Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.463
Filtrar
1.
Front Immunol ; 15: 1419005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247187

RESUMO

Background: Rosacea has a high incidence, significantly impacts quality of life, and lacks sufficient diagnostic techniques. This study aimed to investigate the feasibility of laser speckle contrast imaging (LSCI) for measuring facial blood perfusion in patients with rosacea and to identify differences in blood flow among various facial regions associated with different rosacea subtypes. Methods: From June to December 2023, 45 patients were recruited, with 9 excluded, leaving 36 subjects: 12 with erythematotelangiectatic rosacea (ETR), 12 with papulopustular rosacea (PPR), and 12 healthy controls. The Think View multispectral imaging analyzer assessed inflammation via gray reading values across the full face and five facial areas: forehead, nose, cheeks, and chin. LSCI measured and analyzed blood perfusion in the same areas. Plasma biomarkers interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor-α (TNF-α) were tested in different groups. Results: Both ETR and PPR groups showed increased average blood perfusion and facial inflammation intensity by gray values compared to controls, with statistically significant differences. Average blood perfusion of ETR and PPR groups showed increased values in the forehead, cheeks, and nose, compared to controls, and the values in the cheeks were statistically different between ETR and PPR. The facial inflammation intensity of the ETR group showed increased values in the forehead and cheeks, and the PPR group showed increased gray values in the forehead, cheeks, nose, and chin compared to controls, and the values for the cheeks, nose, and chin were statistically significantly different between ETR and PPR. Plasma biomarkers IL-6, IL-1ß, and TNF-α were significantly elevated in both ETR and PPR groups compared to controls. Conclusion: LSCI is a valuable, non-invasive tool for assessing blood flow dynamics in rosacea, providing a data foundation for clinical research. Different rosacea subtypes exhibit distinct lesion distribution and blood flow patterns, and both ETR and PPR could affect all facial areas, particularly the cheeks in ETR and the forehead, nose, and chin in PPR.


Assuntos
Face , Imagem de Contraste de Manchas a Laser , Rosácea , Humanos , Rosácea/diagnóstico , Rosácea/sangue , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Face/irrigação sanguínea , Fluxo Sanguíneo Regional , Biomarcadores/sangue
2.
World J Clin Cases ; 12(25): 5832-5838, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39247735

RESUMO

BACKGROUND: Scrub typhus is a naturally occurring acute infectious disease that is primarily transmitted through the bites of chiggers or larval mites infected by Orientia tsutsugamushi (O. tsutsugamushi). Omadacycline, a novel tetracycline, exhibits potent antibacterial efficacy against both typical bacteria and atypical pathogens. However, omadacycline application in the treatment of scrub typhus remains limited. CASE SUMMARY: In the present work, we report several cases of scrub typhus, with the main clinical symptoms being fever, the formation of eschars or ulcers, local or systemic lymphadenopathy, headache, myalgia and rash. Blood samples were collected before omadacycline was administered, and O. tsutsugamushi infection was confirmed through targeted next-generation sequencing (tNGS). After two days of treatment, the patients' symptoms, including fever, were alleviated, with no adverse drug reactions. CONCLUSION: tNGS is an effective method for diagnosing scrub typhus. Omadacycline can be considered an alternative option for antiinfective therapy in patients with O. tsutsugamushi infections.

3.
Front Psychiatry ; 15: 1433239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39252757

RESUMO

Objective: Previous studies have found that patients with Major Depressive Disorder (MDD) exhibit impaired visual motion perception capabilities, and multi-level abnormalities in the human middle temporal complex (MT+), a key brain area for processing visual motion information. However, the brain activity pattern of MDD patients during the perception of visual motion information is currently unclear. In order to study the effect of depression on the activity and functional connectivity (FC) of MT+ during the perception of visual motion information, we conducted a study combining task-state fMRI and psychophysical paradigm to compare MDD patients and healthy control (HC). Methods: Duration threshold was examined through a visual motion perception psychophysical experiment. In addition, a classic block-design grating motion task was utilized for fMRI scanning of 24 MDD patients and 25 HC. The grating moved randomly in one of eight directions. We examined the neural activation under visual stimulation conditions compared to the baseline and FC. Results: Compared to HC group, MDD patients exhibited increased duration threshold. During the task, MDD patients showed decreased beta value and percent signal change in left and right MT+. In the sample comprising MDD and HC, there was a significant negative correlation between beta value in right MT+ and duration threshold. And in MDD group, activation in MT+ were significantly correlated with retardation score. Notably, no such differences in activation were observed in primary visual cortex (V1). Furthermore, when left MT+ served as the seed region, compared to the HC, MDD group showed increased FC with right calcarine fissure and surrounding cortex and decreased FC with left precuneus. Conclusion: Overall, the findings of this study highlight that the visual motion perception function impairment in MDD patients relates to abnormal activation patterns in MT+, and task-related activity are significantly connected to the retardation symptoms of the disease. This not only provides insights into the potential neurobiological mechanisms behind visual motion perception disorder in MDD patients from the aspect of task-related brain activity, but also supports the importance of MT+ as a candidate biomarker region for MDD.

4.
Mucosal Immunol ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251184

RESUMO

Postoperative cognitive dysfunction (POCD) is a prevalent neurological complication that can impair learning and memory for days, months, or even years after anesthesia/surgery. POCD is strongly associated with an altered composition of the gut microbiota (dysbiosis), but the accompanying metabolic changes and their role in gut-brain communication and POCD pathogenesis remain unclear. Here, the present study reports that anesthesia/surgery in aged mice induces elevated intestinal indoleamine 2,3-dioxygenase (IDO) expression and activity, which shifts intestinal tryptophan (TRP) metabolism toward more IDO-catalyzed kynurenine (KYN) and less gut bacteria-catabolized indoleacetic acid (IAA). Both anesthesia/surgery and intraperitoneal KYN administration induce increased KYN levels that correlate with impaired spatial learning and memory, whereas dietary IAA supplementation attenuates the anesthesia/surgery-induced cognitive impairment. Mechanistically, anesthesia/surgery increases interferon-γ (IFN-γ)-producing group 1 innate lymphoid cells (ILC1) in the small intestine lamina propria and elevates intestinal IDO expression and activity, as indicated by the higher ratio of KYN to TRP. The IDO inhibitor 1-MT and antibodies targeting IFN-γ or ILCs mitigate anesthesia/surgery-induced cognitive dysfunction, suggesting that intestinal ILC1 expansion and the ensuing IFN-γ-induced IDO upregulation may be the primary pathway mediating the shift to the KYN pathway in POCD. The ILC1-KYN pathway in the intestine could be a promising therapeutic target for POCD.

5.
Ecotoxicol Environ Saf ; 285: 117093, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39317070

RESUMO

Taraxasterol is one of the bioactive ingredients from traditional Chinese herb Taraxacum, which exhibits multiple pharmacological activities and protective effects. However, the underlying influence and mechanism of its use against kidney damage caused from zearalenone (ZEA) remain unexplored. The ZEA-induced kidney damage model of mice was established by feeding diets containing ZEA (2 mg/kg), and taraxasterol (5 and 10 mg/kg) was administered by gavage for 28 days. Results demonstrated taraxasterol increased average daily gain (ADG) and average daily feed intake (ADFI), reduced feed-to-gain ratio (F/G) and kidney index of mice induced by ZEA. Taraxasterol alleviated histopathological changes of kidney, reduced ZEA residue and the levels of blood urea nitrogen (BUN), uric acid (UA), and creatinine (CRE). Concurrently, taraxasterol reduced the contents of oxidative stress indicator reactive oxygen species (ROS) and malondialdehyde (MDA), and increased the activities of antioxidant enzymes catalase (CAT), total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-Px). Further, taraxasterol up-regulated the mRNA and protein expression of nuclear factor erythroid-2-related factor 2 (Nrf2), GSH-Px, NAD(P)H quinone oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1), and down-regulated the mRNA and protein expression of KELCH like ECH associated protein (Keap1) in Nrf2/Keap1 pathway. Taraxasterol down-regulated the mRNA and protein expression of immunoglobulin binding protein (Bip), C/EBP homologous protein (CHOP), Bcl-2 associated X (Bax), cysteine protease (Caspase)-12, and Caspase-3, and up-regulated B-cell lymphoma 2 (Bcl-2) expression in endoplasmic reticulum stress pathway. This study suggests that taraxasterol attenuates ZEA-induced mouse kidney damage through the modulation of Nrf2/Keapl pathway to play antioxidant role and endoplasmic reticulum stress pathway to enhance anti-apoptotic ability. It will provide a basis for taraxasterol as a potential drug to prevent and treat ZEA-induced kidney damage.

7.
J Transl Med ; 22(1): 852, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304928

RESUMO

BACKGROUND: The syncytiotrophoblast (SCT) layer in the placenta serves as a crucial physical barrier separating maternal-fetal circulation, facilitating essential signal and substance exchange between the mother and fetus. Any abnormalities in its formation or function can result in various maternal syndromes, such as preeclampsia. The transition of proliferative villous cytotrophoblasts (VCT) from the mitotic cell cycle to the G0 phase is a prerequisite for VCT differentiation and their fusion into SCT. The imprinting gene P57Kip2, specifically expressed in intermediate VCT capable of fusion, plays a pivotal role in driving this key event. Moreover, aberrant expression of P57Kip2 has been linked to pathological placental conditions and adverse fetal outcomes. METHODS: Validation of STK40 interaction with P57Kip2 using rigid molecular simulation docking and co-immunoprecipitation. STK40 expression was modulated by lentivirus in BeWo cells, and the effect of STK40 on trophoblast fusion was assessed by real-time quantitative PCR, western blot, immunofluorescence, and cell viability and proliferation assays. Co-immunoprecipitation, transcriptome sequencing, and western blot were used to determine the potential mechanisms by which STK40 regulates P57Kip2. RESULTS: In this study, STK40 has been identified as a novel interacting protein with P57Kip2, and its expression is down-regulated during the fusion process of trophoblast cells. Overexpressing STK40 inhibited cell fusion in BeWo cells while stimulating mitotic cell cycle activity. Further experiments indicated that this effect is attributed to its specific binding to the CDK-binding and the Cyclin-binding domains of P57Kip2, mediating the E3 ubiquitin ligase COP1-mediated ubiquitination and degradation of P57Kip2. Moreover, abnormally high expression of STK40 might significantly contribute to the occurrence of preeclampsia. CONCLUSIONS: This study offers new insights into the role of STK40 in regulating the protein-level homeostasis of P57Kip2 during placental development.


Assuntos
Fusão Celular , Inibidor de Quinase Dependente de Ciclina p57 , Proteínas Serina-Treonina Quinases , Trofoblastos , Ubiquitina-Proteína Ligases , Ubiquitinação , Trofoblastos/metabolismo , Humanos , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Feminino , Ligação Proteica , Gravidez , Proteólise , Proliferação de Células
8.
Asian J Androl ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39314038

RESUMO

This study was conducted retrospectively on a cohort of 68 patients with steroid 5 α-reductase 2 (SRD5A2) deficiency and 46,XY disorders of sex development (DSD). Whole-exon sequencing revealed 28 variants of SRD5A2, and further analysis identified seven novel mutants. The preponderance of variants was observed in exon 1 and exon 4, specifically within the nicotinamide adenine dinucleotide phosphate (NADPH)-binding region. Among the entire cohort, 53 patients underwent initial surgery at Sichuan Provincial People's Hospital (Chengdu, China). The external genitalia scores (EGS) of these participants varied from 2.0 to 11.0, with a mean of 6.8 (standard deviation [s.d.]: 2.5). Thirty patients consented to hormone testing. Their average testosterone-to-dihydrotestosterone (T/DHT) ratio was 49.3 (s.d.: 23.4). Genetic testing identified four patients with EGS scores between 6 and 9 as having this syndrome; and their T/DHT ratios were below the diagnostic threshold. Furthermore, assessments conducted using the crystal structure of human SRD5A2 have provided insights into the potential pathogenic mechanisms of these novel variants. These mechanisms include interference with NADPH binding (c.356G>C, c.365A>G, c.492C>G, and c.662T>G) and destabilization of the protein structure (c.727C>T). The c.446-1G>T and c.380delG variants were verified to result in large alterations in the transcripts. Seven novel variations were identified, and the variant database for the SRD5A2 gene was expanded. These findings contribute to the progress of diagnostic and therapeutic approaches for individuals with SRD5A2 deficiency.

10.
Mol Neurobiol ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292340

RESUMO

The aim of this study was to investigate the anti-ferroptotic effect of resveratrol (RSV) on retinal Müller cells (RMCs) in the early stages of diabetic retinopathy (DR) via the nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPx4)/prostaglandin-endoperoxide synthase 2 (PTGS2). The retina was obtained from normal and diabetic Sprague-Dawley rats or wild-type and Nrf2 knockout (KO) diabetic mice, with or without RSV (10 mg/kg/d) treatment for 12 weeks. RMCs transfected with or without SiNrf2 were cultured with high glucose and RSV (20 mM). The retinal neurofunctional changes were measured by electroretinogram (ERG). The retinal inner nuclear layer cell mitochondrial morphological changes were detected by transmission electron microscopy. The cell viabilities were measured by cell counting kit-8 (CCK-8) assay. The levels of Fe2+, malonic dialdehyde (MDA), and glutathione (GSH) were measured by colorimetric method. The expression of Nrf2, GPx4, and PTGS2 was detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunocytochemistry. In vivo, RSV inhibited retinal neurofunctional changes and mitochondrial morphological changes; decreased Fe2+, MDA, and PTGS2; and increased GSH, Nrf2, and GPx4 in retina of DM rats. In vitro, RSV decreased MDA and PTGS2 and increased cell viability, GSH, Nrf2, and GPx4. In vivo and vitro, the role of Nrf2-regulated signaling pathway in anti-ferroptosis by RSV was further confirmed using Nrf2 KO mice and pre-transfected SiNrf2 in RMCs. These findings indicated that RSV is a potential therapeutic option for DR and that Nrf2/GPx4/PTGS2 plays a role in the anti-ferroptosis mechanism of RSV on RMCs.

11.
Phytochemistry ; 229: 114287, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276823

RESUMO

Chemical investigation of the acid hydrolysate of Cynanchum bungei roots led to the isolation of eleven undescribed steroids, namely cynbungenins A-K (1-11), and seven previously described analogues (12-18). The complete structures of these compounds were elucidated using the comprehensive spectroscopic analyses and reference data. Structurally, compounds 1 and 2 represent the first example of androstane-type steroids found in the Cynanchum plants, and compounds 3-6 and 12 are characterized as pregnane-type steroids with a rare 8,14-seco-steroid core. In the cytotoxic activity assay, compound 16 displayed the strongest cytotoxic effect against MCF-7, HCT-116, HeLa, and HepG2 cancer cell lines, with IC50 values of 9.98-16.42 µM, and further research indicated that it induced both apoptosis and cell cycle arrest in the G0/G1 phase in a dose-dependent manner toward HepG2 cells.

13.
J Immunol ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311660

RESUMO

IL-7 is a cytokine produced by stromal cells, which binds to IL-7Rα and plays an important role for homeostasis of T lymphocytes. Excessive activities of IL-7-triggered signaling pathways causes autoimmune diseases. How IL-7-triggered signaling and immune effects are regulated is not fully understood. In this study, we show that the membrane-associated RING-CH (MARCH) E3 ligase family member MARCH8 mediates K27-linked polyubiquitination of IL-7Rα, leading to its lysosomal degradation. Site-directed mutagenesis suggests that MARCH8 meditates polyubiquitination of IL-7Rα at K265/K266, and mutation of these residues renders IL-7Rα resistance to MARCH8-mediated polyubiquitination and degradation. MARCH8 deficiency increases IL-7-triggered activation of the downstream transcription factor STAT5 and transcriptional induction of the effector genes in human T lymphoma cells. MARCH8 deficiency also promotes IL-7-triggered T cell proliferation and splenic memory CD8+ T cell differentiation in mice. Our findings suggest that MARCH8 negatively regulates IL-7-triggered signaling by mediating K27-linked polyubiquitination and lysosomal degradation of IL-7Rα, which reveals a negative regulatory mechanism of IL-7-triggered T cell homeostasis.

14.
Cell Mol Biol Lett ; 29(1): 123, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277732

RESUMO

BACKGROUND: Loss-of-function mutations of ZBTB24 cause immunodeficiency, centromeric instability, and facial anomalies syndrome 2 (ICF2). ICF2 is a rare autosomal recessive disorder with immunological defects in serum antibodies and circulating memory B cells, resulting in recurrent and sometimes fatal respiratory and gastrointestinal infections. The genotype-phenotype correlation in patients with ICF2 indicates an essential role of ZBTB24 in the terminal differentiation of B cells. METHODS: We used the clustered regularly interspaced short palindromic repeats (CRISPER)/Cas9 technology to generate B cell specific Zbtb24-deficient mice and verified the deletion specificity and efficiency by quantitative polymerase chain reaction (Q-PCR) and western blotting analyses in fluorescence-activated cell sorting (FACS)-sorted cells. The development, phenotype of B cells and in vivo responses to T cell dependent or independent antigens post immunization were analyzed by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Adoptive transfer experiment in combination with in vitro cultures of FACS-purified B cells and RNA-Seq analysis were utilized to specifically determine the impact of Zbtb24 on B cell biology as well as the underlying mechanisms. RESULTS: Zbtb24 is dispensable for B cell development and maintenance in naive mice. Surprisingly, B cell specific deletion of Zbtb24 does not evidently compromise germinal center reactions and the resulting primary and secondary antibody responses induced by T cell dependent antigens (TD-Ags), but significantly inhibits T cell independent antigen-elicited antibody productions in vivo. At the cellular level, Zbtb24-deficiency specifically impedes the plasma cell differentiation of B1 cells without impairing their survival, activation and proliferation in vitro. Mechanistically, Zbtb24-ablation attenuates heme biosynthesis partially through mTORC1 in B1 cells, and addition of exogenous hemin abrogates the differentiation defects of Zbtb24-null B1 cells. CONCLUSIONS: Zbtb24 seems to regulate antibody responses against TD-Ags B cell extrinsically, but it specifically promotes the plasma cell differentiation of B1 cells via heme synthesis in mice. Our study also suggests that defected B1 functions contribute to recurrent infections in patients with ICF2.


Assuntos
Diferenciação Celular , Doenças da Imunodeficiência Primária , Fatores de Transcrição , Animais , Camundongos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Face/anormalidades , Síndromes de Imunodeficiência/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças da Imunodeficiência Primária/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
15.
Phytomedicine ; 135: 156067, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39326137

RESUMO

BACKGROUND: Renal fibrosis is a hallmark of chronic kidney disease (CKD). Smad3 serves as the principal transcription factor mediating the pro-fibrosis effects of TGF-ß signaling in renal fibrosis. Biochanin A (BCA), a natural isoflavone, has been shown to attenuate renal fibrosis by inhibiting TGF-ß signaling but the detailed mechanisms remain unresolved. This study aimed to elucidate the specific mechanisms by which BCA modulates TGF-ß signaling. METHODS: Renal fibrosis models were established both in vitro, using TGF-ß1-stimulated mouse renal tubular TCMK1 cells, and in vivo, employing mice with unilateral ureter obstruction (UUO). RNA-seq was conducted to identify BCA-regulated genes. The AnimalTFDB4.0 database was utilized to predict transcription factors with potential binding to Smad3 promoter. The activities of TGF-ß signaling and the cloned mouse Smad3 promoter were assessed using luciferase reporter assays. Plasmid transfection was performed using polyethylenimine in TCMK1 cells or ultrasound microbubbles in UUO kidneys. Gene expression was analyzed by RT-PCR, western blot, and immunohistochemistry assays. RESULTS: BCA significantly inhibited TGF-ß signaling activity and suppressed TGF-ß1-induced fibrotic gene expression in TCMK1 cells. RNA-seq and in silico analyses identified Smad3 as the key gene downregulated by BCA, while leaving Smad2 unaffected. This selective transcriptional suppression of Smad3 by BCA was validated by luciferase reporter assays using the cloned Smad3 promoter. Furthermore, transcription factor binding prediction identified that Klf6, a transcription factor downregulated by BCA, has binding potential to the Smad3 promoter and promotes Smad3 transcription. Klf6 expression was induced in TGF-ß1-stimulated TCMK1 cells and UUO kidneys, but this induction was abolished upon BCA treatment. Importantly, Klf6 overexpression restored Smad3 expression and counteracted the anti-fibrosis effects of BCA in both TGF-ß1-stimulated TCMK1 cells and UUO kidneys. CONCLUSION: TGF-ß-responsive Klf6 transcriptionally transactivates Smad3 expression. BCA exerts anti-renal fibrosis effects by inhibiting the Klf6-Smad3 signaling axis, underscoring its therapeutic potential in the treatment of CKD.

16.
Mediators Inflamm ; 2024: 9977750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39262416

RESUMO

Background: The chronic inflammatory immune response is a significant factor in the pathogenesis of benign gynecological diseases. The systemic immunoinflammatory index (SII) and the platelet-to-lymphocyte ratio (PLR) are commonly available biomarkers of inflammation. However, evidence of the relationship between SII and PLR in patients with adenomyosis is limited. This study aimed to investigate the relationship between SII and PLR in patients with adenomyosis. Methods: This cross-sectional study included 483 patients with adenomyosis who were first diagnosed at our institution between January 2019 and December 2021. Basic patient clinical information and inflammatory factors were collected for univariate analysis, smoothed curve fitting, and multivariate segmented linear regression. Results: The results of the univariate analysis showed a significant positive correlation between PLR levels and SII (P < 0.001). In addition, a nonlinear relationship between PLR and SII was tested using a smoothed curve fit after adjusting for potential confounders. Multiple segmented linear regression models showed a significant relationship between SII and PLR in both SII < 1,326.47 (ß 0.14, 95% CI: 0.12, 0.16; P < 0.0001) and >1,326.47 (ß 0.02, 95% CI: -0.01, 0.05; P = 0.2461). Conclusions: In conclusion, this study showed a nonlinear relationship between SII and PLR in patients with uterine adenomyosis. An increase in serum PLR levels correlates with an increase in SII before SII levels reach an inflection point.


Assuntos
Adenomiose , Plaquetas , Linfócitos , Humanos , Adenomiose/sangue , Feminino , Estudos Transversais , Adulto , Pessoa de Meia-Idade , Inflamação/sangue , Modelos Lineares , Biomarcadores/sangue , Contagem de Plaquetas
17.
Autophagy ; 20(10): 2221-2237, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39316746

RESUMO

Dysregulation in protein homeostasis results in accumulation of protein aggregates, which are sequestered into dedicated insoluble compartments so-called inclusion bodies or aggresomes, where they are scavenged through different mechanisms to reduce proteotoxicity. The protein aggregates can be selectively scavenged by macroautophagy/autophagy called aggrephagy, which is mediated by the autophagic receptor SQSTM1. In this study, we have identified PLK2 as an important regulator of SQSTM1-mediated aggregation of polyubiquitinated proteins. PLK2 is upregulated following proteasome inhibition, and then associates with and phosphorylates SQSTM1 at S349. The phosphorylation of SQSTM1 S349 strengthens its binding to KEAP1, which is required for formation of large SQSTM1 aggregates/bodies upon proteasome inhibition. Our findings suggest that PLK2-mediated phosphorylation of SQSTM1 S349 represents a critical regulatory mechanism in SQSTM1-mediated aggregation of polyubiquitinated proteins.


Assuntos
Complexo de Endopeptidases do Proteassoma , Agregados Proteicos , Proteínas Serina-Treonina Quinases , Proteína Sequestossoma-1 , Proteína Sequestossoma-1/metabolismo , Fosforilação , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Ubiquitinadas/metabolismo , Autofagia/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Células HEK293 , Ubiquitinação , Ligação Proteica
18.
Front Pharmacol ; 15: 1447560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323644

RESUMO

Background: Chronic alcoholic liver disease (CALD) is a global health problem which includes multiple pathological processes such as immune inflammation and oxidative stress. 4-hydroxy-2(3H)-benzoxazolone (HBOA), an alkaloid isolated from Acanthus ilicifolius L, has been shown to exert hepatoprotective and immunomodulatory effects. However, its effects on CALD remain unclear. This study aimed to investigate the effects and underlying mechanisms of HBOA on CALD. Methods: Rats were administered alcohol by gavage continuously for 12 weeks to establish the CALD model, and then treated with HBOA by gavage for 4 weeks. Transcriptomics and metabolomics were used to predict the potential mechanisms of the effects of HBOA on CALD. Liver histology and function, oxidative stress, inflammatory cytokines, and the TLR4/NF-κB pathway components were evaluated. Results: HBOA significantly improved alcohol-induced liver injury and steatosis. It decreased the expression levels of pro-inflammatory cytokines (tumour necrosis factor-α [TNF-α], interleukin (IL)-1ß, and IL-6), and increased the activities of antioxidant enzymes (superoxide dismutase [SOD], glutathione [GSH], and glutathione peroxidase [GSH-Px]). Western blotting confirmed that HBOA treatment largely diminished NF-κBp65 nuclear translocation. Comprehensive transcriptomics and metabolomics analyses indicated that HBOA regulated the glycerophospholipid metabolism pathway to achieve therapeutic effects in rats with CALD. Conclusion: HBOA has a therapeutic effect on rats with CALD. Its mechanism of action mainly affects the glycerophospholipid metabolic pathway to promote lipid metabolism homeostasis by regulating the expression of Etnppl, Gpcpd1, and Pla2g4c. In addition, it may also inhibit the TLR4/NF-κB signaling pathway, thereby reducing the immune-inflammatory response.

20.
Transgenic Res ; 33(4): 195-210, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39105946

RESUMO

Ethylene response factors have been shown to be involved in the effects of plant developmental processes and to regulate stress tolerance. The aim of this study was to recognize the regulatory mechanisms of ethylene response factors on tobacco plant height. In this study, a gene-edited mutant (ERF10-KO) and wild type (WT) were utilized as experimental materials. Transcriptome and metabolome analyses were used to investigate the regulatory mechanism of NtERF10 gene editing on plant height in tobacco. Here, through the analysis of differentially expressed genes (DEGs), 2051 genes were upregulated and 1965 genes were downregulated. We characterized the different ERF10-KO and WT plant heights and identified key genes for photosynthesis, the plant hormone signal transduction pathway and the terpene biosynthesis pathway. NtERF10 was found to affect the growth and development of tobacco by regulating the expression levels of the PSAA, PSBA, GLY17 and GGP3 genes. Amino acid metabolism was analyzed by combining analyses of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs). In addition, we found that members of the bHLH, NAC, MYB, and WRKY transcription factor families have vital roles in regulating plant height. This study not only provides important insights into the positive regulation of the ethylene response factor NtERF10 on plant height during plant growth and development but also provides new research ideas for tobacco molecular breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Nicotiana , Proteínas de Plantas , Fatores de Transcrição , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Etilenos/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...