Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.124
Filtrar
1.
Biomater Res ; 28: 0048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966855

RESUMO

The reprogramming of tumor metabolism presents a substantial challenge for effective immunotherapy, playing a crucial role in developing an immunosuppressive microenvironment. In particular, the degradation of the amino acid L-tryptophan (Trp) to kynurenine (Kyn) by indoleamine-pyrrole 2,3-dioxygenase 1 (IDO1) is one of the most clinically validated pathways for immune suppression. Thus, regulating the Trp/Kyn metabolism by IDO1 inhibition represents a promising strategy for enhancing immunotherapy. Herein, metabolism-regulated nanoparticles are prepared through metal coordination-driven assembly of an IDO1 inhibitor (NLG919) and a stimulator of interferon genes (STING) agonist (MSA-2) for enhanced immunotherapy. After intravenous administration, the assembled nanoparticles could efficiently accumulate in tumors, enhancing the bioavailability of NLG919 and down-regulating the metabolism of Trp to Kyn to remodel the immunosuppressive tumor microenvironment. Meanwhile, the released MSA-2 evoked potent STING pathway activation in tumors, triggering an effective immune response. The antitumor immunity induced by nanoparticles significantly inhibited the development of primary and metastatic tumors, as well as B16 melanoma. Overall, this study provided a novel paradigm for enhancing tumor immunotherapy through synergistic amino acid metabolism and STING pathway activation.

2.
Nat Commun ; 15(1): 5608, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969637

RESUMO

Force transmission through adherens junctions (AJs) is crucial for multicellular organization, wound healing and tissue regeneration. Recent studies shed light on the molecular mechanisms of mechanotransduction at the AJs. However, the canonical model fails to explain force transmission when essential proteins of the mechanotransduction module are mutated or missing. Here, we demonstrate that, in absence of α-catenin, ß-catenin can directly and functionally interact with vinculin in its open conformation, bearing physiological forces. Furthermore, we found that ß-catenin can prevent vinculin autoinhibition in the presence of α-catenin by occupying vinculin´s head-tail interaction site, thus preserving force transmission capability. Taken together, our findings suggest a multi-step force transmission process at AJs, where α-catenin and ß-catenin can alternatively and cooperatively interact with vinculin. This can explain the graded responses needed to maintain tissue mechanical homeostasis and, importantly, unveils a force-bearing mechanism involving ß-catenin and extended vinculin that can potentially explain the underlying process enabling collective invasion of metastatic cells lacking α-catenin.


Assuntos
Junções Aderentes , Mecanotransdução Celular , Vinculina , alfa Catenina , beta Catenina , Vinculina/metabolismo , Junções Aderentes/metabolismo , beta Catenina/metabolismo , alfa Catenina/metabolismo , alfa Catenina/genética , Animais , Humanos , Camundongos , Ligação Proteica
3.
Sci Rep ; 14(1): 15564, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971897

RESUMO

Aortic dissection (AD) is a life-threatening condition with a high mortality rate and without effective pharmacological therapies. Our previous study illustrated that leukocyte immunoglobulin-like receptor B4 (LILRB4) knockdown promoted the contractile phenotypic switch and apoptosis of AD cells. This study aimed to further investigate the role of LILRB4 in animal models of AD and elucidate its underlying molecular mechanisms. Animal models of AD were established using 0.1% beta-aminopropionitrile and angiotensin II and an in vitro model was developed using platelet-derived growth factor BB (PDGF-BB). The effects of LILRB4 knockdown on histopathological changes, pyroptosis, phenotype transition, extracellular matrix (ECM), and Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) pathways were assessed using a series of in vivo and in vitro assays. The effects of the JAK2 inhibitor AG490 on AD cell function, phenotypic transition, and ECM were explored. LILRB4 was highly expressed in AD and its knockdown increased survival rate, reduced AD incidence, and alleviated histopathological changes in the AD mouse model. Furthermore, LILRB4 knockdown promoted contractile phenotype switch, stabilized the ECM, and inhibited pyroptosis. Mechanistically, LILRB4 knockdown inhibited the JAK2/STAT3 signaling pathway. JAK2 inhibitor AG490 inhibited cell viability and migration, enhanced apoptosis, induced G0/G1 cell cycle arrest, and suppressed S-phase progression in PDGF-BB-stimulated human aortic smooth muscle cells. LILRB4 knockdown suppresses AD development by inhibiting pyroptosis and the JAK2/STAT3 signaling pathway.


Assuntos
Dissecção Aórtica , Modelos Animais de Doenças , Janus Quinase 2 , Piroptose , Fator de Transcrição STAT3 , Transdução de Sinais , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Dissecção Aórtica/genética , Animais , Fator de Transcrição STAT3/metabolismo , Piroptose/genética , Camundongos , Humanos , Técnicas de Silenciamento de Genes , Masculino , Camundongos Endogâmicos C57BL , Tirfostinas/farmacologia
4.
Theranostics ; 14(9): 3565-3582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948069

RESUMO

Cancer therapy has moved from single agents to more mechanism-based targeted approaches. In recent years, the combination of HDAC inhibitors and other anticancer chemicals has produced exciting progress in cancer treatment. Herein, we developed a novel prodrug via the ligation of dichloroacetate to selenium-containing potent HDAC inhibitors. The effect and mechanism of this compound in the treatment of prostate cancer were also studied. Methods: The concerned prodrug SeSA-DCA was designed and synthesized under mild conditions. This compound's preclinical studies, including the pharmacokinetics, cell toxicity, and anti-tumor effect on prostate cancer cell lines, were thoroughly investigated, and its possible synergistic mechanism was also explored and discussed. Results: SeSA-DCA showed good stability in physiological conditions and could be rapidly decomposed into DCA and selenium analog of SAHA (SeSAHA) in the tumor microenvironment. CCK-8 experiments identified that SeSA-DCA could effectively inhibit the proliferation of a variety of tumor cell lines, especially in prostate cancer. In further studies, we found that SeSA-DCA could also inhibit the metastasis of prostate cancer cell lines and promote cell apoptosis. At the animal level, oral administration of SeSA-DCA led to significant tumor regression without obvious toxicity. Moreover, as a bimolecular coupling compound, SeSA-DCA exhibited vastly superior efficacy than the mixture with equimolar SeSAHA and DCA both in vitro and in vivo. Our findings provide an important theoretical basis for clinical prostate cancer treatment. Conclusions: Our in vivo and in vitro results showed that SeSA-DCA is a highly effective anti-tumor compound for PCa. It can effectively induce cell cycle arrest and growth suppression and inhibit the migration and metastasis of PCa cell lines compared with monotherapy. SeSA-DCA's ability to decrease the growth of xenografts is a little better than that of docetaxel without any apparent signs of toxicity. Our findings provide an important theoretical basis for clinical prostate cancer treatment.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Inibidores de Histona Desacetilases , Neoplasias da Próstata , Fosfatases cdc25 , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Humanos , Animais , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fosfatases cdc25/metabolismo , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Selênio/farmacologia , Selênio/química , Selênio/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Camundongos Endogâmicos BALB C
5.
Genes (Basel) ; 15(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38927666

RESUMO

Fritillaria cirrhosa and its relatives have been utilized in traditional Chinese medicine for many years and are under priority protection in China. Despite their medicinal and protective value, research on their phylogeny, genetic diversity, and divergence remains limited. Here, we investigate the chloroplast genome variation architecture of 46 samples of F. cirrhosa and its relatives collected from various regions, encompassing the majority of wild populations across diverse geographical areas. The results indicate abundant variations in 46 accessions including 1659 single-nucleotide polymorphisms and 440 indels. Six variable markers (psbJ, ndhD, ycf1, ndhG, trnT-trnL, and rpl32-trnL) were identified. Phylogenetic and network analysis, population structure analysis, and principal component analysis showed that the 46 accessions formed five clades with significant divergence, which were related to their geographical distribution. The regions spanning from the southern Hengduan Mountains to the Qinghai-Tibet Plateau exhibited the highest levels of genetic diversity. F. cirrhosa and its relatives may have suffered a genetic bottleneck and have a relatively low genetic diversity level. Moreover, geographical barriers and discrete patches may have accelerated population divergence. The study offers novel perspectives on the phylogeny, genetic diversity, and population structure of F. cirrhosa and its relatives, information that can inform conservation and utilization strategies in the future.


Assuntos
Fritillaria , Genoma de Cloroplastos , Filogenia , Polimorfismo de Nucleotídeo Único , Fritillaria/genética , Fritillaria/classificação , Variação Genética , China , Genética Populacional
6.
Am J Transl Res ; 16(5): 2034-2048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883374

RESUMO

OBJECTIVE: Aggregating evidence highlights the strong genetic basis underpinning congenital heart disease (CHD). Here BMP4 was chosen as a prime candidate gene causative of human CHD predominantly because BMP4 was amply expressed in the embryonic hearts and knockout of Bmp4 in mice led to embryonic demise mainly from multiple cardiovascular developmental malformations. The aim of this retrospective investigation was to discover a novel BMP4 mutation underlying human CHD and explore its functional impact. METHODS: A sequencing examination of BMP4 was implemented in 212 index patients suffering from CHD and 236 unrelated non-CHD individuals as well as the family members available from the proband carrying a discovered BMP4 mutation. The impacts of the discovered CHD-causing mutation on the expression of NKX2-5 and TBX20 induced by BMP4 were measured by employing a dual-luciferase analysis system. RESULTS: A new heterozygous BMP4 mutation, NM_001202.6:c.318T>G;p.(Tyr106*), was found in a female proband affected with familial CHD. Genetic research of the mutation carrier's relatives unveiled that the truncating mutation was in co-segregation with CHD in the pedigree. The nonsense mutation was absent from 236 unrelated non-CHD control persons. Quantitative biologic measurement revealed that Tyr106*-mutant BMP4 failed to induce the expression of NKX2-5 and TBX20, two genes whose expression is lost in CHD. CONCLUSION: The current findings indicate BMP4 as a new gene predisposing to human CHD, allowing for improved prenatal genetic counseling along with personalized treatment of CHD patients.

7.
iScience ; 27(6): 109900, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883837

RESUMO

Type 2 diabetes mellitus (T2DM) represents a common complication during pregnancy that affects fetoplacental development. We demonstrated the existence of impaired trophoblast syncytialization under hyperglycemic conditions. However, the exact mechanism remains unknown. RNA N6-methyladenosine (m6A) is an emerging regulatory mechanism of mRNA and participates in various biological processes. We described the global m6A modification pattern in T2DM placenta by the combined analysis of methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-Seq). Both the m6A modification and expression of SIK1, which is critical for syncytialization, were significantly decreased in trophoblast exposed to hyperglycemic conditions. In addition, the m6A demethylase fat mass and obesity-associated protein (FTO) affects the expression and mRNA stability of SIK1 by binding to its 3'-untranslated region (UTR) m6A site. This work reveals that the FTO-m6A-SIK1 axis plays critical roles in regulating syncytialization in the placenta.

8.
Cell Rep Med ; 5(6): 101592, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843841

RESUMO

Environmental lipids are essential for fueling tumor energetics, but whether these exogenous lipids transported into cancer cells facilitate immune escape remains unclear. Here, we find that CD36, a transporter for exogenous lipids, promotes acute myeloid leukemia (AML) immune evasion. We show that, separately from its established role in lipid oxidation, CD36 on AML cells senses oxidized low-density lipoprotein (OxLDL) to prime the TLR4-LYN-MYD88-nuclear factor κB (NF-κB) pathway, and exogenous palmitate transfer via CD36 further potentiates this innate immune pathway by supporting ZDHHC6-mediated MYD88 palmitoylation. Subsequently, NF-κB drives the expression of immunosuppressive genes that inhibit anti-tumor T cell responses. Notably, high-fat-diet or hypomethylating agent decitabine treatment boosts the immunosuppressive potential of AML cells by hijacking CD36-dependent innate immune signaling, leading to a dampened therapeutic effect. This work is of translational interest because lipid restriction by US Food and Drug Administration (FDA)-approved lipid-lowering statin drugs improves the efficacy of decitabine therapy by weakening leukemic CD36-mediated immunosuppression.


Assuntos
Antígenos CD36 , Decitabina , Leucemia Mieloide Aguda , Metabolismo dos Lipídeos , Lipoproteínas LDL , Antígenos CD36/metabolismo , Antígenos CD36/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Decitabina/farmacologia , Decitabina/uso terapêutico , Lipoproteínas LDL/metabolismo , Animais , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Camundongos , Transdução de Sinais/efeitos dos fármacos , Evasão Tumoral/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Aciltransferases/genética , Imunidade Inata/efeitos dos fármacos , Camundongos Endogâmicos C57BL
9.
China CDC Wkly ; 6(19): 418-423, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38854752

RESUMO

What is already known on this topic?: In China, there is limited data available on the use and coverage of the non-program, combined diphtheria, tetanus toxoid, acellular pertussis adsorbed, inactivated poliovirus and haemophilus influenzae type b (DTaP-IPV/Hib) pentavalent vaccine, and its role as a substitute for the separately administered standalone program vaccines. What is added by this report?: We evaluated the use and coverage of the pentavalent vaccine in nine provincial-level administrative divisions (PLADs) spanning eastern, central, and western China from 2019 to 2021. Initial use and coverage were low, but demonstrated annual growth albeit with regional and urban-rural discrepancies. The pentavalent vaccine was increasingly substituted for standalone vaccines over the course of this period. What are the implications for public health practice?: Parents in China are increasingly opting to replace the standard program vaccines with voluntarily purchased combination vaccines, particularly the pentavalent vaccine. The development of combination vaccines should thus be promoted in China, as it could enhance utilization and coverage rates, and decrease the economic burden.

10.
Cancer Lett ; 597: 217062, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878852

RESUMO

Immune checkpoint inhibitors (ICIs) have transformed cancer therapy, yet persistent challenges such as low response rate and significant heterogeneity necessitate attention. The pivotal role of the major histocompatibility complex (MHC) in ICI efficacy, its intricate impacts and potentials as a prognostic marker, warrants comprehensive exploration. This study integrates single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, and spatial transcriptomic analyses to unveil pan-cancer immune characteristics governed by the MHC transcriptional feature (MHC.sig). Developed through scRNA-seq analysis of 663,760 cells across diverse cohorts and validated in 30 solid cancer types, the MHC.sig demonstrates a robust correlation between immune-related genes and infiltrating immune cells, highlighting its potential as a universal pan-cancer marker for anti-tumor immunity. Screening the MHC.sig for therapeutic targets using CRISPR data identifies potential genes for immune therapy synergy and validates its predictive efficacy for ICIs responsiveness across diverse datasets and cancer types. Finally, analysis of cellular communication patterns reveals interactions between C1QC+macrophages and malignant cells, providing insights into potential therapeutic agents and their sensitivity characteristics. This comprehensive analysis positions the MHC.sig as a promising marker for predicting immune therapy outcomes and guiding combinatorial therapeutic strategies.

11.
Cell Death Dis ; 15(6): 409, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862475

RESUMO

Low glucose is a common microenvironment for rapidly growing solid tumors, which has developed multiple approaches to survive under glucose deprivation. However, the specific regulatory mechanism remains largely elusive. In this study, we demonstrate that glucose deprivation, while not amino acid or serum starvation, transactivates the expression of DCAF1. This enhances the K48-linked polyubiquitination and proteasome-dependent degradation of Rheb, inhibits mTORC1 activity, induces autophagy, and facilitates cancer cell survival under glucose deprivation conditions. This study identified DCAF1 as a new cellular glucose sensor and uncovered new insights into mechanism of DCAF1-mediated inactivation of Rheb-mTORC1 pathway for promoting cancer cell survival in response to glucose deprivation.


Assuntos
Sobrevivência Celular , Glucose , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Glucose/metabolismo , Linhagem Celular Tumoral , Autofagia , Ubiquitinação , Transdução de Sinais , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Células HEK293 , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
12.
Clin Exp Pharmacol Physiol ; 51(8): e13904, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923060

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction. It has been shown that cocaine and amphetamine-regulated transcript (CART) can ameliorate cerebral ischemia-reperfusion (I/R) injury, but the effect of CART on MIRI has not been studied yet. Here, we revealed that CART protected the heart during I/R process by inhibiting apoptosis and excessive autophagy, indicating that CART would be a potential drug candidate for the treatment of MIRI. Further analysis showed that CART upregulated the activation of phospho-AKT, leading to downregulation of lactate dehydrogenase (LDH) release, apoptosis, oxidative stress and excessive autophagy after I/R, which was inhibited by PI3K inhibitor, LY294002. Collectively, CART attenuated MIRI through inhibition of cardiomyocytes apoptosis and excessive autophagy, and the protective effect was dependent on PI3K/AKT signalling pathway.


Assuntos
Apoptose , Autofagia , Traumatismo por Reperfusão Miocárdica , Proteínas do Tecido Nervoso , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Masculino , Autofagia/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley
13.
Adv Sci (Weinh) ; : e2400238, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923264

RESUMO

The placenta links feto-maternal circulation for exchanges of nutrients, gases, and metabolic wastes between the fetus and mother, being essential for pregnancy process and maintenance. The allantois and mesodermal components of amnion, chorion, and yolk sac are derived from extraembryonic mesoderm (Ex-Mes), however, the mechanisms contributing to distinct components of the placenta and regulation the interactions between allantois and epithelium during chorioallantoic fusion and labyrinth formation remains unclear. Isl1 is expressed in progenitors of the Ex-Mes and allantois the Isl1 mut mouse line is analyzed to investigate contribution of Isl1+ Ex-Mes / allantoic progenitors to cells of the allantois and placenta. This study shows that Isl1 identifies the Ex-Mes progenitors for endothelial and vascular smooth muscle cells, and most of the mesenchymal cells of the placenta and umbilical cord. Deletion of Isl1 causes defects in allantois growth, chorioallantoic fusion, and placenta vessel morphogenesis. RNA-seq and CUT&Tag analyses revealed that Isl1 promotes allantoic endothelial, inhibits mesenchymal cell differentiation, and allantoic signals regulated by Isl1 mediating the inductive interactions between the allantois and chorion critical for chorionic epithelium differentiation, villous formation, and labyrinth angiogenesis. This study above reveals that Isl1 plays roles in regulating multiple genetic and epigenetic pathways of vascular morphogenesis, provides the insight into the mechanisms for placental formation, highlighting the necessity of Isl1 for placenta formation/pregnant maintenance.

14.
Proc Natl Acad Sci U S A ; 121(27): e2405963121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923988

RESUMO

Under nonequilibrium conditions, inorganic systems can produce a wealth of life-like shapes and patterns which, compared to well-formed crystalline materials, remain widely unexplored. A seemingly simple example is the formation of salt deposits during the evaporation of sessile droplets. These evaporites show great variations in their specific patterns including single rings, creep, small crystals, fractals, and featureless disks. We have explored the patterns of 42 different salts at otherwise constant conditions. Based on 7,500 images, we show that distinct pattern families can be identified and that some salts (e.g., Na2SO4 and NH4NO3) are bifurcated creating two distinct motifs. Family affiliations cannot be predicted a priori from composition alone but rather emerge from the complex interplay of evaporation, crystallization, thermodynamics, capillarity, and fluid flow. Nonetheless, chemical composition can be predicted from the deposit pattern with surprisingly high accuracy even if the set of reference images is small. These findings suggest possible applications including smartphone-based analyses and lightweight tools for space missions.

15.
Chemistry ; : e202402085, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926940

RESUMO

We described a copper(I)-catalyzed atom economic and selective hydroamination-cyclization of alkynyl-tethered quinazolinones to prepare a variety of indole-fused pyrazino[1,2-a]quinazolinones in good to excellent yields ranging from 39% to 99% under mild reaction conditions. Control experiments revealed that coordination-directed method of quinazolinone moiety with copper(I) was important for the selective hydroamination-cyclization of alkynes at the N1-atom instead of N3-atom of quinazolinone. The reaction could be easily performed at gram scales and some prepared indole-fused pyrazino[1,2-a]quinazolinones with donating groups on the indole moiety showed a distinct fluorescence emission wavelength with blue shift under the acid conditions.

16.
Curr Med Chem ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38920076

RESUMO

Methamphetamine (METH), an amphetamine-type stimulant, has been extensively abused globally in the past decades. METH use causes great harm to the major systems of the human body. Specifically, METH has a negative impact on the hypothalamic- pituitary-testicular axis, testicular structure, sperm function, ovarian folliculogenesis, oocyte quality, embryo development, and newborns. However, the mechanisms underlying these toxic effects have not yet been fully described. This study reviews the evidence concerning the impact of METH on male and female reproduction in the context of the testis, sperm, ovaries, oocytes, reproductive hormones, embryo development, and newborns, discussing the potential pathophysiological mechanisms in the reproductive toxicity induced by METH.

17.
Technol Health Care ; 32(S1): 371-383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759062

RESUMO

BACKGROUND: Enterococcus faecalis biofilm was frequently found on the failed treated root canal wall, which survived by resisting disinfectant during endodontic treatment.Many researches have been conducted to explore the mechanisms of persistence of this pathogen in unfavorable conditions. However, no comprehensive proteomics studies have been conducted to investigate stress response in Enterococcus faecalis caused by alkali and NaOCl. OBJECTIVE: Enterococcus faecalis (E.f) has been recognized as a main pathogen of refractory apical periodontitis, its ability to withstand environmental pressure is the key to grow in the environment of high alkaline and anti-bacterial drug that causes chronic infection in the root canal. This study aims to focus on the protein expression patterns of E.f biofilm under extreme pressure environment". METHODS: Enterococcus faecalis biofilm model was established in vitro. Liquid Chromatograph-Mass Spectrometer (LC-MS/MS)-based label free quantitative proteomics approach was applied to compare differential protein expression under different environmental pressures (pH 10 and 5% sodium hypochlorite (NaOCl)). And then qPCR and Parallel Reaction Monitoring Verification (PRM) were utilized to verify the consequence of proteomics. RESULTS: The number of taxa in this study was higher than those in previous studies, demonstrating the presence of a remarkable number of proteins in the groups of high alkaline and NaOCl. Proteins involved in ATP-binding cassette (ABC) transporter were significantly enriched in experimental samples. We identified a total of 15 highly expressed ABC transporters in the high alkaline environment pressure group, with 7 proteins greater than 1.5 times. CONCLUSIONS: This study revealed considerable changes in expression of proteins in E.f biofilm during resistance to environmental pressures. The findings enriched our understanding of association between the differential expression proteins and environmental pressures.


Assuntos
Biofilmes , Enterococcus faecalis , Hipoclorito de Sódio , Hipoclorito de Sódio/farmacologia , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Humanos , Espectrometria de Massas em Tandem , Concentração de Íons de Hidrogênio , Cromatografia Líquida
18.
Anticancer Res ; 44(6): 2533-2544, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821596

RESUMO

BACKGROUND/AIM: Chemotherapy is mainly used in the clinical treatment of prostate cancer. Different anticancer mechanisms can induce cell death in various cancers. Reactive oxygen species (ROS) play crucial roles in cell proliferation, differentiation, apoptosis, and signal transduction. It is widely accepted that ROS accumulation is closely related to chemical drug-induced cancer cell death. MATERIALS AND METHODS: We utilized the MTT assay to detect changes in cell proliferation. Additionally, colony formation and wound healing assay were conducted to investigate the effect of hispidin on cell colony formation and migration ability. Fluorescence microscopy was used to detect intracellular and mitochondrial ROS levels, while western blot was used for detection of cell apoptosis. RESULTS: Hispidin treatment significantly decreased viability of PC3 and DU145 cancer cells but exhibited no cytotoxicity in WPMY-1 cells. Furthermore, hispidin treatment inhibited cell migration and colony formation and triggered cellular and mitochondrial ROS accumulation, leading to mitochondrial dysfunction and mitochondrion-dependent apoptosis. Moreover, hispidin treatment induced ferroptosis in PC3 cells. Scavenging of ROS with N-acetyl cysteine significantly inhibited hispidin-induced apoptosis by altering the expression of apoptosis-related proteins, such as cleaved caspase-3, 9, Bax, and Bcl2. Furthermore, hispidin treatment dramatically up-regulated MAPK (involving p38, ERK, and JNK proteins) and NF-kB signaling pathways while down-regulating AKT phosphorylation. Hispidin treatment also inhibited ferroptosis signaling pathways (involving P53, Nrf-2, and HO-1 proteins) in PC3 cells. In addition, inhibiting these signaling pathways via treatment with specific inhibitors significantly reversed hispidin-induced apoptosis, cellular ROS levels, mitochondrial dysfunction, and ferroptosis. CONCLUSION: Hispidin may represent a potential candidate for treating prostate cancer.


Assuntos
Apoptose , Ferroptose , Neoplasias da Próstata , Espécies Reativas de Oxigênio , Humanos , Masculino , Ferroptose/efeitos dos fármacos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Piridonas/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Pironas
19.
Nat Commun ; 15(1): 4496, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802383

RESUMO

Titin N2B unique sequence (N2B-us) is a 572 amino acid sequence that acts as an elastic spring to regulate muscle passive elasticity. It is thought to lack stable tertiary structures and is a force-bearing region that is regulated by mechanical stretching. In this study, the conformation of N2B-us and its interaction with four-and-a-half LIM domain protein 2 (FHL2) are investigated using AlphaFold2 predictions and single-molecule experimental validation. Surprisingly, a stable alpha/beta structural domain is predicted and confirmed in N2B-us that can be mechanically unfolded at forces of a few piconewtons. Additionally, more than twenty FHL2 LIM domain binding sites are predicted to spread throughout N2B-us. Single-molecule manipulation experiments reveals the force-dependent binding of FHL2 to the N2B-us structural domain. These findings provide insights into the mechano-sensing functions of N2B-us and its interactions with FHL2.


Assuntos
Conectina , Proteínas com Homeodomínio LIM , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/química , Proteínas com Homeodomínio LIM/genética , Conectina/metabolismo , Conectina/química , Conectina/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Sítios de Ligação , Humanos , Animais , Proteínas Musculares/metabolismo , Proteínas Musculares/química , Proteínas Musculares/genética , Sequência de Aminoácidos
20.
BMC Genomics ; 25(1): 535, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816837

RESUMO

BACKGROUND: Setae on the pad lamellae of the Japanese gecko Gekko japonicus (Schlegel, 1836), a vital epidermal derivative, are primarily composed of cornified beta-proteins (CBPs) and play a pivotal role in adhesion and climbing. The amino acid composition of CBPs might be a determining factor influencing their functional properties. However, the molecular mechanisms governed by CBP genes with diverse amino acid compositions in setae development remain unexplored. RESULTS: Based on RNA-seq analyses, this study confirmed that all G. japonicus CBPs (GjCBPs) are involved in setae formation. Cysteine-rich CBPs encoding genes (ge-cprp-17 to ge-cprp-26) and glycine-rich CBPs encoding genes (ge-gprp-17 to ge-gprp-22) were haphazardly selected, with quantitative real-time PCR revealing their expression patterns in embryonic pad lamellae and dorsal epidermis. It is inferred that glycine-rich CBPs are integral to the formation of both dorsal scales and lamellar setae, cysteine-rich CBPs are primarily associated with setae development. Additionally, fluorescence in situ hybridization revealed spatiotemporal differences in the expression of a glycine-rich CBP encoding gene (ge-gprp-19) and a cysteine-rich CBP encoding gene (ge-cprp-17) during dorsal scales and/or lamellar development. CONCLUSIONS: All 66 CBPs are involved in the formation of setae. Glycine-rich CBPs hold a significant role in the development of dorsal scales and lamellar setae, whereas most cysteine-rich CBPs appear to be essential components of G. japonicus setae. Even GjCBPs with similar amino acid compositions may play diverse functions. The clear spatio-temporal expression differences between the glycine-rich and cysteine-rich CBP encoding genes during epidermal scale and/or setae formation were observed. Embryonic developmental stages 39 to 42 emerged as crucial phases for setae development. These findings lay the groundwork for deeper investigation into the function of GjCBPs in the development of G. japonicus setae.


Assuntos
Cisteína , Glicina , Lagartos , Animais , Lagartos/genética , Lagartos/metabolismo , Glicina/metabolismo , Cisteína/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Escamas de Animais/metabolismo , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...