Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(21): 9227-9235, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38751196

RESUMO

Severe ozone (O3) pollution has been a major air quality issue and affects environmental sustainability in China. Conventional mitigation strategies focusing on reducing volatile organic compounds and nitrogen oxides (NOx) remain complex and challenging. Here, through field flux measurements and laboratory simulations, we observe substantial nitrous acid (HONO) emissions (FHONO) enhanced by nitrogen fertilizer application at an agricultural site. The observed FHONO significantly improves model performance in predicting atmospheric HONO and leads to regional O3 increases by 37%. We also demonstrate the significant potential of nitrification inhibitors in reducing emissions of reactive nitrogen, including HONO and NOx, by as much as 90%, as well as greenhouse gases like nitrous oxide by up to 60%. Our findings introduce a feasible concept for mitigating O3 pollution: reducing soil HONO emissions. Hence, this study has important implications for policy decisions related to the control of O3 pollution and climate change.


Assuntos
Ácido Nitroso , Ozônio , Solo , Ácido Nitroso/química , Solo/química , Poluição do Ar/prevenção & controle , Poluentes Atmosféricos , China , Mudança Climática , Óxido Nitroso
2.
Environ Sci Technol ; 58(18): 7904-7915, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38661303

RESUMO

Nitrogen dioxide (NO2) hydrolysis in deliquesced aerosol particles forms nitrous acid and nitrate and thus impacts air quality, climate, and the nitrogen cycle. Traditionally, it is considered to proceed far too slowly in the atmosphere. However, the significance of this process is highly uncertain because kinetic studies have only been made in dilute aqueous solutions but not under high ionic strength conditions of the aerosol particles. Here, we use laboratory experiments, air quality models, and field measurements to examine the effect of the ionic strength on the reaction kinetics of NO2 hydrolysis. We find that high ionic strengths (I) enhance the reaction rate constants (kI) by more than an order of magnitude compared to that at infinite dilution (kI=0), yielding log10(kI/kI=0) = 0.04I or rate enhancement factor = 100.04I. A state-of-the-art air quality model shows that the enhanced NO2 hydrolysis reduces the negative bias in the simulated concentrations of nitrous acid by 28% on average when compared to field observations over the North China Plain. Rapid NO2 hydrolysis also enhances the levels of nitrous acid in other polluted regions such as North India and further promotes atmospheric oxidation capacity. This study highlights the need to evaluate various reaction kinetics of atmospheric aerosols with high ionic strengths.


Assuntos
Aerossóis , Aerossóis/química , Hidrólise , Concentração Osmolar , Dióxido de Nitrogênio/química , Cinética , Atmosfera/química , Poluentes Atmosféricos/química
3.
Sci Total Environ ; 928: 172336, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614350

RESUMO

Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH) and plays a vital role in atmospheric photochemistry and nitrogen cycling. Soil emissions have been considered as a potential source of HONO. Lately, the HONO emission via soil-atmosphere exchange (ESA-exchange) from soil nitrite has been validated and quantified through chamber experiments, but has not been assessed in the real atmosphere. We coupled ESA-exchange and the other seven potential sources of HONO (i.e., traffic, indoor and soil bacterial emissions, heterogeneous reactions on ground and aerosol surfaces, nitrate photolysis, and acid displacement) into the Weather Research and Forecasting model with Chemistry (WRF-Chem), and found that diurnal variations of the soil emission flux at the Wangdu site were well simulated. During the non-fertilization period, ESA-exchange contributed ∼28 % and âˆ¼35 % of nighttime and daytime HONO, respectively, and enhanced the net ozone (O3) production rate by ∼8 % across the North China Plain (NCP). During the preintensive/intensive fertilization period, the maximum ESA-Exchange contributions attained ∼70 %/83 % of simulated HONO in the afternoon across the NCP, definitely asserting its dominance in HONO production. ESA-Exchange enhanced the OH production rate via HONO photolysis by ∼3.5/7.0 times, and exhibited an increase rate of ∼13 %/20 % in the net O3 production rate across the NCP. The total enhanced O3 due to the eight potential HONO sources ranged from ∼2 to 20 ppb, and ESA-exchange produced O3 enhancements of ∼1 to 6 ppb over the three periods. Remarkably, the average contribution of ESA-exchange to the total O3 enhancements remained ∼30 %. This study suggests that ESA-exchange should be included in three-dimensional chemical transport models and more field measurements of soil HONO emission fluxes and soil nitrite levels are urgently required.

4.
Environ Sci Technol ; 57(34): 12782-12793, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37596963

RESUMO

Summertime surface ozone in China has been increasing since 2013 despite the policy-driven reduction in fuel combustion emissions of nitrogen oxides (NOx). Here we examine the role of soil reactive nitrogen (Nr, including NOx and nitrous acid (HONO)) emissions in the 2013-2019 ozone increase over the North China Plain (NCP), using GEOS-Chem chemical transport model simulations. We update soil NOx emissions and add soil HONO emissions in GEOS-Chem based on observation-constrained parametrization schemes. The model estimates significant daily maximum 8 h average (MDA8) ozone enhancement from soil Nr emissions of 8.0 ppbv over the NCP and 5.5 ppbv over China in June-July 2019. We identify a strong competing effect between combustion and soil Nr sources on ozone production in the NCP region. We find that soil Nr emissions accelerate the 2013-2019 June-July ozone increase over the NCP by 3.0 ppbv. The increase in soil Nr ozone contribution, however, is not primarily driven by weather-induced increases in soil Nr emissions, but by the concurrent decreases in fuel combustion NOx emissions, which enhance ozone production efficiency from soil by pushing ozone production toward a more NOx-sensitive regime. Our results reveal an important indirect effect from fuel combustion NOx emission reduction on ozone trends by increasing ozone production from soil Nr emissions, highlighting the necessity to consider the interaction between anthropogenic and biogenic sources in ozone mitigation in the North China Plain.


Assuntos
Modelos Químicos , Ozônio , China , Nitrogênio , Solo
5.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37333211

RESUMO

Foam cells are dysfunctional, lipid-laden macrophages associated with chronic inflammation of infectious and non-infectious origin. For decades, the paradigm underlying foam cell biology has been based on atherogenesis, a disease in which macrophages are cholesterol-enriched. Our previous work showed that foam cells in tuberculous lung lesions surprisingly accumulate triglycerides, suggesting multiple modalities of foam cell biogenesis. In the present study, we used matrix-assisted laser desorption/ionization mass spectrometry imaging to assess the spatial distribution of storage lipids relative to foam-cell-rich areas in murine lungs infected with the fungal pathogen Cryptococcus neoformans and in human papillary renal cell carcinoma resection tissues. We also analyzed neutral lipid content and the transcriptional program of lipid-laden macrophages generated under corresponding in vitro conditions. The in vivo data were consistent with in vitro findings showing that C. neoformans-infected macrophages accumulated triglycerides, while macrophages exposed to human renal cell carcinoma-conditioned medium accumulated both triglycerides and cholesterol. Moreover, macrophage transcriptome analyses provided evidence for condition-specific metabolic remodeling. The in vitro data also showed that although both Mycobacterium tuberculosis and C. neoformans infections induced triglyceride accumulation in macrophages, they did so by different molecular mechanisms, as evidenced by different sensitivity of lipid accumulation to the drug rapamycin and the characteristics of macrophage transcriptome remodeling. Collectively, these data demonstrate that the mechanisms of foam cell formation are specific to the disease microenvironment. Since foam cells have been regarded as targets of pharmacological intervention in several diseases, recognizing that their formation is disease-specific opens new research directions of biomedical significance.

6.
Adv Drug Deliv Rev ; 198: 114874, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211279

RESUMO

The growing occurrence of invasive fungal infections and the mounting rates of drug resistance constitute a significant menace to human health. Antifungal drug combinations have garnered substantial interest for their potential to improve therapeutic efficacy, reduce drug doses, reverse, or ameliorate drug resistance. A thorough understanding of the molecular mechanisms underlying antifungal drug resistance and drug combination is key to developing new drug combinations. Here we discuss the mechanisms of antifungal drug resistance and elucidate how to discover potent drug combinations to surmount resistance. We also examine the challenges encountered in developing such combinations and discuss prospects, including advanced drug delivery strategies.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Micoses/tratamento farmacológico , Combinação de Medicamentos , Farmacorresistência Fúngica
7.
ACS Environ Au ; 3(1): 18-23, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37101842

RESUMO

Recently, deteriorating ozone (O3) pollution in China brought the precise diagnosis of O3 sensitive chemistry to the forefront. As a dominant precursor of OH radicals, atmospheric nitrous acid (HONO) plays an important role in O3 production. However, its measurement unavailability in many regions especially for second- and third-tier cities may lead to the misjudgment of the O3 sensitivity regime derived from observation-based models. Here, we systematically assess the potential impact of HONO on diagnosing the sensitivity of O3 production using a 0-dimension box model based on a comprehensive summer urban field campaign. The results indicated that the default mode (only the NO + OH reaction is included) in the model could underestimate ∼87% of observed HONO levels, leading to an obvious decrease (∼19%) of net O3 production in the morning, which was in line with the previous studies. The unconstrained HONO in the model was found to significantly push O3 production toward the VOC-sensitive regime. Additionally, it is unrealistic to change NO x but constrain HONO in the model due to the dependence of HONO formation on NO x . Assuming that HONO varied proportionally with NO x , a stronger NO x -sensitive condition could be achieved. Therefore, effective reduction of NO x should be given more attention together with VOC emission control for O3 mitigation.

8.
Sci Total Environ ; 881: 163438, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37054793

RESUMO

Atmospheric HONO acts as a major source for OH radicals in polluted areas, playing an important role in formation of secondary pollutants. However, the atmospheric HONO sources remain unclear. Here we propose that the heterogeneous reaction of NO2 on aerosols during aging processes acts as the dominant source for nocturnal HONO. Based on the nocturnal variations of HONO and related species in Tai'an city of China, we firstly developed new method to estimate the localized HONO dry deposition velocity (v(HONO)). The estimated v(HONO) of 0-0.077 m/s was in a good agreement with the reported ranges. Additionally, we set up a parametrization to reflect the HONO formation from the aged air parcels based on the variation of HONO/NO2 ratio. The detailed variation of nocturnal HONO could be well reproduced by a complete budget calculation coupled with above parameterizations, with the difference between the observed and calculated HONO levels being <5 %. The results also revealed the average contribution of HONO formation from aged air parcels to atmospheric HONO could achieve to be ~63 % in average.

9.
Environ Sci Technol ; 57(12): 4751-4762, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36919886

RESUMO

Atmospheric nitrous acid (HONO) is an important precursor of atmospheric hydroxyl radicals. Vehicle emissions and heterogeneous reactions have been identified as major sources of urban HONO. Here, we report on HONO emissions from residential natural gas (RNG) for water and space heating in urban areas based on in situ measurements. The observed HONO emission factors (EFs) of RNG heating vary between 6.03 and 608 mg·m-3 NG, which are highly dependent on the thermal load. The highest HONO EFs are observed at a high thermal load via the thermal NO homogeneous reaction. The average HONO EFs of RNG water heating in winter are 1.8 times higher than that in summer due to the increased thermal load caused by the lower inlet water temperatures in winter. The power-based HONO EFs of the traditional RNG heaters are 1085 times and 1.7 times higher than those of gasoline and diesel vehicles that meet the latest emission standards, respectively. It is estimated that the HONO emissions from RNG heaters in a typical Chinese city are gradually close to emissions from on-road vehicles when temperatures decline. These findings highlight that RNG heating is a non-negligible source of urban HONO emissions in China. With the continuous acceleration of coal-to-gas projects and the continuous tightening of NOx emission standards for vehicle exhaust, HONO emissions from RNG heaters will become more prominent in urban areas. Hence, it is urgently needed to upgrade traditional RNG heaters with efficient emission reduction technologies such as frequency-converted blowers, secondary condensers, and low-NOx combustors.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Gás Natural , Calefação , Emissões de Veículos/análise , China , Ácido Nitroso/análise
10.
Environ Sci Technol ; 57(7): 2715-2725, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36722840

RESUMO

Particulate nitrate (NO3-) has currently become the major component of fine particles in the North China Plain (NCP) during winter haze episodes. However, the contributions of formation pathways to ground NO3- in the NCP are not fully understood. Herein, the NO3- formation pathways were comprehensively investigated based on model simulations combined with two-month field measurements at a rural site in the winter NCP. The results indicated that the nocturnal chemistry of N2O5 hydrolysis aloft could contribute evidently to ground NO3- at the rural site during the pollution episodes with high aerosol water contents, achieving the contribution percentages of 25.2-30.4% of the total. In addition to the commonly proposed vertical mixing of breaking nocturnal boundary layer in the early morning, two additional transport pathways (frontal downdrafts and downslope mountain breezes) in the nighttime were found to make higher contributions to ground NO3-. Considering the dominant role (69.6-74.8%) of diurnal chemistry in NO3- formation, reduction of NOx emissions in the daytime may be an effective control measure for reducing regional NO3- in the NCP.


Assuntos
Poluentes Atmosféricos , Nitratos , Nitratos/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Hidrólise , Monitoramento Ambiental , China , Estações do Ano
11.
Microbiol Spectr ; : e0495522, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719231

RESUMO

In previous studies, we determined that the F-box protein Fbp1, a subunit of the SCF(Fbp1) E3 ligase in Cryptococcus neoformans, is essential for fungal pathogenesis. Heat-killed fbp1Δ cells (HK-fbp1) can confer vaccine-induced immunity against lethal challenge with clinically important invasive fungal pathogens, e.g., C. neoformans, C. gattii, and Aspergillus fumigatus. In this study, we found that either CD4+ T cells or CD8+ T cells were sufficient to confer protection against lethal challenge by C. neoformans in HK-fbp1-induced immunity. Given the potent effect of HK-fbp1 as a preventative vaccine, we further tested the potential efficacy of administering HK-fbp1 cells as a therapeutic agent for treating animals after infection. Remarkably, administration of HK-fbp1 provided robust host protection against preexisting C. neoformans infection. The mice infected with wild-type H99 cells and then treated with HK-fbp1 showed significant reduction of fungal burden in the infected lung and no dissemination of fungal cells to the brain and spleen. We find that early treatment is critical for the effective use of HK-fbp1 as a therapeutic agent. Immune analysis revealed that early treatment with HK-fbp1 cells elicited Th1-biased protective immune responses that help block fungal dissemination and promote better host protection. Our data thus suggest that HK-fbp1 is both an effective prophylactic vaccine candidate against C. neoformans infection in both immunocompetent and immunocompromised populations and a potential novel therapeutic strategy to treat early-stage cryptococcosis. IMPORTANCE Invasive fungal infections, e.g., cryptococcosis, are often life threatening and difficult to treat with very limited therapeutic options. There is no vaccine available in clinical use to prevent or treat fungal infections. Our previous studies demonstrated that heat-killed fbp1Δ cells (HK-fbp1) in Cryptococcus neoformans can be harnessed to confer protection against a challenge by the virulent parental strain, even in immunocompromised animals, such as ones lacking CD4+ T cells. In this study, we further determined that T cells are required for vaccine-induced protection against homologous challenge and that either CD4+ or CD8+ cells are sufficient. This finding is particularly important for the potential utility of this vaccine candidate in the context of HIV/AIDS-induced immune deficiency, the main risk factor for cryptococcosis in humans. Furthermore, in addition to the utility of HK-fbp1 as a prophylactic vaccine, we found that HK-fbp1 administration can inhibit disease dissemination when animals are treated at an early stage during Cryptococcus infection. Our findings could significantly expand the utility of HK-fbp1 not only as a prophylactic vaccine but also as a novel therapy against cryptococcosis. In all, our studies showed that the HK-fbp1 strain can be used both preventively and therapeutically to elicit robust host protection against cryptococcosis.

12.
Sci Total Environ ; 861: 160768, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36493819

RESUMO

Atmospheric ammonia (NH3) plays an important role in secondary inorganic aerosol formation. Understanding the temporal variations, sources, and environmental influences of NH3 is conducive to better formulate PM2.5 pollution control strategies for policy-makers. Here, we performed a comprehensive field campaign with the measurements of NH3 and related parameters at a rural site of the North China Plain (NCP) in winter of 2017. The results showed that residential coal combustion contributed dominantly to NH3 during the entire observation period, resulting in the obviously high average concentration of NH3 (31.2 ± 24.6 ppbv). The sensitivity tests of pH-NHx during the three different pollution periods suggested that the rural site was always in the NHx-rich atmosphere where high levels of NHx increased the particle pH inefficiently. Nevertheless, the particle pH still elevated by 1.5-2.2 units at the excessive NHx levels during the three pollution periods. In addition, the HONO/NO2 ratios were found to correlate linearly with NH3 concentrations, implying the acceleration effect of NH3 on HONO production from NO2 heterogeneous reactions. After considering the NH3-enhanced uptake coefficient of NO2 in the nocturnal HONO budget, the unknown source of HONO could be fully explained. Therefore, more attentions should be given for effective emission control of NH3 to improve air quality throughout the NCP, especially in the rural areas.


Assuntos
Poluentes Atmosféricos , Amônia , Amônia/análise , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio , Monitoramento Ambiental , China , Aerossóis/análise
13.
Sci Total Environ ; 858(Pt 2): 159905, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343810

RESUMO

Atmospheric black carbon (BC) concentration over a nearly 5 year period (mid-2017-2021) was continuously monitored over a suburban area of Orléans city (France). Annual mean atmospheric BC concentration were 0.75 ± 0.65, 0.58 ± 0.44, 0.54 ± 0.64, 0.48 ± 0.46 and 0.50 ± 0.72 µg m-3, respectively, for the year of 2017, 2018, 2019, 2020 and 2021. Seasonal pattern was also observed with maximum concentration (0.70 ± 0.18 µg m-3) in winter and minimum concentration (0.38 ± 0.04 µg m-3) in summer. We found a different diurnal pattern between cold (winter and fall) and warm (spring and summer) seasons. Further, fossil fuel burning contributed >90 % of atmospheric BC in the summer and biomass burning had a contribution equivalent to that of the fossil fuel in the winter. Significant week days effect on BC concentrations was observed, indicating the important role of local emissions such as car exhaust in BC level at this site. The behavior of atmospheric BC level with COVID-19 lockdown was also analyzed. We found that during the lockdown in warm season (first lockdown: 27 March-10 May 2020 and third lockdown 17 March-3 May 2021) BC concentration were lower than in cold season (second lockdown: 29 October-15 December 2020), which could be mainly related to the BC emission from biomass burning for heating. This study provides a long-term BC measurement database input for air quality and climate models. The analysis of especially weekend and lockdown effect showed implications on future policymaking toward improving local and regional air quality as well.


Assuntos
Poluentes Atmosféricos , COVID-19 , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Carbono/análise , Controle de Doenças Transmissíveis , Aerossóis e Gotículas Respiratórios , Fuligem/análise , Combustíveis Fósseis , Estações do Ano
14.
J Fungi (Basel) ; 8(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36547592

RESUMO

The ubiquitin-proteasome system (UPS) mediates intracellular proteins degradation that influences various cellular functions in eukaryotic cells. The UPS is also involved in the development and virulence of pathogenic fungi. F-box proteins, which are part of the SCF (Skp1-Cullin-F-box protein) ligase, are a key component of UPS and are essential for the recognition of specific substrates. In this study, we identified 20 F-box proteins in C. neoformans and obtained deletion mutants for 19 of them. A comprehensive phenotypic analysis of these mutants revealed the diverse function of F-box proteins in stress response, cell size regulation, sexual reproduction, antifungal drug resistance, and fungal virulence in C. neoformans. The importance of three F-box proteins: Fbp4, Fbp8, and Fbp11, in these cellular functions were characterized in detail. This study provides an overall view of the F-box gene family in C. neoformans, which will lead to a better understanding of the function of fungal SCF E3 ligase-mediated UPS in fungal development and pathogenesis.

15.
Nat Commun ; 13(1): 6397, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302775

RESUMO

Fungal pathogens often undergo morphological switches, including cell size changes, to adapt to the host environment and cause disease. The pathogenic yeast Cryptococcus neoformans forms so-called 'titan cells' during infection. Titan cells are large, polyploid, display alterations in cell wall and capsule, and are more resistant to phagocytosis and various types of stress. Titan cell formation is regulated by the cAMP/PKA signal pathway, which is stimulated by the protein Gpa1. Here, we show that Gpa1 is activated through phosphorylation by a CDK-related kinase (Crk1), which is targeted for degradation by an E3 ubiquitin ligase (Fbp1). Strains overexpressing CRK1 or an allele lacking a PEST domain exhibit increased production of titan cells similarly to the fbp1∆ mutant. Conversely, CRK1 deletion results in reduced titan cell production, indicating that Crk1 stimulates titan cell formation. Crk1 phosphorylates Gpa1, which then localizes to the plasma membrane and activates the cAMP/PKA signal pathway to induce cell enlargement. Furthermore, titan cell-overproducing strains trigger increased Th1 and Th17 cytokine production in CD4+ T cells and show attenuated virulence in a mouse model of systemic cryptococcosis. Overall, our study provides insights into the regulation of titan cell formation and fungal virulence.


Assuntos
Criptococose , Cryptococcus neoformans , Camundongos , Animais , Virulência , Ubiquitina/metabolismo , Proteólise , Fosforilação , Criptococose/microbiologia , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
16.
Environ Pollut ; 311: 119967, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35981642

RESUMO

Nitrous acid (HONO), an essential precursor of hydroxyl radicals (OH) in the troposphere, plays an integral role in atmospheric photochemistry. However, potential HONO sources remain unclear, particularly in rural areas, where long-term (including seasonal) measurements are scarce. HONO and related parameters were measured at a rural site in the North China Plain (NCP) during the winter of 2017 and summer and autumn of 2020. The mean HONO level was higher in winter (1.79 ± 1.44 ppbv) than in summer (0.67 ± 0.50 ppbv) and autumn (0.83 ± 0.62 ppbv). Source analysis revealed that the heterogeneous conversion (including photo-enhanced conversion) of NO2 on the ground surface dominated the daytime HONO production in the three seasons (43.1% in winter, 54.3% in summer, and 62.0% in autumn), and the homogeneous reaction of NO and OH contributed 37.8, 12.2, and 28.4% of the daytime HONO production during winter, summer, and autumn, respectively. In addition, the total contributions of other sources (direct vehicle emissions, particulate nitrate photolysis, NO2 uptake and its photo-enhanced reaction on the aerosol surface) to daytime HONO production were less than 5% in summer and autumn and 12.0% in winter. Unlike winter and autumn, an additional HONO source was found in summer (0.45 ± 0.21 ppbv h-1, 31.4% to the daytime HONO formation), which might be attributed to the HONO emission from the fertilized field. Among the primary radical sources (photolysis of HONO, O3, and formaldehyde), HONO photolysis was dominant, with contributions of 82.6, 49.3, and 63.2% in winter, summer, and autumn, respectively. Our findings may aid in understanding HONO formation in different seasons in rural areas and may highlight the impact of HONO on atmospheric oxidation capacity.


Assuntos
Dióxido de Nitrogênio , Ácido Nitroso , Aerossóis , China , Estações do Ano
17.
Microbiol Spectr ; 10(5): e0086222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036637

RESUMO

Invasive fungal infections are difficult to treat with limited drug options, mainly because fungi are eukaryotes and share many cellular mechanisms with the human host. Most current antifungal drugs are either fungistatic or highly toxic. Therefore, there is a critical need to identify important fungal specific drug targets for novel antifungal development. Numerous studies have shown the fungal phosphatidylserine (PS) biosynthetic pathway to be a potential target. It is synthesized from CDP-diacylglycerol and serine, and the fungal PS synthesis route is different from that in mammalian cells, in which preexisting phospholipids are utilized to produce PS in a base-exchange reaction. In this study, we utilized a Saccharomyces cerevisiae heterologous expression system to screen for inhibitors of Cryptococcus PS synthase Cho1, a fungi-specific enzyme essential for cell viability. We identified an anticancer compound, bleomycin, as a positive candidate that showed a phospholipid-dependent antifungal effect. Its inhibition on fungal growth can be restored by ethanolamine supplementation. Further exploration of the mechanism of action showed that bleomycin treatment damaged the mitochondrial membrane in yeast cells, leading to increased generation of reactive oxygen species (ROS), whereas supplementation with ethanolamine helped to rescue bleomycin-induced damage. Our results indicate that bleomycin does not specifically inhibit the PS synthase enzyme; however, it may affect phospholipid biosynthesis through disruption of mitochondrial function, namely, the synthesis of phosphatidylethanolamine (PE) and phosphatidylcholine (PC), which helps cells maintain membrane composition and functionality. IMPORTANCE Invasive fungal pathogens cause significant morbidity and mortality, with over 1.5 million deaths annually. Because fungi are eukaryotes that share much of their cellular machinery with the host, our armamentarium of antifungal drugs is highly limited, with only three classes of antifungal drugs available. Drug toxicity and emerging resistance have limited their use. Hence, targeting fungi-specific enzymes that are important for fungal survival, growth, or virulence poses a strategy for novel antifungal development. In this study, we developed a heterologous expression system to screen for chemical compounds with activity against Cryptococcus phosphatidylserine synthase, Cho1, a fungi-specific enzyme that is essential for viability in C. neoformans. We confirmed the feasibility of this screen method and identified a previously unexplored role of the anticancer compound bleomycin in disrupting mitochondrial function and inhibiting phospholipid synthesis.


Assuntos
Antifúngicos , Bleomicina , Cryptococcus neoformans , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Bleomicina/farmacologia , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Diglicerídeos de Citidina Difosfato/metabolismo , Etanolaminas/farmacologia , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
18.
Sci Total Environ ; 843: 156997, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35777574

RESUMO

Gas-phase hydrogen peroxide (H2O2) plays an important role in atmospheric chemistry as an indicator of the atmospheric oxidizing capacity. It is also a vital oxidant of sulfur dioxide (SO2) in the aqueous phase, resulting in the formation of acid precipitation and sulfate aerosol. However, sources of H2O2 are not fully understood especially in polluted areas affected by human activities. In this study, we reported some high H2O2 cases observed during one summer and two winter campaigns conducted at a polluted rural site in the North China Plain. Our results showed that agricultural fires led to high H2O2 concentrations up to 9 ppb, indicating biomass burning events contributed substantially to primary H2O2 emission. In addition, elevated H2O2 and O3 concentrations were measured after fertilization as a consequence of the enhanced atmospheric oxidizing capacity by soil HONO emission. Furthermore, H2O2 exhibited unexpectedly high concentration under high NOx conditions in winter, which are closely related to multiphase reactions in particles involving organic chromophores. Our findings suggest that these special factors (biomass burning, fertilization, and ambient particles), which are not well considered in current models, are significant contributors to H2O2 production, thereby affecting the regional atmospheric oxidizing capacity and the global sulfate aerosol formation.


Assuntos
Poluentes Atmosféricos , Peróxido de Hidrogênio , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , China , Monitoramento Ambiental , Fertilização , Humanos , Nitrogênio , Material Particulado/análise , Sulfatos
20.
Annu Rev Microbiol ; 76: 703-726, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35759871

RESUMO

Invasive fungal infections are emerging diseases that kill over 1.5 million people per year worldwide. With the increase of immunocompromised populations, the incidence of invasive fungal infections is expected to continue to rise. Vaccines for viral and bacterial infectious diseases have had a transformative impact on human health worldwide. However, no fungal vaccines are currently in clinical use. Recently, interest in fungal vaccines has grown significantly. One Candida vaccine has completed phase 2 clinical trials, and research on vaccines against coccidioidomycosis continues to advance. Additionally, multiple groups have discovered various Cryptococcus mutant strains that promote protective responses to subsequent challenge in mouse models. There has also been progress in antibody-mediated fungal vaccines. In this review, we highlight recent fungal vaccine research progress, outline the wealth of data generated, and summarize current research for both fungal biology and immunology studies relevant to fungal vaccine development. We also review technological advancements in vaccine development and highlight the future prospects of a human vaccine against invasive fungal infections.


Assuntos
Vacinas Fúngicas , Infecções Fúngicas Invasivas , Vacinas , Animais , Humanos , Imunidade , Camundongos , Desenvolvimento de Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...