Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(16): 3128-3140.e4, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39096898

RESUMO

The IscB proteins, as the ancestors of Cas9 endonuclease, hold great promise due to their small size and potential for diverse genome editing. However, their activity in mammalian cells is unsatisfactory. By introducing three residual substitutions in IscB, we observed an average 7.5-fold increase in activity. Through fusing a sequence-non-specific DNA-binding protein domain, the eIscB-D variant achieved higher editing efficiency, with a maximum of 91.3%. Moreover, engineered ωRNA was generated with a 20% reduction in length and slightly increased efficiency. The engineered eIscB-D/eωRNA system showed an average 20.2-fold increase in activity compared with the original IscB. Furthermore, we successfully adapted eIscB-D for highly efficient cytosine and adenine base editing. Notably, eIscB-D is highly active in mouse cell lines and embryos, enabling the efficient generation of disease models through mRNA/ωRNA injection. Our study suggests that these miniature genome-editing tools have great potential for diverse applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Edição de Genes/métodos , Camundongos , Humanos , Embrião de Mamíferos/metabolismo , Células HEK293 , Engenharia de Proteínas/métodos
4.
Nat Commun ; 14(1): 1224, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869044

RESUMO

Base editors, including dual base editors, are innovative techniques for efficient base conversions in genomic DNA. However, the low efficiency of A-to-G base conversion at positions proximal to the protospacer adjacent motif (PAM) and the A/C simultaneous conversion of the dual base editor hinder their broad applications. In this study, through fusion of ABE8e with Rad51 DNA-binding domain, we generate a hyperactive ABE (hyABE) which offers improved A-to-G editing efficiency at the region (A10-A15) proximal to the PAM, with 1.2- to 7-fold improvement compared to ABE8e. Similarly, we develop optimized dual base editors (eA&C-BEmax and hyA&C-BEmax) with markedly improved simultaneous A/C conversion efficiency (1.2-fold and 1.5-fold improvement, respectively) compared to A&C-BEmax in human cells. Moreover, these optimized base editors catalyze efficiently nucleotide conversions in zebrafish embryos to mirror human syndrome or in human cells to potentially treat genetic diseases, indicating their great potential in broad applications for disease modeling and gene therapy.


Assuntos
Adenina , Peixe-Zebra , Humanos , Animais , Nucleotídeos , Catálise , Terapia Genética
5.
Nat Biotechnol ; 41(5): 663-672, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36357717

RESUMO

Cytosine base editors (CBEs) efficiently generate precise C·G-to-T·A base conversions, but the activation-induced cytidine deaminase/apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family deaminase component induces considerable off-target effects and indels. To explore unnatural cytosine deaminases, we repurpose the adenine deaminase TadA-8e for cytosine conversion. The introduction of an N46L variant in TadA-8e eliminates its adenine deaminase activity and results in a TadA-8e-derived C-to-G base editor (Td-CGBE) capable of highly efficient and precise C·G-to-G·C editing. Through fusion with uracil glycosylase inhibitors and further introduction of additional variants, a series of Td-CBEs was obtained either with a high activity similar to that of BE4max or with higher precision compared to other reported accurate CBEs. Td-CGBE/Td-CBEs show very low indel effects and a background level of Cas9-dependent or Cas9-independent DNA/RNA off-target editing. Moreover, Td-CGBE/Td-CBEs are more efficient in generating accurate edits in homopolymeric cytosine sites in cells or mouse embryos, suggesting their accuracy and safety for gene therapy and other applications.


Assuntos
Citosina , Edição de Genes , Camundongos , Animais , Edição de Genes/métodos , Citosina/metabolismo , Aminoidrolases/metabolismo , RNA , Sistemas CRISPR-Cas/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo
6.
Nat Chem Biol ; 19(1): 101-110, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36229683

RESUMO

Adenine base editors (ABEs) catalyze A-to-G transitions showing broad applications, but their bystander mutations and off-target editing effects raise safety concerns. Through structure-guided engineering, we found ABE8e with an N108Q mutation reduced both adenine and cytosine bystander editing, and introduction of an additional L145T mutation (ABE9), further refined the editing window to 1-2 nucleotides with eliminated cytosine editing. Importantly, ABE9 induced very minimal RNA and undetectable Cas9-independent DNA off-target effects, which mainly installed desired single A-to-G conversion in mouse and rat embryos to efficiently generate disease models. Moreover, ABE9 accurately edited the A5 position of the protospacer sequence in pathogenic homopolymeric adenosine sites (up to 342.5-fold precision over ABE8e) and was further confirmed through a library of guide RNA-target sequence pairs. Owing to the minimized editing window, ABE9 could further broaden the targeting scope for precise correction of pathogenic single-nucleotide variants when fused to Cas9 variants with expanded protospacer adjacent motif compatibility. bpNLS, bipartite nuclear localization signals.


Assuntos
Adenina , Edição de Genes , Animais , Camundongos , Ratos , Mutação , Citosina , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...