Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.689
Filtrar
1.
Biomacromolecules ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825770

RESUMO

Biomacromolecular condensates formed via phase separation establish compartments for the enrichment of specific compositions, which is also used as a biological tool to enhance molecule condensation, thereby increasing the efficiency of biological processes. Proteolysis-targeting chimeras (PROTACs) have been developed as powerful tools for targeted protein degradation in cells, offering a promising approach for therapies for different diseases. Herein, we introduce an intrinsically disordered region in the PROTAC (denoted PSETAC), which led to the formation of droplets of target proteins in the cells and increased degradation efficiency compared with PROTAC without phase separation. Further, using a nucleus targeting intrinsically disordered domain, the PSETAC was able to target and degrade nuclear-located proteins. Finally, we demonstrated intracellular delivery of PSETAC using lipid nanoparticle-encapsulated mRNA (mRNA-LNP) for the degradation of the endogenous target protein. This study established the PSETAC mRNA-LNP method as a potentially translatable, safe therapeutic strategy for the development of clinical applications based on PROTAC.

2.
Biomater Sci ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828621

RESUMO

Exosomes exhibit high bioavailability, biological stability, targeted specificity, low toxicity, and low immunogenicity in shuttling various bioactive molecules such as proteins, lipids, RNA, and DNA. Natural exosomes, however, have limited production, targeting abilities, and therapeutic efficacy in clinical trials. On the other hand, engineered exosomes have demonstrated long-term circulation, high stability, targeted delivery, and efficient intracellular drug release, garnering significant attention. The engineered exosomes bring new insights into developing next-generation drug delivery systems and show enormous potential in therapeutic applications, such as tumor therapies, diabetes management, cardiovascular disease, and tissue regeneration and repair. In this review, we provide an overview of recent advancements associated with engineered exosomes by focusing on the state-of-the-art strategies for cell engineering and exosome engineering. Exosome isolation methods, including traditional and emerging approaches, are systematically compared along with advancements in characterization methods. Current challenges and future opportunities are further discussed in terms of the preparation and application of engineered exosomes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38842991

RESUMO

BACKGROUND: Drug-coated balloon (DCB) angioplasty seems a safe and effective option for specific de novo coronary lesions. However, the beneficial effect of intravascular ultrasound (IVUS)-guided DCB angioplasty in de novo lesions remains uncertain. OBJECTIVES: This study aimed to assess the benefits of IVUS guidance over angiography guidance during DCB angioplasty in de novo coronary lesions. METHODS: A total of 260 patients with high bleeding risk who had a de novo coronary lesion (reference vessel diameter 2.0-4.0 mm, and lesion length ≤15 mm) were randomly assigned to either an IVUS-guided or an angioplasty-guided DCB angioplasty group. The primary endpoint was in-segment late lumen loss (LLL) at 7 months after procedure. The secondary endpoint was target vessel failure at 6 months. RESULTS: A total of 2 patients in the angiography-guided group and 7 patients in the IVUS-guided group underwent bailout stent implantation (P = 0.172). The primary endpoint of 7-month LLL was 0.03 ± 0.52 mm with angiography guidance vs -0.10 ± 0.34 mm with IVUS guidance (mean difference 0.14 mm; 95% CI: 0.02-0.26; P = 0.025). IVUS guidance was also associated with a larger 7-month minimal lumen diameter (2.06 ± 0.62 mm vs 1.75 ± 0.63 mm; P < 0.001) and a smaller diameter stenosis (28.15% ± 13.88% vs 35.83% ± 17.69%; P = 0.001) compared with angiography guidance. Five target vessel failures occurred at 6 months, with 4 (3.1%) in the angiography-guided group and 1 (0.8%) in the IVUS-guided group (P = 0.370). CONCLUSIONS: This study demonstrated that IVUS-guided DCB angioplasty is associated with a lower LLL in patients with a de novo coronary lesion compared with angiography guidance. (Intravascular Ultrasound Versus Angiography Guided Drug-Coated Balloon [ULTIMATE-III]; NCT04255043).

4.
Artigo em Inglês | MEDLINE | ID: mdl-38724653

RESUMO

BACKGROUND AND OBJECTIVE: Treatment planning through the diagnostic dimension of theranostics provides insights into predicting the absorbed dose of RPT, with the potential to individualize radiation doses for enhancing treatment efficacy. However, existing studies focusing on dose prediction from diagnostic data often rely on organ-level estimations, overlooking intra-organ variations. This study aims to characterize the intra-organ theranostic heterogeneity and utilize artificial intelligence techniques to localize them, i.e. to predict voxel-wise absorbed dose map based on pre-therapy PET. METHODS: 23 patients with metastatic castration-resistant prostate cancer treated with [177Lu]Lu-PSMA I&T RPT were retrospectively included. 48 treatment cycles with pre-treatment PET imaging and at least 3 post-therapeutic SPECT/CT imaging were selected. The distribution of PET tracer and RPT dose was compared for kidney, liver and spleen, characterizing intra-organ heterogeneity differences. Pharmacokinetic simulations were performed to enhance the understanding of the correlation. Two strategies were explored for pre-therapy voxel-wise dosimetry prediction: (1) organ-dose guided direct projection; (2) deep learning (DL)-based distribution prediction. Physical metrics, dose volume histogram (DVH) analysis, and identity plots were applied to investigate the predicted absorbed dose map. RESULTS: Inconsistent intra-organ patterns emerged between PET imaging and dose map, with moderate correlations existing in the kidney (r = 0.77), liver (r = 0.5), and spleen (r = 0.58) (P < 0.025). Simulation results indicated the intra-organ pharmacokinetic heterogeneity might explain this inconsistency. The DL-based method achieved a lower average voxel-wise normalized root mean squared error of 0.79 ± 0.27%, regarding to ground-truth dose map, outperforming the organ-dose guided projection (1.11 ± 0.57%) (P < 0.05). DVH analysis demonstrated good prediction accuracy (R2 = 0.92 for kidney). The DL model improved the mean slope of fitting lines in identity plots (199% for liver), when compared to the theoretical optimal results of the organ-dose approach. CONCLUSION: Our results demonstrated the intra-organ heterogeneity of pharmacokinetics may complicate pre-therapy dosimetry prediction. DL has the potential to bridge this gap for pre-therapy prediction of voxel-wise heterogeneous dose map.

5.
Brain Imaging Behav ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717573

RESUMO

BACKGROUND: Impaired visual mental imagery is an important symptom of depression and has gradually become an intervention target for cognitive behavioral therapy. METHODS: Our study involved a total of 25 healthy controls (HC) and 23 individuals with moderate depressive symptoms (MD). This study explored the attentional mechanism supporting visual mental imagery impairments in depression using the Vividness of Visual Imagery Questionnaire (VVIQ), attentional network test (ANT), and resting-state functional magnetic resonance imaging (rs-fMRI). The intrinsic activity of attention-related regions relative to those supporting visual mental imagery was identified in depression patients. In addition, a meta-analysis was used to describe the cognitive function related to this intrinsic activity. RESULTS: The global correlation (GCOR) of the right anterior fusiform gyrus (FG) was decreased in depression patients. Attention-related areas were concentrated in the right posterior FG; the anterior and posterior functional connectivity (FC) of the FG was decreased in depression patients. Graph theoretic analysis showed that the degree of the right anterior FG was decreased, the degree of the anterior insula was increased, and the negative connection between these two regions was strengthened in depression patients. In addition, the degree of the right anterior FG, the FC between the subregions of the right FG, and the FC between the right anterior FG and insula were correlated with VVIQ scores; however, this correlation was not significant in depression patients. The meta-analysis suggested that the changes in the anterior FG in depressed patients may stem from difficulties of semantic memory retrieval. CONCLUSION: The changed intrinsic activity of subregions of the FG relative to the semantic memory retrieval may be associated with visual mental imagery impairments in depression.

6.
Medicine (Baltimore) ; 103(19): e38089, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728501

RESUMO

Proton beam therapy (PBT) has great advantages as tumor radiotherapy and is progressively becoming a more prevalent choice for individuals undergoing radiation therapy. The objective of this review is to pinpoint collaborative efforts among countries and institutions, while also exploring the hot topics and future outlook in the field of PBT. Data from publications were downloaded from the Web of Science Core Collection. CiteSpace and Excel 2016 were used to conduct the bibliometric and knowledge map analysis. A total of 6516 publications were identified, with the total number of articles steadily increasing and the United States being the most productive country. Harvard University took the lead in contributing the highest number of publications. Paganetti Harald published the most articles and had the most cocitations. PHYS MED BIOL published the greatest number of PBT-related articles, while INT J RADIAT ONCOL received the most citations. Paganetti Harald, 2012, PHYS MED BIOL can be classified as classic literature due to its high citation rate. We believe that research on technology development, dose calculation and relative biological effectiveness were the knowledge bases in this field. Future research hotspots may include clinical trials, flash radiotherapy, and immunotherapy.


Assuntos
Bibliometria , Terapia com Prótons , Terapia com Prótons/estatística & dados numéricos , Terapia com Prótons/métodos , Humanos , Pesquisa Biomédica/estatística & dados numéricos , Neoplasias/radioterapia
7.
J Hazard Mater ; 473: 134625, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759408

RESUMO

Development of a biotechnological system for rapid degradation of pesticides is important to mitigate the environmental, food security, and health risks that they pose. Degradation of atrazine (ATZ) and isoproturon (IPU) in rice crops promoted by the brassinosteroid (BR) signaling component BRASSINAZOLE RESISTANT4 (OsBZR4) is explored. OsBZR4 is localized in the plasma membrane and nucleus, and is strongly induced by ATZ and IPU exposure. Transgenic rice OsBZR4-overexpression (OE) significantly enhances resistance to ATZ and IPU toxicity, improving growth, and reducing ATZ and IPU accumulation (particularly in grains) in rice crops. Genetic destruction of OsBZR4 (CRISPR/Cas9) increases rice sensitivity and leads to increased accumulation of ATZ and IPU. OE plants promote phase I, II, and III metabolic reactions, and expression of corresponding pesticide degradation genes under ATZ and IPU stress. UPLC-Q-TOF-MS/MS analysis reveals increased relative contents of ATZ and IPU metabolites and conjugates in OE plants, suggesting an increased OsBZR4 expression and consequent detoxification of ATZ and IPU in rice and the environment. The role of OsBZR4 in pesticide degradation is revealed, and its potential application in enhancing plant resistance to pesticides, and facilitating the breakdown of pesticides in rice and the environment, is discussed.

8.
Food Chem ; 454: 139733, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38805923

RESUMO

Milk phospholipids have multiple health benefits, but the deficiency of detailed phospholipid profiles in dairy products brings obstacles to intake calculation and function evaluation of dairy phospholipids. In present study, 306 phospholipid molecular species were identified and quantified among 207 milk, yogurt and cream products using a HILIC-ESI-Q-TOF MS and a HILIC-ESI-QQQ MS. The phospholipid profiles of five mammals' milk show that camel milk contains the most abundant phosphatidylethanolamine, phosphatidylserine and sphingomyelin; cow, yak and goat milk have similar phospholipidomes, while buffalo milk contains abundant phosphatidylinositol. Fewer plasmalogens but more lyso-glycerolphospholipids were found in ultra-high-temperature (UHT) sterilized milk than in pasteurized milk, and higher proportions of lyso-glycerolphospholipid/total phospholipid were observed in both cream and skimmed/semi-skimmed milk than whole milk, indicating that UHT and skimming processes improve glycerolphospholipid degradation and phospholipid nutrition loss. Meanwhile, more diacyl-glycerolphospholipids and less of their degradation products make yogurt a better phospholipid resource than whole milk.

9.
Cell Immunol ; 401-402: 104838, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38810591

RESUMO

BACKGROUND: The NOD-like receptor protein 3 (NLRP3) mediated pyroptosis of macrophages is closely associated with liver ischemia reperfusion injury (IRI). As a covalent inhibitor of NLRP3, Oridonin (Ori), has strong anti-inflammasome effect, but its effect and mechanisms for liver IRI are still unknown. METHODS: Mice and liver macrophages were treated with Ori, respectively. Co-IP and LC-MS/MS analysis of the interaction between PKM2 and NLRP3 in macrophages. Liver damage was detected using H&E staining. Pyroptosis was detected by WB, TEM, and ELISA. RESULTS: Ori ameliorated liver macrophage pyroptosis and liver IRI. Mechanistically, Ori inhibited the interaction between pyruvate kinase M2 isoform (PKM2) and NLRP3 in hypoxia/reoxygenation(H/R)-induced macrophages, while the inhibition of PKM2/NLRP3 reduced liver macrophage pyroptosis and liver IRI. CONCLUSION: Ori exerted protective effects on liver IRI via suppressing PKM2/NLRP3-mediated liver macrophage pyroptosis, which might become a potential therapeutic target in the clinic.

10.
Acta Biomater ; 181: 425-439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729544

RESUMO

Synovial macrophages play an important role in the progression of osteoarthritis (OA). In this study, we noted that synovial macrophages can activate pyroptosis in a gasdermin d-dependent manner and produce reactive oxygen species (ROS), aberrantly activating the mammalian target of rapamycin complex 1 (mTORC1) pathway and matrix metalloproteinase-9 (MMP9) expression in synovial tissue samples collected from both patients with OA and collagen-induced osteoarthritis (CIOA) mouse model. To overcome this, we constructed rapamycin- (RAPA, a mTORC1 inhibitor) loaded mesoporous Prussian blue nanoparticles (MPB NPs, for catalyzing ROS) and modified the NPs with MMP9-targeted peptides (favor macrophage targeting) to develop RAPA@MPB-MMP9 NPs. The inherent enzyme-like activity and RAPA released from RAPA@MPB-MMP9 NPs synergistically impeded the pyroptosis of macrophages and the activation of the mTORC1 pathway. In particular, the NPs decreased pyroptosis-mediated ROS generation, thereby inhibiting cGAS-STING signaling pathway activation caused by the release of mitochondrial DNA. Moreover, the NPs promoted macrophage mitophagy to restore mitochondrial stability, alleviate pyroptosis-related inflammatory responses, and decrease senescent synoviocytes. After the as-prepared NPs were intra-articularly injected into the CIOA mouse model, they efficiently attenuated synovial macrophage pyroptosis and cartilage degradation. In conclusion, our study findings provide a novel therapeutic strategy for OA that modulates the pyroptosis and mitophagy of synovial macrophage by utilizing functionalized NPs. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) presents a significant global challenge owing to its complex pathogenesis and finite treatment options. Synovial macrophages have emerged as key players in the progression of OA, managing inflammation and tissue destruction. In this study, we discovered a novel therapeutic strategy in which the pyroptosis and mitophagy of synovial macrophages are targeted to mitigate OA pathology. For this, we designed and prepared rapamycin-loaded mesoporous Prussian blue nanoparticles (RAPA@MPB-MMP9 NPs) to specifically target synovial macrophages and modulate their inflammatory responses. These NPs could efficiently suppress macrophage pyroptosis, diminish reactive oxygen species production, and promote mitophagy, thereby alleviating inflammation and protecting cartilage integrity. Our study findings not only clarify the intricate mechanisms underlying OA pathogenesis but also present a promising therapeutic approach for effectively managing OA by targeting dysregulation in synovial macrophages.


Assuntos
Macrófagos , Mitofagia , Nanopartículas , Osteoartrite , Piroptose , Espécies Reativas de Oxigênio , Osteoartrite/patologia , Osteoartrite/tratamento farmacológico , Animais , Piroptose/efeitos dos fármacos , Nanopartículas/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Mitofagia/efeitos dos fármacos , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Sirolimo/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Progressão da Doença , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Membrana Sinovial/patologia , Membrana Sinovial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ferrocianetos
11.
Bioresour Technol ; 403: 130843, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777233

RESUMO

The malic enzyme (ME) catalyzes the synthesis of L-malic acid (L-MA) from pyruvic acid and CO2 with NADH as the reverse reaction of L-MA decarboxylation. Carboxylation requires excess pyruvic acid, limiting its application. In this study, it was determined that CO2 was the carboxyl donor by parsing the effects of HCO3- and CO2, which provided a basis for improving the L-MA yield. Moreover, the concentration ratio of pyruvic acid to NADH was reduced from 70:1 to 5:1 using CO2 to inhibit decarboxylation and to introduce the ME mutant A464S with a 2-fold lower Km than that of the wild type. Finally, carboxylation was coupled with NADH regeneration, resulting in a maximum L-MA yield of 77 % based on the initial concentration of pyruvic acid. Strategic modifications, including optimal reactant ratios and efficient mutant ME, significantly enhanced L-MA synthesis from CO2, providing a promising approach to the biotransformation process.

12.
Braz J Anesthesiol ; 74(4): 844518, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38789004

RESUMO

BACKGROUND: To explore the median effective dose (ED50) and 95% effective dose (ED95) of remimazolam besylate combined with alfentanil for adult gastroscopy. METHODS: This prospective studyenrolled 31 patients scheduled to painless gastroscopy at Anhui No. 2 Provincial People's Hospital between April and May, 2022. 5 µg.kg-1 of alfentanil hydrochloride was used for pre-analgesia. The initial single loading dose of remimazolam besylate was 0.12 mg.kg-1, increased or reduced by 0.01 mg.kg-1 for the next patient with modified Dixon sequential method. The modified Observer's Assessment of Alertness/Sedation Scale (MOAA/S) was used to assess sedation. RESULTS: Combined with alfentanil, the ED50 of remimazolam besylate was 0.147 mg.kg-1 (95% CI: 0.138-0.160 mg.kg-1) and ED95 0.171 mg.kg-1 (95% CI: 0.159-0.245 mg.kg-1). The induction time after injection of remimazolam besylate was 70 ± 25 s, with the anesthesia recovery time and the observation time in resuscitation room 5.13 ± 2.13 min and 2.32 ± 1.6 min, respectively. Twenty nine patients' vital signs were within acceptable limits during gastroscopy. CONCLUSIONS: The ED50 of remimazolam besylate combined with alfentanil for painless gastroscopy was 0.147 mg.kg-1, and the ED95 was 0.171 mg.kg-1.

13.
Front Microbiol ; 15: 1331130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596370

RESUMO

The gut-brain axis is evident in modulating neuropsychiatric diseases including autism spectrum disorder (ASD). Chromosomal 16p11.2 microduplication 16p11.2dp/+ is among the most prevalent genetic copy number variations (CNV) linked with ASD. However, the implications of gut microbiota status underlying the development of ASD-like impairments induced by 16p11.2dp/+ remains unclear. To address this, we initially investigated a mouse model of 16p11.2dp/+, which exhibits social novelty deficit and repetitive behavior characteristic of ASD. Subsequently, we conducted a comparative analysis of the gut microbial community and metabolomic profiles between 16p11.2dp/+ and their wild-type counterparts using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC/MS). Our microbiota analysis revealed structural dysbiosis in 16p11.2dp/+ mice, characterized by reduced biodiversity and alterations in species abundance, as indicated by α/ß-diversity analysis. Specifically, we observed reduced relative abundances of Faecalibaculum and Romboutsia, accompanied by an increase in Turicibacter and Prevotellaceae UCG_001 in 16p11.2dp/+ group. Metabolomic analysis identified 19 significantly altered metabolites and unveiled enriched amino acid metabolism pathways. Notably, a disruption in the predominantly histamine-centered neurotransmitter network was observed in 16p11.2dp/+ mice. Collectively, our findings delineate potential alterations and correlations among the gut microbiota and microbial neurotransmitters in 16p11.2dp/+ mice, providing new insights into the pathogenesis of and treatment for 16p11.2 CNV-associated ASD.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38593038

RESUMO

Two spiro-bifluorene-based dopant-free HTMs (X22 and X23) have been synthesized by facilely condensing spiro-bifluorene diamine with 3,4-ethylenedioxythiophene (EDOT)-5,7-dicarbonyl dichloride and 2,3,5,6-tetrafluoro-terephthaloyl dichloride, respectively. In the X22 molecule, lone pairs of electrons on the sulfur (S) and oxygen (O) functional groups interact with the perovskite materials. The hole mobility (µh) of X22 (3.9 × 10-4 cm2 V-1 S1-) is more than twice that of X23 (1.4 × 10-4 cm2 V-1 S1-). The conductivity (σ0) of X22 is 2.73 × 10-4 S cm-1, which is also higher than that of X23 (2.39 × 10-4 S cm-1). The EDOT moiety benefits the contact angle of CH3NH3PbI3 precursor solutions on HTMs as low as 24°. The X22-based device with an indium-doped tin oxide/hole transport material (HTM)/CH3NH3PbI3/phenyl-C61-butyric acid methyl ester (PC61BM)/bathocuproine/Ag structure achieves a power conversion efficiency (PCE) of 19.18%. The PCE of the device based on X23 containing fluorine is 18.70%, and the contact angle between HTM and the perovskite precursor solution is 32°. The X22- and X23-based devices at ambient temperature (≈25 °C) in N2 retain 86% and 79% of the initial PCE after 150 days. The effect of S, O, and F heteroatoms plays an important role in the side chain modification of HTMs, improving defect passivation in HTM/CH3NH3PbI3 interfaces by multiple functional groups.

16.
Infect Drug Resist ; 17: 1491-1506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628245

RESUMO

Multidrug-resistant tuberculosis (MDR-TB) is an essential cause of tuberculosis treatment failure and death of tuberculosis patients. The rapid and reliable profiling of Mycobacterium tuberculosis (MTB) drug resistance in the early stage is a critical research area for public health. Then, most traditional approaches for detecting MTB are time-consuming and costly, leading to the inappropriate therapeutic schedule resting on the ambiguous information of MTB drug resistance, increasing patient economic burden, morbidity, and mortality. Therefore, novel diagnosis methods are frequently required to meet the emerging challenges of MTB drug resistance distinguish. Considering the difficulty in treating MDR-TB, it is urgently required for the development of rapid and accurate methods in the identification of drug resistance profiles of MTB in clinical diagnosis. This review discussed recent advances in MTB drug resistance detection, focusing on developing emerging approaches and their applications in tangled clinical situations. In particular, a brief overview of antibiotic resistance to MTB was present, referred to as intrinsic bacterial resistance, consisting of cell wall barriers and efflux pumping action and acquired resistance caused by genetic mutations. Then, different drug susceptibility test (DST) methods were described, including phenotype DST, genotype DST and novel DST methods. The phenotype DST includes nitrate reductase assay, RocheTM solid ratio method, and liquid culture method and genotype DST includes fluorescent PCR, GeneXpert, PCR reverse dot hybridization, ddPCR, next-generation sequencing and gene chips. Then, novel DST methods were described, including metabolism testing, cell-free DNA probe, CRISPR assay, and spectral analysis technique. The limitations, challenges, and perspectives of different techniques for drug resistance are also discussed. These methods significantly improve the detection sensitivity and accuracy of multidrug-resistant tuberculosis (MRT) and can effectively curb the incidence of drug-resistant tuberculosis and accelerate the process of tuberculosis eradication.

17.
Sci Rep ; 14(1): 7671, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561416

RESUMO

To improve the precision of defect categorization and localization in images, this paper proposes an approach for detecting surface defects in hot-rolled steel strips. The approach uses an improved YOLOv5 network model to overcome the issues of inadequate feature extraction capacity and suboptimal feature integration when identifying surface defects on steel strips. The proposed method achieves higher detection accuracy and localization precision, making it more competitive and applicable in real production. Firstly, the multi-scale feature fusion (MSF) strategy is utilized to fuse shallow and deep features effectively and enrich detailed information relevant to target defects. Secondly, the CSPLayer Res2Attention block (CRA block) residual module is introduced to reduce the loss of defect information during hierarchical transmission, thereby enhancing the extraction of fine-grained features and improving the perception of details and global features. Finally, the experimental results indicate that the mAP on the NEU-DET and GC10-DET datasets approaches 78.5% and 67.3%, respectively, which is 4.9% and 2.1% higher than that of the baseline. Meanwhile, it has higher precision and more precise localization capabilities than other methods. Furthermore, it also achieves 59.2% mAP on the APDDD dataset, indicating its potential for growth in further domains.

18.
Zhen Ci Yan Jiu ; 49(4): 367-375, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649204

RESUMO

OBJECTIVES: To investigate the effect of electroacupuncture (EA) on Rho/Rho-associated coiled-coil-forming kinases (ROCK) signaling pathway of uterus tissue in rats with dysmenorrhea, so as to explore the underlying mechanism of EA treating primary dysmenorrhea (PD) and uterine smooth muscle spasm, and to observe whether there is a difference in the effect of meridian acupoints in Conception Vessel (CV) and Governer Vessel (GV). METHODS: Sixty female SD rats were randomly divided into saline, model, CV, GV, and non-acupoint groups, with 12 rats in each group. The dysmenorrhea model was established by subcutaneous injection of estradiol diphenhydrate combined with intraperitoneal injection of oxytocin (OT). EA (2 Hz) was applied to "Qihai" (CV6) and "Zhongji" (CV3) for CV group, "Mingmen" (GV4) and "Yaoshu" (GV2) for GV group, "non-acupoint 1" and "non-acupoint 3" on the left side for non-acupoint group, and manual acupuncture was applied to "Guanyuan" (CV4) for CV group, "Yaoyangguan" (GV3) for GV group, "non-acupoint 2" on the left side for non-acupoint group. The treatment was conducted for 20 min each time, once daily for 10 days. The writhing score was evaluated. The smooth myoelectric signals of rats' uterus in vivo were recorded by multi-channel physiological recorder. The uterine histopathological changes were observed by HE staining. The contents of prostaglandin F2α (PGF2α), OT and calcium ion (Ca2+) in uterine tissue of rats were detected by ELISA. The protein and mRNA expression levels of smooth muscle 22-α (SM22-α), RhoA and ROCKⅡ in uterine tissue were detected by Western blot and fluorescence quantitative PCR, respectively. RESULTS: Compared with the saline group, the writhing score of rats in the model group was increased (P<0.01), the amplitude voltage of uterine smooth muscle in vivo was elevated (P<0.01), the contents of PGF2α, OT and Ca2+, the protein and mRNA expression of SM22-α, RhoA and ROCK Ⅱ in uterine tissue were all increased (P<0.01). Compared with the model and the non-acupoint groups, the writhing scores of the CV and the GV groups were decreased (P<0.01, P<0.05), the amplitude voltage of uterine smooth muscle was decreased (P<0.01), the contents of PGF2α, OT and Ca2+ in uterine tissue were decreased (P<0.01, P<0.05), and the protein expression and mRNA expression of SM22-α, RhoA and ROCKⅡ in uterine tissue were decreased (P<0.01, P<0.05). HE staining showed extensive exfoliation of uterine intima with severe edema and increased glandular secretion in the model group, which was alleviated in the CV and GV groups. CONCLUSIONS: EA at acupoints of CV and GV can significantly reduce the writhing score, uterine smooth muscle amplitude voltage, pathological injury degree of uterus, and relieve spasm of uterine smooth muscle in dysmenorrhea rats, which may be related to its effect in regulating PGF2α and OT contents, inhibiting the Rho/ROCK signaling pathway, and reducing the SM22-α, RhoA, ROCKⅡ protein and mRNA expression, and Ca2+ content in uterine tissue.


Assuntos
Pontos de Acupuntura , Dismenorreia , Eletroacupuntura , Ratos Sprague-Dawley , Transdução de Sinais , Útero , Quinases Associadas a rho , Animais , Feminino , Dismenorreia/terapia , Dismenorreia/metabolismo , Dismenorreia/genética , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Ratos , Humanos , Útero/metabolismo , Músculo Liso/metabolismo , Espasmo/terapia , Espasmo/genética , Espasmo/metabolismo , Espasmo/fisiopatologia
19.
Chemosphere ; 358: 142093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679176

RESUMO

COMplete AMMonia OXidizer (comammox) refers to microorganisms that have the function of oxidizing NH4+ to NO3- alone. The discovery of comammox overturned the two-step theory of nitrification in the past century and triggered many important scientific questions about the nitrogen cycle in nature. This comprehensive review delves into the origin and discovery of comammox, providing a detailed account of its detection primers, clades metabolic variations, and environmental factors. An in-depth analysis of the ecological niche differentiation among ammonia oxidizers was also discussed. The intricate role of comammox in anammox systems and the relationship between comammox and nitrogen compound emissions are also discussed. Finally, the relationship between comammox and anammox is displayed, and the future research direction of comammox is prospected. This review reveals the metabolic characteristics and distribution patterns of comammox in ecosystems, providing new perspectives for understanding nitrogen cycling and microbial ecology. Additionally, it offers insights into the potential application value and prospects of comammox.


Assuntos
Amônia , Bactérias , Ciclo do Nitrogênio , Nitrogênio , Oxirredução , Nitrogênio/metabolismo , Amônia/metabolismo , Bactérias/metabolismo , Bactérias/genética , Nitrificação , Ecossistema
20.
Talanta ; 275: 126126, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678923

RESUMO

ß-cyclodextrin (ß-CD), as an important pseudo-stationary phase (PSP) in capillary electrophoresis (CE), frequently confronts challenges stemming from its limited water solubility, particularly when high concentrations are required for resolving complex analytes. Traditionally, researchers often resort to the use of (toxic) organic solvents to enhance the solubility of ß-CD, establishing non-aqueous capillary electrophoresis (NACE) for specific separations. However, such practices are hazardous to health and run counter to the principles of green analytical chemistry. In this study, we demonstrate a deep eutectic solvent (DES), Proline:Urea (PU), as a promising alternative to conventional organic solvents for ß-CD-based CE separations. The DES exhibits a solubility of up to 30% for ß-CD, a significant improvement compared to the 1.8% solubility in the aqueous phase. Utilizing this DES-type separation medium, we achieved simultaneous baseline separation of a complex analyte composed of eight structurally similar naphthoic acid derivatives. Furthermore, we conducted a systematic comparison of ß-CD's performance in aqueous CE buffers, organic solvents, and DESs, highlighting the superiority of this novel and environmentally friendly CE separation medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA