Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232565

RESUMO

Protein homeostasis, including protein folding, refolding, and degradation, is thought to decline with aging. HSPB5 (also known as αB-crystallin) prevents target protein aggregation as a molecular chaperone and exhibits a cytoprotective function against various cell stresses. To elucidate the effect of HSPB5 on endoplasmic reticulum (ER) stress, we searched for novel binding proteins of HSPB5 using the proximity-dependent biotin labeling method. Proteins presumed to interact with HSPB5 in cells treated with the proteasome inhibitor MG132 were identified by a reversible biotin-binding capacity method combining tamavidin2-REV magnetic beads and mass spectrometry. We discovered a new binding protein for HSPB5, polo-like kinase 2 (PLK2), which is an apoptosis-related enzyme. The expression of PLK2 was upregulated by MG132 treatment, and it was co-localized with HSPB5 near the ER in L6 muscle cells. Inhibition of PLK2 decreased ER stress-induced phosphorylation of serine 19 in HSPB5 and increased apoptosis by activation of caspase 3 under ER stress. Overexpression of HSPB5 (WT) suppressed the ER stress-induced caspase 3 activity, but this was not observed with phospho-deficient HSPB5 (3A) mutants. These results clarify the role of HSPB5 phosphorylation during ER stress and suggest that the PLK2/HSPB5 pathway plays an essential role in cytoprotection against proteasome inhibition-induced ER stress.


Assuntos
Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma , Biotina/metabolismo , Caspase 3/metabolismo , Citoproteção , Leupeptinas , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos , Serina/metabolismo
2.
J Nutr Biochem ; 110: 109129, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35977663

RESUMO

It is generally recognized that the main function of α-tocopherol (αToc), which is the most active form of vitamin E, is its antioxidant effect, while non-antioxidant effects have also been reported. We previously found that αToc ameliorates diabetic nephropathy via diacylglycerol kinase alpha (DGKα) activation in vivo, and the activation was not related to the antioxidant effect. However, the underlying mechanism of how αToc activates DGKα have been enigmatic. We report that the membrane-bound 67 kDa laminin receptor (67LR), which has previously been shown to serve as a receptor for epigallocatechin gallate (EGCG), also contains a novel binding site for vitamin E, and its association with Vitamin E mediates DGKα activation by αToc. We employed hydrogen-deuterium exchange mass spectrometry (HDX/MS) and molecular dynamics (MD) simulations to identify the specific binding site of αToc on the 67LR and discovered the conformation of the specific hydrophobic pocket that accommodates αToc. Also, HDX/MS and MD simulations demonstrated the detailed binding of EGCG to a water-exposed hydrophilic site on 67LR, while in contrast αToc binds to a distinct hydrophobic site. We demonstrated that 67LR triggers an important signaling pathway mediating non-antioxidant effects of αToc, such as DGKα activation. This is the first evidence demonstrating a membrane receptor for αToc and one of the underlying mechanisms of a non-antioxidant function for αToc.


Assuntos
Catequina , Diacilglicerol Quinase , Diacilglicerol Quinase/metabolismo , Vitamina E/farmacologia , Receptores de Laminina/metabolismo , Catequina/farmacologia , alfa-Tocoferol , Antioxidantes/farmacologia , Sítios de Ligação
3.
Metabolites ; 12(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35448519

RESUMO

Aroma is an essential factor for meat quality. The meat of Japanese Black cattle exhibits fine marbling and a rich and sweet aroma with a characteristic lactone composition. The mechanism of lactone formation associated with beef aroma has not been elucidated. In this study, we examined the precursors of γ-hexalactone, an indicator of the sweet aroma of beef and identified the mechanism underlying γ-hexalactone production. A low-temperature vacuum system was used to prepare beef tallow from Japanese Black cattle and Holstein cattle. The odor components were identified using headspace-gas chromatography. The analysis revealed that γ-hexalactone, γ-dodecalactone, δ-tetradecalactone, and δ-hexadecalactone were present as sweet aroma components of beef tallow prepared from marbling and muscle. Since we previously reported that γ-hexalactone formation correlates with linoleic acid content in beef, we analyzed ten oxidized fatty acids derived from linoleic acid by liquid chromatography-triple quadrupole mass spectrometry and detected two hydroxy-octadecadienoic acids (9S-HODE and 13S-HODE) in beef tallow. Significant differences in arachidonic acid 15-lipoxygenase and cyclooxygenase protein expression levels among subcutaneous fat, intramuscular fat, and muscle tissue were observed. Our results suggest that the combination of linoleic acid and the expression of lipid oxidase derived from beef muscle and intramuscular fat produce hydroxy fatty acids that result in a sweet aroma.

4.
Biomolecules ; 11(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34944458

RESUMO

Diacylglycerol kinase ß (DGKß) is an enzyme that converts diacylglycerol to phosphatidic acid and is mainly expressed in the cerebral cortex, hippocampus and striatum. We previously reported that DGKß induces neurite outgrowth and spinogenesis, contributing to higher brain functions, including emotion and memory. To elucidate the mechanisms involved in neuronal development by DGKß, we investigated the importance of DGKß activity in the induction of neurite outgrowth using human neuroblastoma SH-SY5Y cells. Interestingly, both wild-type DGKß and the kinase-negative (KN) mutant partially induced neurite outgrowth, and these functions shared a common pathway via the activation of mammalian target of rapamycin complex 1 (mTORC1). In addition, we found that DGKß interacted with the small GTPase RalA and that siRNA against RalA and phospholipase D (PLD) inhibitor treatments abolished DGKßKN-induced neurite outgrowth. These results indicate that binding of RalA and activation of PLD and mTORC1 are involved in DGKßKN-induced neurite outgrowth. Taken together with our previous reports, mTORC1 is a key molecule in both kinase-dependent and kinase-independent pathways of DGKß-mediated neurite outgrowth, which is important for higher brain functions.


Assuntos
Crescimento Neuronal , Fosfolipase D , Corpo Estriado , Hipocampo
5.
Genes (Basel) ; 12(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34440281

RESUMO

Japanese Black cattle (Japanese Wagyu) have a unique phenotype in which ectopic intramuscular fat accumulates in skeletal muscle, producing finely marbled beef. However, the mechanism of intramuscular fat formation in Japanese Black cattle remains unclear. To investigate the key genes involved in intramuscular fat accumulation, we comprehensively analyzed mRNA levels in subcutaneous and intramuscular fat tissues using RNA sequence (RNA-seq) analysis, which detected 27,606 genes. We identified eight key genes, namely carboxypeptidase E, tenascin C, transgelin, collagen type IV alpha 5 (COL4A5), cysteine and glycine-rich protein 2, PDZ, and LIM domain 3, phosphatase 1 regulatory inhibitor subunit 14A, and regulator of calcineurin 2. These genes were highly and specifically expressed in intramuscular fat tissue. Immunohistochemical analysis revealed a collagen network, including COL4A5, in the basement membrane around the intramuscular fat tissue. Moreover, pathway analysis revealed that, in intramuscular fat tissue, differentially expressed genes are related to cell adhesion, proliferation, and cancer pathways. Furthermore, pathway analysis showed that the transforming growth factor-ß (TGF-ß) and small GTPases regulators RASGRP3, ARHGEF26, ARHGAP10, ARHGAP24, and DLC were upregulated in intramuscular fat. Our study suggests that these genes are involved in intramuscular fat formation in Japanese Black cattle.


Assuntos
Tecido Adiposo/metabolismo , Bovinos/genética , Perfilação da Expressão Gênica , Músculo Esquelético/metabolismo , Animais , Japão , Reação em Cadeia da Polimerase em Tempo Real
6.
Metabolites ; 11(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805322

RESUMO

The meat from Japanese Black cattle (Japanese Wagyu) is finely marbled and exhibits a rich and sweet aroma known as Wagyu beef aroma. To clarify the key metabolites involved in the aroma, we analyzed the correlation between lactone and lipid composition in Japanese Black cattle. Using gas chromatography-olfactometry, we identified 39 characteristic odorants of the intermuscular fat. Seven characteristic lactones considered to be involved in Wagyu beef aroma were quantified and compared in the marbled area and intermuscular fat using a stable isotope dilution assay. Among them, γ-hexalactone was the only lactone whose level was significantly higher in the marbled area. To explore the lipid species involved in lactone formation, we analyzed samples with different aroma characteristics. Liquid chromatography-mass spectrometry revealed eight lipid classes and showed significant differences in triacylglycerides (TAGs). To determine the molecular species of TAGs, we performed high-performance liquid chromatography analysis and identified 14 TAG species. However, these analyses showed that seven lactones had a low correlation with the TAGs. However, γ-hexalactone showed a positive correlation with linoleic acid. This study suggests that lipid composition affects the characteristic lactone profile involved in the Wagyu beef aroma.

7.
Front Aging Neurosci ; 13: 573966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584249

RESUMO

Senescence-accelerated mouse prone 8 (SAMP8) is an animal model of age-related central nervous system (CNS) disorders. Although SAMP8 shows deficits in learning, memory, and emotion, its motor coordination has not been clarified. We have recently reported that DGKγ-regulated PKCγ activity is important for cerebellar motor coordination. However, involvement of the functional correlation between the kinases in age-related motor dyscoordination still remains unknown. Therefore, we have investigated the motor coordination in SAMP8 and involvement of the functional correlation between DGKγ and PKCγ in the age-related motor dyscoordination. Although 6 weeks old SAMP8 showed equivalent motor coordination with control mice (SAMR1) in the rotarod test, 24 weeks old SAMP8 exhibited significantly less latency in the rotarod test and more frequent slips in the beam test compared to the age-matched SAMR1. Furthermore, 24 weeks old SAMP8 showed the higher locomotor activity in open field test and Y-maze test. Western blotting revealed that DGKγ expression decreased in the cerebellum of 24 weeks old SAMP8, while PKCγ was upregulated. These results suggest that SAMP8 is a useful model of age-related motor dysfunction and that the DGKγ-regulated PKCγ activity is involved in the age-related motor dyscoordination.

8.
Metabolites ; 11(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467764

RESUMO

Beef from Japanese Black cattle (Japanese Wagyu) is renowned for its flavor characteristics. To clarify the key metabolites contributing to this rich and sweet aroma of beef, an omics analysis combined with GC-olfactometry (GC-O) and metabolomics analysis with gas chromatography-mass spectrometry (GC-MS) were applied. GC-O analysis identified 39 odor-active odorants from the volatile fraction of boiled beef distilled by solvent-assisted flavor evaporation. Eight odorants predicted to contribute to Wagyu beef aroma were compared between Japanese Black cattle and Holstein cattle using a stable isotope dilution assay with GC-tandem quadrupole mass spectrometry. By correlating the sensory evaluation values of retronasal aroma, γ-hexalactone, γ-d2ecalactone, and γ-undecalactone showed a high correlation with the Wagyu beef aroma. Metabolomics data revealed a high correlation between the amounts of odorants and multiple metabolites, such as glutamine, decanoic acid, lactic acid, and phosphoric acid. These results provide useful information for assessing the aroma and quality of beef.

9.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114041

RESUMO

Diacylglycerol kinase γ (DGKγ) is a lipid kinase to convert diacylglycerol (DG) to phosphatidic acid (PA) and indirectly regulates protein kinase C γ (PKCγ) activity. We previously reported that the basal PKCγ upregulation impairs cerebellar long-term depression (LTD) in the conventional DGKγ knockout (KO) mice. However, the precise mechanism in impaired cerebellar LTD by upregulated PKCγ has not been clearly understood. Therefore, we first produced Purkinje cell-specific DGKγ KO (tm1d) mice to investigate the specific function of DGKγ in Purkinje cells and confirmed that tm1d mice showed cerebellar motor dysfunction in the rotarod and beam tests, and the basal PKCγ upregulation but not PKCα in the cerebellum of tm1d mice. Then, the LTD-induced chemical stimulation, K-glu (50 mM KCl + 100 µM, did not induce phosphorylation of PKCα and dissociation of GluR2 and glutamate receptor interacting protein (GRIP) in the acute cerebellar slices of tm1d mice. Furthermore, treatment with the PKCγ inhibitor, scutellarin, rescued cerebellar LTD, with the phosphorylation of PKCα and the dissociation of GluR2 and GRIP. In addition, nonselective transient receptor potential cation channel type 3 (TRPC3) was negatively regulated by upregulated PKCγ. These results demonstrated that DGKγ contributes to cerebellar LTD by regulation of the basal PKCγ activity.


Assuntos
Cerebelo/fisiopatologia , Diacilglicerol Quinase/genética , Transtornos Motores/genética , Proteína Quinase C/metabolismo , Regulação para Cima , Animais , Apigenina/farmacologia , Diacilglicerol Quinase/metabolismo , Técnicas de Inativação de Genes , Glucuronatos/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos , Transtornos Motores/metabolismo , Transtornos Motores/fisiopatologia , Fosforilação , Células de Purkinje , Receptores de AMPA/metabolismo , Teste de Desempenho do Rota-Rod
10.
Sci Rep ; 10(1): 11790, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678222

RESUMO

Significant efforts have been made to ameliorate diabetic nephropathy (DN) by inhibiting protein kinase C. However, these efforts have not been successful in human trials, suggesting that novel therapeutic strategies are required. Thus far, it has been reported that green tea polyphenol epigallocatechin gallate (EGCg) improved albuminuria in DN in a human trial. Our previous study revealed that activation of diacylglycerol kinase α (DGKα) plays a crucial role in the amelioration of DN and that EGCg activates DGKα. Here, we investigated whether and how DGKα contributes to the amelioration of DN upon stimulation by EGCg by using streptozotocin-induced type 1 diabetic model mice. Our results revealed that EGCg ameliorated albuminuria in DN through DGKα in vivo, and methylated EGCg, which has higher absorption in the plasma improved albuminuria in DN effectively. Additionally, we showed that c-Src mediated EGCg-induced DGKα translocation and colocalized with the 67 kDa laminin receptor, which is an EGCg receptor. Furthermore, EGCg attenuated the loss of podocytes in DN by preventing a decrease in focal adhesion under high glucose conditions. Our results indicate that the DGKα pathway is an attractive therapeutic target and that activating this pathway is a novel strategy for treating DN.


Assuntos
Nefropatias Diabéticas/metabolismo , Diacilglicerol Quinase/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Chá/química , Animais , Biomarcadores , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Diacilglicerol Quinase/genética , Modelos Animais de Doenças , Imunofluorescência , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Modelos Biológicos , Podócitos/metabolismo
11.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32033984

RESUMO

Diacylglycerol kinase γ (DGKγ) regulates protein kinase C (PKC) activity by converting DG to phosphatidic acid (PA). DGKγ directly interacts with PKCγ and is phosphorylated by PKCγ, resulting in the upregulation of lipid kinase activity. PKC dysfunction impairs motor coordination, indicating that the regulation of PKC activity is important for motor coordination. DGKγ and PKC are abundantly expressed in cerebellar Purkinje cells. However, the physiological role of DGKγ has not been elucidated. Therefore, we developed DGKγ knock-out (KO) mice and tested their cerebellar motor coordination. In DGKγ KO mice, cerebellar motor coordination and long-term depression (LTD) were impaired, and the dendrites of Purkinje cells from DGKγ KO mice were significantly retracted. Interestingly, treatment with the cPKC inhibitor Gö6976 (Gö) rescued the dendritic retraction of primary cultured Purkinje cells from DGKγ KO mice. In contrast, treatment with the PKC activator 12-o-tetradecanoylphorbol 13-acetate (TPA) reduced morphologic alterations in the dendrites of Purkinje cells from wild-type (WT) mice. In addition, we confirmed the upregulation of PKCγ activity in the cerebellum of DGKγ KO mice and rescued impaired LTD in DGKγ KO mice with a PKCγ-specific inhibitor. Furthermore, impairment of motor coordination observed in DGKγ KO mice was rescued in tm1c mice with DGKγ reexpression induced by the FLP-flippase recognition target (FRT) recombination system. These results indicate that DGKγ is involved in cerebellar LTD and the dendritic development of Purkinje cells through the regulation of PKCγ activity, and thus contributes to cerebellar motor coordination.


Assuntos
Cerebelo , Células de Purkinje , Animais , Cerebelo/metabolismo , Diacilglicerol Quinase , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Proteína Quinase C/metabolismo , Células de Purkinje/metabolismo
12.
Neurochem Int ; 134: 104645, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31891737

RESUMO

Diacylglycerol kinase ß (DGKß) is an enzyme converting DG to phosphatidic acid (PA) and is specifically expressed in neurons, especially those in the cerebral cortex, hippocampus and striatum. We previously reported that DGKß induces neurite outgrowth and spinogenesis, contributing to higher brain function including emotion and memory, and plasma membrane localization of DGKß via the C1 domain and a cluster of basic amino acids at the C-terminus is necessary for its function. To clarify the mechanisms involved in neuronal development by DGKß, we investigated whether DGKß activity induces neurite outgrowth using human neuroblastoma SH-SY5Y cells. DGKß induced neurite outgrowth by activation of mammalian target of rapamycin complex 1 (mTORC1) through a kinase-dependent pathway. In addition, in primary cultured cortical and hippocampal neurons, inhibition of mTORC1 abolished DGKß induced-neurite outgrowth, branching and spinogenesis. These results indicated that DGKß induces neurite outgrowth and spinogenesis by activating mTORC1 in a kinase-dependent pathway.


Assuntos
Diacilglicerol Quinase/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Crescimento Neuronal/fisiologia , Neurônios/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Crescimento Neuronal/efeitos dos fármacos
13.
J Biochem ; 165(6): 517-522, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715374

RESUMO

Diacylglycerol kinase (DGK) is a lipid kinase that converts diacylglycerol (DG) into phosphatidic acid (PA). DG and PA function as lipid messengers contributing to various signalling pathways. Thus, DGK plays a pivotal role in the signalling pathways by maintaining DG and PA levels. For example, DGKδ is involved in diabetes and DGKß is important for higher brain function including memory and emotion. Recently, we also revealed that the activation of DGKα ameliorated diabetic nephropathy (DN) in mice, suggesting that DGK can be therapeutic target. However, there is no commercially available DGK subtype-specific inhibitors or activators. Therefore, in a series of experiment to find DGK subtype-specific inhibitors or activators, we tried to screen novel DGKα activators from 9,600 randomly selected compounds by using high-throughput screening we had recently developed. Finally, we obtained two lead compounds for DGKα activators, KU-8 and KU-10. Focusing KU-8, we assessed the effect of KU-8 on all mammalian DGKs activities. Thus, KU-8 activates not only DGKα but also DGKθ by approximately 20%, and strongly inhibited DGKκ. In conclusion, KU-8 would be a good lead compound for DGKα and DGKθ activators, and useful as a DGKκ inhibitor.


Assuntos
Ciclopropanos/farmacologia , Diacilglicerol Quinase/antagonistas & inibidores , Diacilglicerol Quinase/metabolismo , Dioxinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Xilenos/farmacologia , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Ciclopropanos/química , Dioxinas/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Camundongos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Xilenos/química
14.
Biosci Biotechnol Biochem ; 83(1): 137-147, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30336733

RESUMO

Progress in metabolomic analysis now allows the evaluation of food quality. This study aims to identify the metabolites in meat from livestock using a metabolomic approach. Using gas chromatography-mass spectrometry (GC/MS), many metabolites were reproducibly detected in meats, and distinct differences between livestock species (cattle, pigs, and chickens) were indicated. A comparison of metabolites between tissues types (muscle, intramuscular fat, and intermuscular fat) in marbled beef of Japanese Black cattle revealed that most metabolites are abundant in the muscle tissue. Several metabolites (medium-chain fatty acids, etc.) involved in triacylglycerol synthesis were uniquely detected in fat tissue. Additionally, the results of multivariate analysis suggest that GC/MS analysis of metabolites can distinguish between cattle breeds. These results provide useful information for the analysis of meat quality using GC/MS-based metabolomic analysis.ABBREVIATIONS: GC/MS: gas chromatography-mass spectrometry; NMR: nuclear magnetic resonance; MS: mass spectrometry; IS: 2-isopropylmalic acid; MSTFA: N-Methyl-N-trimethylsilyltrifluoroacetamide; CV: coefficient of variation; TBS: Tris-buffered saline; MHC: myosin fast type; PCA: principal component analysis; OPLS-DA: orthogonal partial least-squares discriminant analysis; O2PLS: two-way orthogonal partial least-squares.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Carne Vermelha , Tecido Adiposo/metabolismo , Animais , Bovinos , Músculos/metabolismo , Especificidade da Espécie
15.
Anim Sci J ; 89(8): 1161-1168, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29806106

RESUMO

Paratropomyosin (PTM) composes myofibril functions to weaken the rigor linkages formed between actin and myosin during postmortem aging of muscles. PTM has the similar physico-chemical properties as tropomyosin (TM) that is a regulatory protein of myofibrils. So far, it is unclear whether PTM is definitely different from TM, because the primary structure of PTM has not been determined yet. The aim of this study was to clarify structural difference of PTM from TM. PTM was prepared by column chromatography immediately after slaughter from broiler breast muscle, and purified by high-performance liquid chromatography (HPLC). Purified PTM was successfully separated from TM, and the recovered PTM molecule was reduced with dithiothreitol to separate again by HPLC. Two subunits were obtained and peptides from each digested subunit by V8 protease were recovered by HPLC, and then amino acid sequences of the peptides were analyzed by protein sequencing. As a result, some amino acid residues were replaced from that of TMα1 isoform which is the major isoform of TM, and also was different between the two subunits. Therefore, it is concluded that PTM clearly differs from TM and it is suggested that functional difference in PTM from TM is attributed to amino acid replacements in subunits composing PTM.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Carne/análise , Músculos/metabolismo , Tropomiosina/química , Tropomiosina/isolamento & purificação , Sequência de Aminoácidos , Animais , Fenômenos Químicos , Galinhas , Qualidade dos Alimentos , Miofibrilas/metabolismo , Mudanças Depois da Morte , Fatores de Tempo , Tropomiosina/análise , Tropomiosina/metabolismo
16.
Biosci Biotechnol Biochem ; 82(1): 65-73, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29297254

RESUMO

Diabetic nephropathy (DN) is a diabetic vascular complication, and abnormal protein kinase C (PKC) activation from increased diacylglycerol (DG) production in diabetic hyperglycemia is one of the causes of DN. Diacylglycerol kinase (DGK) converts DG into phosphatidic acid. In other words, DGK can attenuate PKC activity by reducing the amount of DG. Recently, we reported that intraperitoneally administered d-α-tocopherol (vitamin E, αToc) induces an amelioration of DN in vivo through the activation of DGKα and the prevention of podocyte loss. However, the effect of the oral administration of αToc on DN in mice remains unknown. Here, we evaluated the effect of oral administration of αToc on DN and its molecular mechanism using streptozocin-induced diabetic mice. Consequently, the oral administration of αToc significantly ameliorated the symptoms of DN by preventing the loss of podocytes, and it was revealed that the inhibition of PKCactivity was involved in this amelioration.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , alfa-Tocoferol/uso terapêutico , Administração Oral , Animais , Camundongos , Podócitos/citologia , Podócitos/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , alfa-Tocoferol/administração & dosagem
17.
Sci Rep ; 7(1): 2597, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572624

RESUMO

Diabetic nephropathy (DN) is one of vascular complications of diabetes and is caused by abnormal protein kinase C activation as a result of increased diacylglycerol (DG) production in diabetic hyperglycaemia. Diacylglycerol kinase (DGK) converts DG into phosphatidic acid. Therefore, it is expected that the activation of DGK would ameliorate DN. Indeed, it has been reported that vitamin E (VtE) ameliorates DN in rat by activating DGK, and we recently reported that VtE specifically activates DGKα isoform in vitro. However, whether DGKα is involved in the VtE-induced amelioration of DN in vivo remains unknown. Therefore, we investigated the VtE-induced amelioration of DN in wild-type (DGKα+/+) and DGKα-deficient (DGKα-/-) mice in which diabetes was induced by streptozocin. Several symptoms of DN were ameliorated by VtE treatment in the DGKα+/+ mice but not in the DGKα-/- mice. Moreover, transmission electron microscopy of glomeruli and immunofluorescent staining of glomerular epithelial cells (podocytes) indicated that VtE ameliorates podocyte pathology and prevents podocyte loss in the DGKα+/+ mice but not in the DGKα-/- mice. We showed that VtE can ameliorate DN in mice and that DGKα is involved in the VtE-induced amelioration of DN in vivo, suggesting that DGKα is an attractive therapeutic target for DN.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Diacilglicerol Quinase/metabolismo , Podócitos/patologia , Vitamina E/uso terapêutico , Animais , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Ratos
18.
Biosci Biotechnol Biochem ; 79(11): 1867-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26139560

RESUMO

International trading markets of meat require the animal's age information to prevent cross-contamination of ineligible meat products. Individual livestock age is either evaluated from physiological features or verified by breeding history. However, it remains impossible to perform age verification on meat when a suspicion of error occurred in the importing country. To investigate an age-related protein in skeletal muscle of livestock, we compared protein expression among chicken pectoralis major of different ages. Results indicated that the level of expression of chicken HSPB1, one of the small heat shock proteins, was increased in aged muscles. On the other hand, other heat shock proteins, heat shock factors, and myosin heavy chain isoform did not change the expression levels in aged chicken muscle. In addition, we identified that αB-crystallin interacted with HSPB1 in aged chicken muscle. These results suggest that HSPB1 protein forms complexes with αB-crystallin in aged chicken muscle and suppose to become the candidate of age-related bio-marker for verifying the age of chicken meat.


Assuntos
Envelhecimento/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Produtos da Carne/análise , Cadeia B de alfa-Cristalina/metabolismo , Envelhecimento/patologia , Animais , Biomarcadores/química , Galinhas , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
19.
Biochem Biophys Res Commun ; 447(1): 89-94, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24695318

RESUMO

We previously reported that diacylglycerol kinase ß (DGKß) induces neurites and branches, contributing to higher brain function including emotion and memories. However, the detailed molecular mechanism of DGKß function remains unknown. Therefore, we constructed various mutants of DGKß and compared their enzyme activity, intracellular localization, and ability to induce neurites and branching in SH-SY5Y cells. Even when RVH-domain and EF-hand motif were deleted, the mutant showed similar plasma membrane localization and neurite induction compared to wild type (WT), although the kinase activity of the mutant was three times higher than that of WT. In contrast, further deletion of C1 domain reduced the activity to 50% and abolished plasma membrane localization and neurite induction ability. When 34 amino acids were deleted from C-terminus, the mutants completely lost enzyme activity, plasma membrane localization, and the ability to induce neurites. A kinase-negative mutant of DGKß retained plasma membrane localization and induced significant neurites and branches; however, the rate of induction was weaker than that of WT. Furthermore, C1A and C1B mutants, which have a mutation in a cysteine residue in the C1A or C1B domain, and the RK/E mutant, which has substitutions of arginine and lysine to glutamic acid in a cluster of basic amino acids at the C-terminus, lost their plasma membrane localization and neurite induction ability. These results indicate that in addition to kinase activity, plasma membrane localization via the C1 domain and basic amino acids at the C-terminus were indispensable for neurite induction by DGKß.


Assuntos
Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Neuritos/efeitos dos fármacos , Sequência de Aminoácidos , Aminoácidos Básicos/genética , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Humanos , Mutação , Neuritos/metabolismo , Estrutura Terciária de Proteína , Ratos
20.
BMC Dev Biol ; 13: 35, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24079595

RESUMO

BACKGROUND: Diacylglycerol kinase (DGK) is a key enzyme that regulates diacylglycerol (DG) turnover and is involved in a variety of physiological functions. The isoform DGKθ has a unique domain structure and is the sole member of type V DGK. To reveal the spatial and temporal expression of DGKθ we performed immunohistochemical staining on paraffin sections of mouse embryos. RESULTS: At an early stage of development (E10.5 and 11.5), the expression of DGKθ was prominently detected in the brain, spinal cord, dorsal root ganglion, and limb bud, and was also moderately detected in the bulbus cordis and the primordium of the liver and gut. At later stages (E12.5 and 14.5), DGKθ expression persisted or increased in the neocortex, epithalamus, hypothalamus, medulla oblongata, and pons. DGKθ was also evident in the epidermis, and nearly all epithelia of the oropharyngeal membrane, digestive tract, and bronchea. At prenatal developmental stages (E16.5 and E18.5), the expression pattern of DGKθ was maintained in the central nervous system, intestine, and kidney, but was attenuated in the differentiated epidermis. CONCLUSION: These results suggest that DGKθ may play important physiological roles not only in the brain, but also in diverse organs and tissues during the embryonic stages.


Assuntos
Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Desenvolvimento Embrionário/genética , Organogênese/genética , Animais , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Diglicerídeos/metabolismo , Embrião de Mamíferos , Epiderme/embriologia , Epiderme/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA