Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(11): 4797-4801, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38427578

RESUMO

Two peripheral functionalized clamp-shaped cobalt porphyrin(2.1.2.1) complexes were synthesized, and their electrocatalytic ORR abilities were investigated. The crystal data and optical and redox properties of them were revised by peripheral modification. The ORR capacities and DFT calculations of F5PhCo and F5NCo suggest superior selectivity for the 4e- ORR pathway. This work further confirms the clamp-shaped cobalt porphyrin complexes are ideal Co-N4 ORR catalysts.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124101, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447440

RESUMO

Fluorescent chemosensors are often preferred for tracking toxic ions because of their non-destructive measurement and ease of use in environmental real samples and biosystems. Exploring high selectivity, great sensitivity, and biocompatible fluorophores with facile, accessible and dual-responsive features is currently highly demanding. A coumarin-based naphthol hydrazone Schiff base chemosensor, NaChro, is designed and synthesized in a two-step process to detect toxic metal ions with strong emission. Fluorescence spectra analysis demonstrates that the probe binds to Hg2+ and Pb2+ ions with a 1:1 and a 2:1 stoichiometry, respectively, with high sensitivity, short response time and minimal interference from other metal ions. The observed reversible turn-on reaction was attributed to the inhibition of C = N isomerization and excited-state intramolecular proton transfer (ESIPT) processes once the ions were introduced. The practical applications of NaChro are successfully addressed in paper strips, various water samples, HeLa cells and Zebrafish, demonstrating that the probe can detect and track Hg2+ and Pb2+ ions in environmental samples and biosystems.


Assuntos
Chumbo , Mercúrio , Humanos , Animais , Bases de Schiff , Células HeLa , Peixe-Zebra , Mercúrio/análise , Íons , Cumarínicos , Corantes Fluorescentes
3.
Adv Mater ; 36(18): e2311397, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38221651

RESUMO

Acute kidney injury (AKI) has become an increasing concern for patients due to the widespread clinical use of nephrotoxic drugs. Currently, the early diagnosis of AKI is still challenging and the available therapeutic drugs cannot meet the clinical demand. Herein, this work has investigated the key redox couple involved in AKI and develops a tailored photoacoustic (PA) imaging probe (AB-DiOH) which can reversibly respond to hypochlorite (ClO-)/glutathione (GSH) with high specificity and sensitivity. This probe enables the real-time monitoring of AKI by noninvasive PA imaging, with better detection sensitivity than the blood test. Furthermore, this probe is utilized for screening nephroprotective drugs among natural products. For the first time, astragalin is discovered to be a potential new drug for the treatment of AKI. After oral administration, astragalin can be efficiently absorbed by the animal body, alleviate kidney injury, and meanwhile induce no damage to other normal tissues. The treatment mechanism of astragalin has also been revealed to be the simultaneous inhibition of oxidative stress, ferroptosis, and cuproposis. The developed PA imaging probe and the discovered drug candidate provide a promising new tool and strategy for the early diagnosis and effective treatment of AKI.


Assuntos
Injúria Renal Aguda , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/diagnóstico , Animais , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Humanos , Ácido Hipocloroso/metabolismo , Glutationa/metabolismo , Glutationa/química , Quempferóis/química , Quempferóis/farmacologia , Rim/diagnóstico por imagem , Rim/metabolismo , Descoberta de Drogas
4.
Dalton Trans ; 52(40): 14573-14582, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37782272

RESUMO

Metalloporphyrins have attracted significant attention as highly promising alternatives to Pt-based electrocatalysts in the realm of oxygen reduction reactions (ORRs). While the structure of porphyrin is widely recognized as a pivotal factor influencing the ORR performance, the impact of molecular symmetry, which is one of the key properties of the molecular structure, has rarely been understood and its effects remain largely unexplored. Herein, we designed and synthesized two triphenylamine (TPA)-substituted cobalt porphyrins, the asymmetric aBz-TCoP and the symmetric Bz-2TCoP, which are doped onto carbon black to construct composite catalysts for ORRs. The electronic structures of both porphyrins are determined through density functional theory (DFT) calculations, and the morphology and electronic states of the composites are examined by spectroscopic techniques. A series of electrochemical measurements demonstrate the superior activity, selectivity and durability of Bz-2TCoP/C to aBz-TCoP/C in ORRs conducted in both acidic and alkaline electrolytes. The improved ORR properties of the symmetric porphyrin may stem from the steric properties rather than the electronic properties of the chemical structure. This work represents a preliminary study on the effects of porphyrin structural symmetry on electrocatalysis and provides a potential strategy for further structural modifications of metalloporphyrins, as non-noble metal electrocatalysts, to enhance the ORR performance.

5.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836803

RESUMO

Toxic cations, including heavy metals, pose significant environmental and health risks, necessitating the development of reliable detection methods. This review investigates the techniques and approaches used to strengthen the sensitivity and selectivity of Schiff base fluorescent chemosensors designed specifically to detect toxic and heavy metal cations. The paper explores a range of strategies, including functional group variations, structural modifications, and the integration of nanomaterials or auxiliary receptors, to amplify the efficiency of these chemosensors. By improving selectivity towards targeted cations and achieving heightened sensitivity and detection limits, consequently, these strategies contribute to the advancement of accurate and efficient detection methods while increasing the range of end-use applications. The findings discussed in this review offer valuable insights into the potential of leveraging Schiff base fluorescent chemosensors for the accurate and reliable detection and monitoring of heavy metal cations in various fields, including environmental monitoring, biomedical research, and industrial safety.


Assuntos
Metais Pesados , Bases de Schiff , Bases de Schiff/química , Metais Pesados/análise , Corantes Fluorescentes/química , Cátions/análise , Monitoramento Ambiental/métodos
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122961, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290147

RESUMO

A pyridine modified naphthol hydrazone Schiff base chemosensor, NaPy, was prepared in a two-step process to detect aluminum ion (Al3+) in different samples. The probe shows a turn-off emission response towards Al3+ at a 1:1 binding stoichiometry via intramolecular charge transfer (ICT) mechanism, as validated by density functional theory (DFT) calculations and a series of spectroscopic measurements. The response time is slightly over one minute with a limit of detection (LOD) value of 0.164 µM, demonstrating the great sensitivity of the probe. It is also found that NaPy exhibits high selectivity towards Al3+ and resists interference from seventeen other cations. Application investigations in paper strips, water samples and HeLa cells suggest that NaPy can be used as an efficient probe for sensing Al3+ in real environmental samples and biosystems.


Assuntos
Alumínio , Naftóis , Humanos , Células HeLa , Bases de Schiff/química , Hidrazonas , Cátions , Piridinas , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122741, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080049

RESUMO

BODIPY derivatives have often been employed as fluorescent sensors to probe toxic ions in environment and living systems, such as sulfide ion (S2-). Whilst many structure modifications have been exploited on groups at the 3, 5, 8-positions, there are quite few examples on tailoring the 2,6-substituents for chemosensor investigations. Herein, we design and synthesize a 2,6-substituted BODIPY molecule, LM-BDP, to use as a fluorescent probe for detecting S2- in aqueous media. The electronic and crystal structures of the probe are studied by density functional theory (DFT) calculations and single-crystal X-ray diffraction analysis. Spectroscopy investigations are performed in a variety of conditions, showing that LM-BDP exhibits a noticeable color change from pink to dark red and a fluorescence shift from yellow to pink channel with decreased intensity upon addition of S2-. The selectivity and sensitivity measurements show that LM-BDP can only response to S2- with a detection limit of 0.29 µM in less than 100 s. The remarkable contrast in fluorescence images in test-stripe and RAW 264.7 cell experiments indicates that the probe is a proper candidate for the application in detecting exogenous S2-.

8.
Crit Rev Food Sci Nutr ; 63(26): 8226-8248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35357234

RESUMO

Food quality and nutrition have received much attention in recent decades, thanks to changes in consumer behavior and gradual increases in food consumption. The demand for high-quality food necessitates stringent quality assurance and process control measures. As a result, appropriate analytical tools are required to assess the quality of food and food products. VOCs analysis techniques may meet these needs because they are nondestructive, convenient to use, require little or no sample preparation, and are environmentally friendly. In this article, the main VOCs released from various foods during transportation, storage, and processing were reviewed. The principles of the most common VOCs analysis techniques, such as electronic nose, colorimetric sensor array, migration spectrum, infrared and laser spectroscopy, were discussed, as well as the most recent research in the field of food quality and safety evaluation. In particular, we described data processing algorithms and data analysis captured by these techniques in detail. Finally, the challenges and opportunities of these VOCs analysis techniques in food quality analysis were discussed, as well as future development trends and prospects of this field.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Qualidade dos Alimentos , Alimentos , Análise Espectral/métodos , Análise de Alimentos
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122242, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542920

RESUMO

Naphthol hydrazone derivatives are recognized as efficient chelating agents for both qualitative and quantitative detection of metal ions. Here we design a naphthol hydrazine-based chemosensor with covalently linking a strong electron-withdrawing benzothiadiazole group to modulate the molecular electronic structure, nominated as NtHzBtd. The fluorescent probe performs excellent selectivity and sensitivity towards Fe3+ with 1:1 binding stoichiometry, while exhibiting a quick response at 55 s with a relatively low limit of detection of 0.036 µM. A series of spectroscopic measurements in tandem with theoretical calculations suggest that the probe undergoes both intramolecular charge transfer (ICT) and chelation enhanced quenching (CHEQ) processes. Successful color rendering of paper strips and bioimaging in PC3 cells demonstrate the promising applicability of NtHzBtd for portable Fe3+ detection in real samples and biosystems.


Assuntos
Naftóis , Bases de Schiff , Humanos , Naftóis/química , Células PC-3 , Bases de Schiff/química , Hidrazonas , Corantes Fluorescentes/química
10.
Food Chem ; 405(Pt A): 134803, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36371840

RESUMO

Volatile organic compounds (VOCs) are an important indicator for fungal-infected wheat identification. This work proposes a novel approach for toxigenic Aspergillus flavus infected wheat identification through characteristic VOCs analyzed by nano-composite colorimetric sensors. Nanoparticles of poly styrene-co-acrylic acid (PSA), porous silica nanoparticles (PSN), and metal-organic framework (MOF) were combined with boron dipyrromethene (BODIPY) to fabricate nano-composite colorimetric sensors. The combination mechanisms for nanoparticles and the information extracted from nano-colorimetric sensors by digital images were analyzed in the current work. Furthermore, linear discriminant analysis (LDA) and k-nearest neighbor (KNN) were used comparatively to analyze the data from images, and toxigenic Aspergillus flavus infected wheat samples could be 100.00% correctly identified when using the optimal KNN model. This research contributes to the practical analysis of VOCs and the detection of toxigenic Aspergillus flavus infected wheat.


Assuntos
Aspergillus flavus , Compostos Orgânicos Voláteis , Triticum , Compostos Orgânicos Voláteis/análise , Colorimetria , Tecnologia
11.
Inorg Chem ; 61(33): 13085-13095, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35943152

RESUMO

Three ABAB-type cobalt meso-tetraarylporphyrins with fluorine (F-CoPor), acetic acid (AC-CoPor), and cyanoacetic acid (CN-CoPor) groups at the para-positions of phenyl rings at the 10,20-positions are synthesized and evaluated as catalysts for oxygen reduction reactions (ORRs). In density functional theory calculations, the frontier molecular orbitals of these complexes were found to be stabilized relative to model complexes with electron-withdrawing atoms or moieties on the meso-aryl rings. Electrochemical measurements suggest that electrodes with CN-CoPor (CN-CoPor/C) exhibit the most positive ORR potential values and the highest limiting current density in both acidic and alkali electrolytes, while the F-CoPor/C electrocatalyst exhibits extremely low ORR performance. The electron transfer numbers for the electrocatalysts are more than 3.0, indicating that a mixture of 2- and 4-electron transfer pathways occurs. The results demonstrate that coupling the hydrogen bonding properties and electron-withdrawing abilities through rational design of the substituent at the meso-position is an efficient way to modify the ORR performance.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121599, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35816866

RESUMO

A thiophene substituted naphthyl hydrazone derivative NHT was synthesized using a one-step route for the detection of trivalent chromium (Cr3+). UV-visible absorption and emission spectra, density functional theory calculations as well as 1H NMR titration confirmed that the probe underwent a turn-off response via the chelation enhanced fluorescence quenching effect upon exposure to Cr3+ and the NHT-Cr3+ complex was formed at a 1:1 binding stoichiometry. NHT exhibited a fast response rate of 2.3 min in buffer solution and a relatively low limit of detection of 41 nM. In addition, the Schiff base chemosensor exhibited excellent selectivity with high affinity towards Cr3+ in the presence of other competing cations. Bioimaging of the probe in PC3 cells further demonstrated the potential real life application of the probe in detecting Cr3+.


Assuntos
Corantes Fluorescentes , Hidrazonas , Cromo/química , Corantes Fluorescentes/química , Bases de Schiff/química , Espectrometria de Fluorescência/métodos
13.
Anal Methods ; 14(23): 2311-2317, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35638370

RESUMO

One kind of phenolic substituted dicyanoisophorone derivative (Is-OL) has been designed and successfully synthesized for the detection of hypochlorite in water samples, test strips and living HeLa cells. The probe Is-OL showed high sensitivity and selectivity to hypochlorite over other competitive ROS and metal ions. Moreover, Is-OL can react instantaneously with hypochlorite (<5 s) while exhibiting a significant color change from yellow to colorless, which makes "naked-eye" detection possible with a low detection limit (0.095 µM). The results based on water tests and living HeLa cell experiments showed that Is-OL could be applied as a potential candidate for the detection of hypochlorite.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Células HeLa , Humanos , Íons , Água
14.
Anal Chem ; 94(15): 5918-5926, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35385655

RESUMO

Homeostasis of the cellular redox status plays an indispensable role in diverse physiological and pathological processes. Hypochlorite anion (ClO-) and glutathione (GSH) represent an important redox couple to reflect the redox status in living cells. The current cellular redox probes that detect either ClO- or GSH alone are not accurate enough to monitor the real redox status. In this work, a reversible photoacoustic (PA) probe, DiOH-BDP, has been synthesized and applied for PA imaging to monitor the ClO-/GSH couple redox state in an acute liver injury (ALI) model. The near-infrared PA probe DiOH-BDP features significant changes in absorption between 648 and 795 nm during the selective oxidation by ClO- and the reductive recovery of GSH, which exhibits excellent selectivity and sensitivity toward ClO- and GSH with the limits of detection of 77.7 nM and 7.2 µM, respectively. Additionally, using PA770 as a detection signal allows for the in situ monitoring of the ClO-/GSH couple, which realizes mapping of the localized redox status of the ALI by the virtue of a PA imaging system. Therefore, the probe provides a potentially technical tool to understand redox imbalance-related pathological formation processes.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Glutationa/metabolismo , Imagem Óptica/métodos , Oxirredução
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120338, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34482149

RESUMO

A new Schiff base probe (QT) consisting of 8-aminoquinoline (Q) and thiophene-2-carboxaldehyde (T) moieties has been synthesized. QT undergoes chelation-enhanced fluorescence quenching when exposed to Hg2+ due to coordination by the sulfur and nitrogen atoms of QT thus forming a facile "turn-off" sensor. The formation of the chelation complex was confirmed by UV-visible absorption and emission spectral measurements, 1H NMR titration and density functional theory calculations. These studies revealed that the probe exhibits high selectivity and sensitivity towards Hg2+ in the presence of other common metal ions. A low detection limit of 23.4 nM was determined and a Job plot confirmed a 2:1 stoichiometry between QT and Hg2+. The potential utility of QT as a sensor for Hg2+ ions in human HeLa cells was determined by confocal fluorescence microscopy, and its suitability for use in the field with environmental samples was tested with Whatman filter paper strips.


Assuntos
Mercúrio , Quinolinas , Corantes Fluorescentes , Células HeLa , Humanos , Bases de Schiff , Espectrometria de Fluorescência , Tiofenos
16.
Compr Rev Food Sci Food Saf ; 20(5): 5145-5172, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34409725

RESUMO

Public attention to foodquality and safety has been increased significantly. Therefore, appropriate analytical tools are needed to analyze and sense the food quality and safety. Volatile organic compounds (VOCs) are important indicators for the quality and safety of food products. Odor imaging technology based on chemo-responsive dyes is one of the most promising methods for analysis of food products. This article reviews the sensing and imaging fundamentals of odor imaging technology based on chemo-responsive dyes. The aim is to give detailed outlines about the theory and principles of using odor imaging technology for VOCs detection, and to focus primarily on its applications in the field of quality and safety evaluation of food products, as well as its future applicability in modern food industries and research. The literatures presented in this review clearly demonstrated that imaging technology based on chemo-responsive dyes has the exciting effect to inspect such as quality assessment of cereal , wine and vinegar flavored foods , poultry meat, aquatic products, fruits and vegetables, and tea. It has the potential for the rapid, reliable, and inline assessment of food safety and quality by providing odor-image-basedmonitoring tool. Practical Application: The literatures presented in this review clearly demonstrated that imaging technology based on chemo-responsive dyes has the exciting effect to inspect such as quality assessment of cereal , wine and vinegar flavored foods, poultry meat, aquatic products, fruits and vegetables, and tea.


Assuntos
Corantes , Odorantes , Qualidade dos Alimentos , Odorantes/análise , Controle de Qualidade , Verduras
17.
J Colloid Interface Sci ; 597: 269-277, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33872883

RESUMO

Charge states at the catalytic interface can intensely alter the charge transfer mechanism and thus the oxygen reduction performance. Two symmetric cobalt porphyrins with electron deficient 2,1,3-benzothiadiazole (BTD) and electron-donating propeller-like triphenylamine (TPA) derivatives have been designed firstly, to rationally generate intramolecular partial charges, and secondly, to utilize the more exposed molecular orbitals on TPA for enhancing the charge transfer kinetics. The catalytic performance of the two electrocatalysts was examined for oxygen reduction reactions (ORR) in acidic electrolyte. It was found that BCP1/C with two BTD groups showed greater reduction potential but less limiting current density as compared to BCP2/C bearing BTD-TPA units. The reduced potential of BCP2/C was proposed to the introduction of the electron-donating ability of TPA, which may decrease the adsorption affinity of oxygen to the cobalt center. Both dipole-induced partial charge effect and the more exposed cation orbitals of the 3D structural TPA were proposed to contribute to the increased response current of BCP2/C. In addition, BCP2/C attained more than 80% of H2O2 generation in acidic solution, which may also relate to the structural effect. These findings may provide new insight into the structural design of organic electrocatalysts and deep understanding on the interfacial charge transfer mechanism for ORR.

18.
Chemosphere ; 268: 128839, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33228986

RESUMO

Abundant active oxygen free radicals could efficiently remove refractory organic pollutants. In previous research, the original carbon nitride can form more hydrogen peroxide, however, owing to the limitation of its band structure, the original carbon nitride cannot decompose the hydrogen peroxide to generate more active oxygen free radicals. Herein, this work reports a simple bottom-up synthesis method, which synthesize a broad-spectrum-response carbon nitride (CN-CA) with oxygen-linked band and porous defect structure, while adjusting the band structure, and the introduction of the oxygen-linked band structure can also decompose the hydrogen peroxide produced by the original carbon nitride to form more active oxygen free radicals. Instrumental characterization and analysis of experimental results revealed the important role of oxygen-linked band and porous defects in adjusting the CN-CA energy band structure and improving its visible light absorption. The optimal CN-CA displays an outstanding photocatalytic degradation ability, that degradation rate of bisphenol A (BPA) reaches 99.8% within 150 min, the reaction rate constant of which is 6.77 times higher than that of pure g-C3N4, as also demonstrated with 2-mercaptophenthiazole (MBT) and ciprofloxacin (CIP). Meanwhile, the excellent degradation performance under blue LED (450-462 nm) and green LED (510-520 nm) exhibits the broad-spectrum characteristics of CN-CA. The degradation pathways of BPA and MBT were analyzed via HPLC-MS. Moreover, the primary active species were detected as O2-, OH and h+ based on the trapping experiments and ESR. This research provides a new strategy for g-C3N4 modified by porous defects and oxygen-linked band structure for environmental remediation.


Assuntos
Ciprofloxacina , Oxigênio , Compostos Benzidrílicos , Catálise , Fenóis , Fotólise , Porosidade
19.
ACS Appl Mater Interfaces ; 12(41): 45976-45986, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32975398

RESUMO

Triphenylamine (TPA) has often been used as a building block to construct functional organic materials yet is rarely employed in oxygen reduction reaction (ORR) due to its strong electron-donating ability. This versatile segment bears a three-dimensional spatial structure whose effect has not been fully explored in catalytic systems. To this end, five symmetric cobalt porphyrins with carbazole and TPA derivatives have been synthesized and their ORR performance has been evaluated in acid medium. It was found that all compounds produced mainly hydrogen peroxide in oxygen reduction, with CP1 attaching benzyl derivatives and XCP4 possessing TPA-carbazole substituents at the meso-position of porphyrin, showing similar but more positive ORR potential as compared to the other analogues. Importantly, XCP4 achieved the greatest response current and the largest electron transfer numbers and H2O2 yields among the investigated molecules. Detailed electrochemical measurements suggested that the dipole-induced partial charges on the porphyrin in tandem with the more exposed molecular orbitals on TPA contributed to this enhancement, with the former attracting more protons to the affinity of reactive sites and the latter increasing the collision frequency between the electrocatalyst and H+ in solution. This is the first attempt to integrate the intermolecular forces with more exposed molecular orbitals in altering the electrochemical process.

20.
Food Chem ; 268: 300-306, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30064762

RESUMO

A novel colorimetric sensor array based on boron-dipyrromethene (BODIPY) dyes was developed to monitor the volatile organic compounds (VOCs) of rice at different storage times. The VOCs of rice at different storage times were analyzed through GC-MS combined with multivariate analysis, and the compound 18-crown-6 was found significantly changed during rice aging process. Aimed at 18-crown-6 with particular macrocyclic structure, a series of BODIPYs were targeted synthesized for the selection of sensitive chemically responsive dyes. Four dyes were chosen to construct colorimetric sensor array based on sensitivity to VOCs of aged rice samples. Data acquired from the interactions of dyes and rice VOCs were subjected to the principal components analysis (PCA) and linear discriminant analysis (LDA). The optimal performance obtained by the LDA model was 98.75% in prediction set. Application of BODIPYs in this work has improved the sensitivity and expanded the choices of colorimetric dyes for the specific detection.


Assuntos
Colorimetria , Corantes/química , Oryza/química , Compostos Orgânicos Voláteis/análise , Compostos de Boro/química , Éteres de Coroa/química , Análise Discriminante , Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Análise em Microsséries , Oryza/metabolismo , Análise de Componente Principal , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...