and revealed that the m6A modifications driven by low FSS mediated the cellular responses to oxidative stress and cell aging, which suggested that the m6A modifications could be the potential targets for inhibiting vascular aging at pathological low FSS.


Assuntos
Envelhecimento , Células Endoteliais , Estresse Oxidativo , Fosfatidilinositol 3-Quinases , Regiões 3' não Traduzidas , Células Endoteliais da Veia Umbilical Humana , Humanos
13.
J Control Release ; 354: 615-625, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36641123

RESUMO

Immunomodulatory therapy has become a promising method for the clinical treatment of many diseases. Recently, pilot studies revealed that immunomodulatory therapy exhibited good effects on the treatment of cardiovascular diseases, but many problems remain to be solved, such as useful platforms for drug co-delivery and combination therapies. In this study, we designed and constructed the multifunctional nanoparticle Rapa@UiO-66-NH-FAM-IL-1Ra (RUFI) for the treatment of atherosclerotic cardiovascular disease. This nanoplatform combined the advantages of metal-organic frameworks (MOFs) for drug co-delivery, rapamycin and IL-1Ra for immunomodulation, IL-1Ra for cellular targeting, and 5-FAM for fluorescence imaging. RUFI exhibited good drug release of rapamycin and IL-1Ra and specific cytotoxicity for inflammatory macrophages in vitro. In an atherosclerotic model of diet-fed ApoE-/- mice, RUFI significantly targeted and reduced atherosclerosis plaques in coronary arteries, carotid arteries, and aortas. Mechanistic studies indicated that RUFI modulated macrophage phenotype, cytokine expression, and autophagy. This study demonstrated that combination therapy with rapamycin and IL-1Ra via MOF carriers enhanced the immunoregulatory effects against atherosclerosis. This drug co-delivery system suggests that MOF carriers loaded with immunomodulators are promising treatments for atherosclerosis or other inflammatory diseases.


Assuntos
Aterosclerose , Estruturas Metalorgânicas , Placa Aterosclerótica , Camundongos , Animais , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Aterosclerose/tratamento farmacológico , Placa Aterosclerótica/tratamento farmacológico , Sirolimo
14.
Mater Today Bio ; 16: 100401, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36052154

RESUMO

Gold nanorods have been studied extensively in the field of tumor therapy but have not been explored in the treatment of venous malformation (VM), which is a common vascular disease in clinic practice lacking an effective therapeutic approach. Herein we reported a nanoplatform of CD31 antibody-conjugated gold nanorods for the photothermal therapy of venous malformation. We immobilized CD31 antibodies on gold nanorods using standard 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysulfosuccinimide sodium (NHS) amine coupling strategies. Besides, a VM xenograft model suitable for testing therapeutic efficacy was established by isolating and culturing VM patient endothelial cells. In vitro experiments indicated that anti-CD31 gold nanorods (GNRs) combined with photothermal therapy (PTT) contributed to the suppression of proliferation and activation of the apoptosis pathway. For in vivo experiments, anti-CD31 GNRs were locally injected into VM xenograft models followed by near infrared (NIR) 808 â€‹nm laser irradiation. Notably, VM on the mice was destroyed and absorbed. The anti-CD31 GNRs nanoplatform may serve as a new strategy for the treatment of VM which is of good biosafety and high value of applications.

15.
Front Bioeng Biotechnol ; 10: 944435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935480

RESUMO

Endovascular interventions, such as balloon dilation and stent implantation, are currently recommended as the primary treatment for patients with peripheral artery disease (PAD), greatly improving patient prognosis. However, the consequent lumen restenosis that occurs after endovascular interventions has become an important clinical problem. Inflammation has been proven to be crucial to postoperative restenosis. In previous studies we have identified that Netrin-1-modified adipose-derived stem cells (N-ADSCs) transplantation is an effective anti-inflammatory strategy to repair vascular damage. Nevertheless, it remained to be explored how one could constantly deliver N-ADSCs onto damaged arteries. Therefore, we developed an adhesive double network (DN) hydrogel wrap loaded with N-ADSCs for sustained perivascular delivery. Inspired by the adhesion mechanism of mussels, we developed an adhesive and tough polyacrylamide/calcium-alginate/reduced graphene oxide/polydopamine (PAM/CA/rGO/PDA) hydrogel. Dopamine was attached to graphene sheets and limitedly oxidized to generate free catechol groups. The hydrogel could wrap damaged arteries and induce anti-inflammatory effects through N-ADSCs. In vitro experiments demonstrated that N-ADSCs significantly promoted the M2 polarization of macrophages to anti-inflammatory phenotypes and reduced the expression of inflammatory factors. In vivo experiments in a rat carotid artery guidewire injury model showed that the adhesive hydrogel wrap loaded with N-ADSCs could significantly reduce arterial inflammation, inhibit intimal hyperplasia and improve re-endothelialization. Altogether, this newly developed N-ADSCs-loaded hydrogel wrap provides an effective slow-releasing system, which may be a promising way to prevent and treat restenosis after endovascular interventions.

16.
Stem Cell Res Ther ; 13(1): 349, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883151

RESUMO

BACKGROUND: Preclinical studies have suggested that adipose-derived mesenchymal stem cells (ADSCs) transplantation can suppress abdominal aortic inflammation and aneurysm expansion through paracrine factors. Yet, the mechanism of action is not fully understood. In the present study, we further examined the function and mechanism of ADSC-derived exosomes (ADSC-exos) and their microRNA-17-5p (miR-17-5p) on the abdominal aortic aneurysm (AAA) progression. METHODS: ADSC-exos were isolated and identified. DiR and PKH67 staining were used to trace ADSC-exo in vivo and in vitro. Raw264.7 cells were applied to perform in vitro experiments, while a murine AAA model induced using angiotensin II (Ang II) was used for in vivo testing. The expression level of miR-17-5p in macrophages and Ang II-treated macrophages after ADSC-exos treatment was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The target relation between miR-17-5p and thioredoxin-interacting protein (TXNIP) was identified by a dual-luciferase reporter gene assay. Artificial activation and block of experiments of miR-17-5p and TXNIP were conducted to clarify their functions in inflammation during AAA progression. The severity of AAA between groups was assessed by maximal aorta diameter, AAA incidence, survival rate, and histological stainings. Besides, inflammasome-related proteins and macrophage pyroptosis were further evaluated using western blot, RT-qPCR, and enzyme-linked immunosorbent assay (ELISA). RESULTS: The ADSC-exos were isolated and identified. In vivo testing showed that ADSC-exos were mainly distributed in the liver. Meanwhile, in vitro experiments suggested that ADSC-derived exosomes were taken up by macrophages, while inside, ADSC-exos miR-17-5p decreased a TXNIP induced by Ang II by directly binding to its 3'-untranslated region (3'UTR). Furthermore, overexpression of miR-17-5p enhanced the therapeutic function of ADSC-exos on inflammation during AAA expansion in vivo, while its inhibition reversed this process. Finally, overexpressed TXNIP triggered macrophage pyroptosis and was alleviated by ADSC-derived exosomes in vitro. CONCLUSION: ADSC-exos miR-17-5p regulated AAA progression and inflammation via the TXNIP-NLRP3 signaling pathway, thus providing a novel insight in AAA treatment.


Assuntos
Aneurisma da Aorta Abdominal , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Animais , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/terapia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Exossomos/genética , Exossomos/metabolismo , Inflamassomos/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Tiorredoxinas/genética
17.
J Colloid Interface Sci ; 621: 180-194, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35461133

RESUMO

Chemodynamic therapy when combined with chemotherapy opens up a new avenue for treatment of cancer. However, its development is still restricted by low targeting, high dose and toxic side effects. Herein, rational designing and construction of a new multifunctional platform with the core-shell structure 5-ALA@UiO-66-NH-FAM@CP1 (ALA = 5-aminolevulinic acid, CP1 = zirconium-pemetrexed (Zr-MTA)) has been performed. In this platform, CP1 acting as a shell is encapsulated with the UiO-66-NH2 to engender a core-shell structure that promotes and achieves a high MTA loading rate through high affinity between MTA and unsaturated Zr site of UiO-66-NH2. The 5-ALA and 5-carboxyl fluorescein (5-FAM) was successfully loaded and covalently combined with UiO-66-NH2 due to its high porosity and presence of amino groups. The characterization results indicated that the loading rate of MTA (41.03 wt%) of platform is higher than the reported values. More importantly, the in vitro and in vivo results also demonstrated that it has a good folate targeting ability and realizes high efficient antitumor activity by chemotherapy combied with photodynamic therapy (PDT). This newly developed multifunctional platform could provide a new idea for designing and constructing the carrier with chemotherapy and PDT therapy.


Assuntos
Estruturas Metalorgânicas , Compostos Organometálicos , Fotoquimioterapia , Ácido Aminolevulínico/química , Estruturas Metalorgânicas/química , Pemetrexede/farmacologia , Ácidos Ftálicos
18.
J Cancer ; 13(15): 3687-3700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36606199

RESUMO

Cuproptosis is a newly discovered non-apoptotic form of cell death that may be related to the development of tumors. Nonetheless, the potential role of cuproptosis-related lncRNAs in tumor microenvironment (TME) formation and patient-tailored treatment optimization of gastric cancer (GC) is still unclear. In this study, the six-lncRNA signature was constructed to quantify the molecular patterns of GC using LASSO-Cox regression model. Receiver operating characteristic (ROC) curves, C-index curves, independent prognostic analysis and principal component analysis (PCA) were conducted to verify and evaluate the model. The results showed that this risk model was accurate and reliable in predicting GC patient survival. In addition, two distinct subgroups were identified based on the risk model, which showed significant difference in biological functions of the associated genes, TME scores, characteristics of infiltrating immune cells and immunotherapy responses. We found that the high-risk subgroup was associated with immune activation and tumor-related pathways. Furthermore, compared with the low-risk subgroup, the high-risk subgroup had higher TME scores, richer immune cell infiltration and a better immunotherapy response. To accurately identify immune cold tumors and hot tumors, all samples of GC were divided into four distinct clusters by consensus clustering. Among them, Cluster 3 was identified as an immune hot tumor and was more sensitive to immunotherapy. Overall, this study demonstrates that cuproptosis-related lncRNAs could accurately predict the prognosis of patients with GC, help make a distinction between immune cold tumors and hot tumors and provide a basis for the precision medicine of GC.

19.
J Vasc Surg ; 75(4): 1440-1449.e5, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34788653

RESUMO

OBJECTIVE: Atherosclerosis obliterans (ASO) is a chronic occlusive arterial disease and the most common type of peripheral arterial disease. Current treatment options like medication and vascularization have limited effects for "no-option" patients, and stem cell therapy is considered a viable option, although its application and efficacy have not been standardized. The objective of this review was to assess the safety and efficacy of autologous stem cell therapy in patients with ASO. METHODS: We performed a literature search of published randomized controlled trials (RCTs) for patients with ASO receiving stem cell therapy without a revascularization option. PubMed, Embase, and the Cochrane Library were searched. This study was conducted by a pair of authors independently and audited by a third author. Data were synthesized with a random-effects model. RESULTS: A total of 630 patients in 12 RCTs were included. The results showed that cell therapy significantly improved total amputation (relative risk [RR], 0.64; 95% confidence interval [CI], 0.47-0.87; P = .004), major amputation (RR, 0.69; 95% CI, 0.50-0.94; P = .02), ankle-brachial index (mean difference [MD], 0.08; 95% CI, 0.02-0.13; P = .004), transcutaneous oxygen tension (MD, 11.52; 95% CI, 3.60-19.43; P = .004), and rest pain score (MD, -0.64; 95% CI, -1.10 to -0.17; P = .007) compared with placebo or standard care. However, current studies showed cell therapy was not superior to placebo or standard care in all-cause death (RR, 0.75; 95% CI, 0.41-1.36; P = .34) and ulcer size (MD, -8.85; 95% CI, -29.05 to 11.36; P = .39). The number of trials included was limited. Moreover, most trials were designed for "no-option" patients, and thus the results should be applied with caution to other patients with peripheral arterial disease. CONCLUSIONS: Patients with ASO can benefit from autologous cell therapy in limb salvage, limb blood perfusion, and rest pain alleviation.


Assuntos
Doença Arterial Periférica , Humanos , Dor , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Transplante de Células-Tronco/efeitos adversos , Transplante Autólogo
20.
Stem Cell Res Ther ; 12(1): 403, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266474

RESUMO

BACKGROUND: Diabetic limb ischemia is a clinical syndrome and refractory to therapy. Our previous study demonstrated that adipose-derived stem cells (ADSCs) overexpressing glyoxalase-1 (GLO-1) promoted the regeneration of ischemic lower limbs in diabetic mice, but low survival rate, difficulty in differentiation, and tumorigenicity of the transplanted cells restricted its application. Recent studies have found that exosomes secreted by the ADSCs have the advantages of containing parental beneficial factors and exhibiting non-immunogenic, non-tumorigenic, and strong stable characteristics. METHODS: ADSCs overexpressing GLO-1 (G-ADSCs) were established using lentivirus transfection, and exosomes secreted from ADSCs (G-ADSC-Exos) were isolated and characterized to coculture with human umbilical vein endothelial cells (HUVECs). Proliferation, apoptosis, migration, and tube formation of the HUVECs were detected under high-glucose conditions. The G-ADSC-Exos were injected into ischemic hindlimb muscles of type 2 diabetes mellitus (T2DM) mice, and the laser Doppler perfusion index, Masson's staining, immunofluorescence, and immunohistochemistry assays were adopted to assess the treatment efficiency. Moreover, the underlying regulatory mechanisms of the G-ADSC-Exos on the proliferation, migration, angiogenesis, and apoptosis of the HUVECs were explored. RESULTS: The G-ADSC-Exos enhanced the proliferation, migration, tube formation, and anti-apoptosis of the HUVECs in vitro under high-glucose conditions. After in vivo transplantation, the G-ADSC-Exo group showed significantly higher laser Doppler perfusion index, better muscle structural integrity, and higher microvessel's density than the ADSC-Exo and control groups by Masson's staining and immunofluorescence assays. The underlying mechanisms by which the G-ADSC-Exos protected endothelial cells both in vitro and in vivo might be via the activation of eNOS/AKT/ERK/P-38 signaling pathways, inhibition of AP-1/ROS/NLRP3/ASC/Caspase-1/IL-1ß, as well as the increased secretion of VEGF, IGF-1, and FGF. CONCLUSION: Exosomes derived from adipose-derived stem cells overexpressing GLO-1 protected the endothelial cells and promoted the angiogenesis in type 2 diabetic mice with limb ischemia, which will be a promising clinical treatment in diabetic lower limb ischemia.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Exossomos , Tecido Adiposo , Animais , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Células Endoteliais da Veia Umbilical Humana , Humanos , Isquemia/terapia , Camundongos , Neovascularização Fisiológica , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...