Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
Soft Matter ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836328

RESUMO

Correction for 'Surface mobility gradient and emergent facilitation in glassy films' by Qiang Zhai et al., Soft Matter, 2024, https://doi.org/10.1039/D4SM00221K.

2.
Adv Sci (Weinh) ; : e2400594, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689503

RESUMO

Proteolysis targeting chimeras (PROTACs) have emerged as a promising strategy for drug discovery and exploring protein functions, offering a revolutionary therapeutic modality. Currently, the predominant approach to PROTACs discovery mainly relies on an empirical design-synthesis-evaluation process involving numerous cycles of labor-intensive synthesis-purification and bioassay data collection. Therefore, the development of innovative methods to expedite PROTAC synthesis and exploration of chemical space remains highly desired. Here, a direct-to-biology strategy is reported to streamline the synthesis of PROTAC libraries on plates, enabling the seamless transfer of reaction products to cell-based bioassays without the need for additional purification. By integrating amide coupling and light-induced primary amines and o-nitrobenzyl alcohols cyclization (PANAC) photoclick chemistry into a plate-based synthetic process, this strategy produces PROTAC libraries with high efficiency and structural diversity. Moreover, by employing this platform for PROTACs screening, we smoothly found potent PROTACs effectively inhibit triple-negative breast cancer (TNBC) cell growth and induce rapid, selective targeted degradation of cyclin-dependent kinase 9 (CDK9). The study introduces a versatile platform for assembling PROTACs on plates, followed by direct biological evaluation. This approach provides a promising opportunity for high-throughput synthesis of PROTAC libraries, thereby enhancing the efficiency of exploring chemical space and accelerating the discovery of PROTACs.

3.
Heliyon ; 10(9): e30413, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707296

RESUMO

To comprehend the genuine reading habits and preferences of diverse user cohorts and furnish tailored reading recommendations, this study introduces an English text reading recommendation model designed specifically for long-tail users. This model integrates collaborative filtering algorithms with the FastText classification method. Initially, the integrated collaborative filtering algorithm is explicated, followed by the calculation of the user's interest distribution across various types of English texts, achieved through an enhanced Ebbinghaus forgetting curve and analysis of user reading behaviors. Subsequently, an intelligent English text reading recommendation is generated by amalgamating collaborative filtering algorithms with association rule-based recommendation algorithms. Through optimization of the recommendation generation process, the model's recommendation accuracy is enhanced, thereby augmenting the performance and user satisfaction of the recommendation system. Finally, a comparative analysis is conducted with respect to the Top-N algorithm model, matrix factorization-based algorithm model, and FastText classification model, illustrating the superior recommendation accuracy and F-Measure value of the proposed model. The study findings indicate that when the recommendation list contains 10, 30, 50, and 70 texts, the recommendation accuracy of the proposed algorithm model is 0.75, 0.79, 0.8, and 0.74, respectively, outperforming other algorithms. Furthermore, as the number of texts increases, the F-Measure of all four models gradually improves, with the final F-Measure of the proposed model reaching 0.81. Notably, the F-Measure of the English text reading recommendation model proposed in this study significantly surpasses that of the other three recommendation methods. Demonstrating commendable performance in recall rate, root mean square error, normalized cumulative gain, precision, and accuracy, the model adeptly reflects user reading interests, thereby enhancing the accuracy of text recommendations and the overall system performance. The study findings offer crucial insights and guidance for enhancing the accuracy and overall efficacy of English text recommendation systems.

4.
Sci Adv ; 10(21): eadj8184, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781332

RESUMO

Sinking particles are a critical conduit for the transport of surface microbes to the ocean's interior. Vertical connectivity of phylogenetic composition has been shown; however, the functional vertical connectivity of microbial communities has not yet been explored in detail. We investigated protein and taxa profiles of both free-living and particle-attached microbial communities from the surface to 3000 m depth using a combined metaproteomic and 16S rRNA amplicon sequencing approach. A clear compositional and functional vertical connectivity of microbial communities was observed throughout the water column with Oceanospirillales, Alteromonadales, and Rhodobacterales as key taxa. The surface-derived particle-associated microbes increased the expression of proteins involved in basic metabolism, organic matter processing, and environmental stress response in deep waters. This study highlights the functional vertical connectivity between surface and deep-sea microbial communities via sinking particles and reveals that a considerable proportion of the deep-sea microbes might originate from surface waters and have a major impact on the biogeochemical cycles in the deep sea.


Assuntos
Microbiota , Oceanos e Mares , Filogenia , RNA Ribossômico 16S , Água do Mar , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Bactérias/genética , Bactérias/classificação
5.
Mater Today Bio ; 26: 101082, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38774449

RESUMO

Hydrogel presents a three-dimensional polymer network with high water content. Over the past decade, hydrogel has developed from static material to intelligent material with controllable response. Various stimuli are involved in the formation of hydrogel network, among which photo-stimulation has attracted wide attention due to the advantages of controllable conditions, which has a good application prospect in the treatment of ophthalmic diseases. This paper reviews the application of photo-crosslink hydrogels in ophthalmology, focusing on the types of photo-crosslink hydrogels and their applications in ophthalmology, including drug delivery, tissue engineering and 3D printing. In addition, the limitations and future prospects of photo-crosslink hydrogels are also provided.

6.
Environ Res ; 252(Pt 4): 119085, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719067

RESUMO

Electrokinetic-Permeable Reaction Barrier (EK-PRB) coupled remediation technology can effectively treat heavy metal-contaminated soil near coal mines. This study was conducted on cadmium (Cd), a widely present element in the soil of the mining area. To investigate the impact of the voltage gradient on the remediation effect of EK-PRB, the changes in current, power consumption, pH, and Cd concentration content during the macroscopic experiment were analyzed. A three-dimensional visualized kaolinite-heavy metal-water simulation system was constructed and combined with the Molecular Dynamics (MD) simulations to elucidate the migration mechanism and binding active sites of Cd on the kaolinite (001) crystalline surface at the microscopic scale. The results showed that the voltage gradient positively correlates with the current, power consumption, and Cd concentration during EK-PRB remediation, and the average removal efficiency increases non-linearly with increasing voltage gradient. Considering power consumption, average removal efficiency, and cost-effectiveness, the voltage range is between 1.5 and 3.0 V/cm, with 2.5 V/cm being the optimal value. The results of MD simulations and experiments correspond to each other. Cd2+ formed a highly stable adsorption structure in contrast to the Al-O sheet on the kaolinite (001) crystalline surface. The mean square displacement (MSD) curve of Cd2+ under the electric field exhibits anisotropy, the total diffusion coefficient DTotal increases and the Cd2+ migration rate accelerates. The electric field influences the microstructure of Cd2+ complexes. With the enhancement of the voltage gradient, the complexation between Cd2+ and water molecules is enhanced, and the interaction between Cd2+ and Cl- in solution is weakened.


Assuntos
Cádmio , Recuperação e Remediação Ambiental , Simulação de Dinâmica Molecular , Cádmio/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Caulim/química
7.
Soft Matter ; 20(22): 4389-4394, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38757511

RESUMO

Confining glassy polymers into films can substantially modify their local and film-averaged properties. We present a lattice model of film geometry with void-mediated facilitation behaviors but free from any elasticity effect. We analyze the spatially varying viscosity to delineate the transport properties of glassy films. The film mobility measurements reported by Yang et al., Science, 2010, 328, 1676 are successfully reproduced. The flow exhibits a crossover from a simple viscous flow to a surface-dominated regime as the temperature decreases. The propagation of a highly mobile front induced by the free surface is visualized in real space. Our approach provides a microscopic treatment of the observed glassy phenomena.

8.
Ren Fail ; 46(1): 2337287, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38627212

RESUMO

OBJECTIVE: This study explored the molecular mechanisms by which dexmedetomidine (Dex) alleviates cisplatin (CP)-induced acute kidney injury (AKI) in rats. METHODS: CP-induced AKI models were established, and Dex was intraperitoneally injected at different concentrations into rats in the model groups. Subsequently, rats were assigned to the control, CP, CP + Dex 10 µg/kg, and CP + Dex 25 µg/kg groups. After weighing the kidneys of the rats, the kidney arterial resistive index was calculated, and CP-induced AKI was evaluated. In addition, four serum biochemical indices were measured: histopathological damage in rat kidneys was detected; levels of inflammatory factors, interleukin (IL)-1ß, IL-18, IL-6, and tumor necrosis factor alpha, in kidney tissue homogenate of rats were assessed through enzyme-linked immunosorbent assay (ELISA); and levels of NLRP-3, caspase-1, cleaved caspase-1, gasdermin D (GSDMD), and GSDMD-N in kidney tissues of rats were determined via western blotting. RESULTS: Dex treatment reduced nephromegaly and serum clinical marker upregulation caused by CP-induced AKI. In addition, hematoxylin and eosin staining revealed that Dex treatment relieved CP-induced kidney tissue injury in AKI rats. ELISA analyses demonstrated that Dex treatment reduced the upregulated levels of proinflammatory cytokines in the kidney tissue of AKI rats induced by CP, thereby alleviating kidney tissue injury. Western blotting indicated that Dex alleviated CP-induced AKI by inhibiting pyroptosis mediated by NLRP-3 and caspase-1. CONCLUSION: Dex protected rats from CP-induced AKI, and the mechanism may be related to NLRP-3/Caspase-1-mediated pyroptosis.


Assuntos
Injúria Renal Aguda , Dexmedetomidina , Ratos , Animais , Dexmedetomidina/efeitos adversos , Cisplatino/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Rim/patologia , Interleucina-1beta , Caspases/efeitos adversos
9.
Mater Today Bio ; 26: 101036, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38600919

RESUMO

Traditional fibrous membranes employed in guided tissue regeneration (GTR) in the treatment of periodontitis have limitations of bioactive and immunomodulatory properties. We fabricated a novel nTPG/PLGA/PCL fibrous membrane by electrospinning which exhibit excellent hydrophilicity, mechanical properties and biocompatibility. In addition, we investigated its regulatory effect on polarization of macrophages and facilitating the regeneration of periodontal tissue both in vivo and in vitro. These findings showed the 0.5%TPG/PLGA/PCL may inhibit the polarization of RAW 264.7 into M1 phenotype by suppressing the PI3K/AKT and NF-κB signaling pathways. Furthermore, it directly up-regulated the expression of cementoblastic differentiation markers (CEMP-1 and CAP) in periodontal ligament stem cells (hPDLSCs), and indirectly up-regulated the expression of cementoblastic (CEMP-1 and CAP) and osteoblastic (ALP, RUNX2, COL-1, and OCN) differentiation markers by inhibiting the polarization of M1 macrophage. Upon implantation into a periodontal bone defect rats model, histological assessment revealed that the 0.5%TPG/PLGA/PCL membrane could regenerate oriented collagen fibers and structurally intact epithelium. Micro-CT (BV/TV) and the expression of immunohistochemical markers (OCN, RUNX-2, COL-1, and BMP-2) ultimately exhibited satisfactory regeneration of alveolar bone, periodontal ligament. Overall, 0.5%TPG/PLGA/PCL did not only directly promote osteogenic effects on hPDLSCs, but also indirectly facilitated cementoblastic and osteogenic differentiation through its immunomodulatory effects on macrophages. These findings provide a novel perspective for the development of materials for periodontal tissue regeneration.

10.
J Chromatogr A ; 1722: 464911, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38626541

RESUMO

In this study, we have synthesised a chiral l-hyp-Ni/Fe@SiO2 composite as a chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC) for the first time. This was achieved by coating two-dimensional (2D) chiral metal-organic framework nanosheets (MONs) l-hyp-Ni/Fe onto the surface of activated SiO2 microspheres using the "wrapped in net" method. The separation efficiency of the l-hyp-Ni/Fe chromatographic column was systematically evaluated in normal-phase HPLC (NP-HPLC) and reversed-phase HPLC (RP-HPLC) configurations, employing various racemates as analytes. The findings revealed that 16 chiral compounds were separated using NP-HPLC, and five were separated using RP-HPLC, encompassing alcohols, amines, ketones, esters, alkanes, ethers, amino acids and sulfoxides. Notably, the resolution (Rs) of nine chiral compounds exceeded 1.5, indicating baseline separation. Furthermore, the resolution performance of the l-hyp-Ni/Fe@SiO2-packed column was compared with that of Chiralpak AD-H. It was observed that certain enantiomers, which either could not be resolved or were inadequately separated on the Chiralpak AD-H column, attained separation on the 2D chiral MONs column. These findings suggest a complementary relationship between the two columns in racemate separation, with their combined application facilitating the resolution of a broader spectrum of chiral compounds. In addition, baseline separation was achieved for five positional isomers on the l-hyp-Ni/Fe@SiO2-packed column. The effects of the analyte mass and column temperature on the resolution were also examined. Moreover, during HPLC analysis, the l-hyp-Ni/Fe columns demonstrated commendable repeatability, stability and reproducibility in enantiomer separation. This research not only advances the utilisation of 2D chiral MONs as CSPs but also expands their applications in the separation sciences.


Assuntos
Estruturas Metalorgânicas , Dióxido de Silício , Cromatografia Líquida de Alta Pressão/métodos , Dióxido de Silício/química , Estruturas Metalorgânicas/química , Estereoisomerismo , Nanoestruturas/química , Ferro/química , Níquel/química
11.
Phys Chem Chem Phys ; 26(15): 11498-11505, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563212

RESUMO

Fluorescence nanothermometry based on quantum dots is a current research hotspot for novel non-contact temperature monitoring, and is of vital significance for the modulation and design of the sensing properties of sensors. Herein, a design strategy to modulate the temperature-sensing characteristics of quantum dots based on the thickness of a shell is proposed. In this study, CdSe/ZnS quantum dot/POSS-based temperature probe films with varying fluorescence characteristics were developed, and the influence of the ZnS shell on temperature sensing was examined by varying the thickness of the ZnS shell. The temperature dependency, linearity, range of applications, and reversibility of quantum dot thin film probes were all considerably regulated by the ZnS shell, according to research on quantum dot/POSS-based films coated with various shell thicknesses. The CdSe/ZnS temperature probe with 4 monolayers (MLs) stood out among the rest due to its strong thermal stability (at least 5 cycles), large usable temperature range (20-80 °C), and excellent temperature sensitivity (R2 > 0.994). The results demonstrated that the temperature sensing performance of quantum dots was the consequence of the combined effect of multiple temperature response properties induced by the thickness of the shell, and the shell control of quantum dots to optimize the temperature sensing performance was an essential approach for the design of temperature probes. This work demonstrates the great potential of the shell in tuning the temperature sensing performance of quantum dots and provides a viable approach for the design of quantum dot temperature probes.

12.
J Colloid Interface Sci ; 667: 282-290, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38640648

RESUMO

Se-based cathodes have caught tremendous attention owing to their comparable volumetric capacity and better electronic conductivity to S cathodes. However, its low utilization ratio and sluggish redox kinetics due to the high reaction barrier of solid-phase transformation from Se to Li2Se limit its practical application. Herein, an in-situ texturing hollow carbon host by gas-solid interface reaction anchored with Fe single-atomic catalyst is designed and prepared for advanced Li-Se batteries. This Se host presents high pore volume of 1.49 cm3 g-1, Fe single atom content of 1.53 wt%, and its specific structure protects single-atomic catalyst from the destructive reaction environment, thus balancing catalytic activity and durability. After Se loading by reduction of H2SeO3, this homogenous Se-based cathode delivers a superior rate capacity of 431.3 mA h g-1 at 4C, and great discharge capacity of 301.8 mA h g-1 after 1000 cycles at 10C, with high Li-ion diffusion coefficient and capacitance-contributed ratio. The distribution of relaxation times analysis verifies solid-phase transformation mechanism of this cathode and density functional theory calculations confirm the adsorption and bidirectionally catalysis effect of Fe single-atomic catalyst. This work provides a new strategy to prepare high-efficient Se cathode associated with non-noble metal single atoms for high-performance Li-Se batteries.

13.
Pediatr Neurol ; 155: 36-43, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581727

RESUMO

BACKGROUND: Children with severe traumatic brain injury (sTBI) are at risk for neurological sequelae impacting function. Clinicians are tasked with neuroprognostication to assist in decision-making. We describe a single-center study assessing clinicians' neuroprognostication accuracy. METHODS: Clinicians of various specialties caring for children with sTBI were asked to predict their patients' functioning three to six months postinjury. Clinicians were asked to participate in the study if their patient had survived but not returned to baseline between day 4 and 7 postinjury. The outcome tool utilized was the functional status scale (FSS), ranging from 6 to 30 (best-worst function). Predicted scores were compared with actual scores three to six months postinjury. Lin concordance correlation coefficients were used to estimate agreement between predicted and actual FSS. Outcome was dichotomized as good (FSS 6 to 8) or poor (FSS ≥9). Positive and negative predictive values for poor outcome were calculated. Pessimistic prognostic prediction was defined as predicted worse outcome by ≥3 FSS points. Demographic and clinical variables were collected. RESULTS: A total of 107 surveys were collected on 24 patients. Two children died. Fifteen children had complete (FSS = 6) or near-complete (FSS = 7) recovery. Mean predicted and actual FSS scores were 10.8 (S.D. 5.6) and 8.6 (S.D. 4.1), respectively. Predicted FSS scores were higher than actual scores (P < 0.001). Eight children had collective pessimistic prognostic prediction. CONCLUSIONS: Clinicians predicted worse functional outcomes, despite high percentage of patients with near-normal function at follow-up clinic. Certain patient and provider factors were noted to impact accuracy and need to be studied in larger cohorts.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Criança , Masculino , Feminino , Adolescente , Prognóstico , Pré-Escolar , Estado Funcional , Avaliação de Resultados em Cuidados de Saúde/normas
14.
Glob Med Genet ; 11(2): 142-149, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606422

RESUMO

Objectives This study aimed to identify the association between lactate dehydrogenase (LDH) levels and 30-day mortality in patients with intracranial hemorrhage (ICH) with acute leukemia during the induction phase. Methods This cohort study included patients with acute leukemia with ICH during induction. We evaluated serum LDH levels upon admission. Multivariable Cox regression analyzed the LDH 30-day mortality association. Interaction and stratified analyses based on factors like age, sex, albumin, white blood cell count, hemoglobin level, and platelet count were conducted. Results We selected 91 patients diagnosed with acute leukemia and ICH. The overall 30-day mortality rate was 61.5%, with 56 of the 91 patients succumbing. Among those with LDH levels ≥ 570 U/L, the mortality rate was 74.4% (32 out of 43), which was higher than the 50% mortality rate of the LDH < 570 U/L group (24 out of 48) ( p = 0.017). In our multivariate regression models, the hazard ratios and their corresponding 95% confidence intervals for Log2 and twice the upper limit of normal LDH were 1.27 (1.01, 1.58) and 2.2 (1.05, 4.58), respectively. Interaction analysis revealed no significant interactive effect on the relationship between LDH levels and 30-day mortality. Conclusions Serum LDH level was associated with 30-day mortality, especially in patients with LDH ≥ 570 U/L.

15.
Front Immunol ; 15: 1365206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558817

RESUMO

Background: Acute Respiratory Distress Syndrome (ARDS) is a common condition in the intensive care unit (ICU) with a high mortality rate, yet the diagnosis rate remains low. Recent studies have increasingly highlighted the role of aging in the occurrence and progression of ARDS. This study is committed to investigating the pathogenic mechanisms of cellular and genetic changes in elderly ARDS patients, providing theoretical support for the precise treatment of ARDS. Methods: Gene expression profiles for control and ARDS samples were obtained from the Gene Expression Omnibus (GEO) database, while aging-related genes (ARGs) were sourced from the Human Aging Genomic Resources (HAGR) database. Differentially expressed genes (DEGs) were subjected to functional enrichment analysis to understand their roles in ARDS and aging. The Weighted Gene Co-expression Network Analysis (WGCNA) and machine learning pinpointed key modules and marker genes, with ROC curves illustrating their significance. The expression of four ARDS-ARDEGs was validated in lung samples from aged mice with ARDS using qRT-PCR. Gene set enrichment analysis (GSEA) investigated the signaling pathways and immune cell infiltration associated with TYMS expression. Single-nucleus RNA sequencing (snRNA-Seq) explored gene-level differences among cells to investigate intercellular communication during ARDS onset and progression. Results: ARDEGs are involved in cellular responses to DNA damage stimuli, inflammatory reactions, and cellular senescence pathways. The MEmagenta module exhibited a significant correlation with elderly ARDS patients. The LASSO, RRF, and XGBoost algorithms were employed to screen for signature genes, including CKAP2, P2RY14, RBP2, and TYMS. Further validation emphasized the potential role of TYMS in the onset and progression of ARDS. Immune cell infiltration indicated differential proportion and correlations with TYMS expression. SnRNA-Seq and cell-cell communication analysis revealed that TYMS is highly expressed in endothelial cells, and the SEMA3 signaling pathway primarily mediates cell communication between endothelial cells and other cells. Conclusion: Endothelial cell damage associated with aging could contribute to ARDS progression by triggering inflammation. TYMS emerges as a promising diagnostic biomarker and potential therapeutic target for ARDS.


Assuntos
Células Endoteliais , Síndrome do Desconforto Respiratório , Idoso , Humanos , Animais , Camundongos , Envelhecimento/genética , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/genética , Biomarcadores , RNA Nuclear Pequeno , Timidilato Sintase
16.
Childs Nerv Syst ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532147

RESUMO

PURPOSE: Post-hemorrhagic ventricular dilation (PHVD) leads to developmental delays in premature infants, yet the optimal timing of neurosurgical interventions is unknown. Neuroimaging modalities have emerged to delineate injury and follow the progression of PHVD. Fronto-temporal horn ratio (FTHR) is used as a marker of ventricular dilation and can be a standardized tool to direct the timing of neurosurgical intervention. Our study determined a pre-operative FTHR measurement threshold to predict short- and long-term outcomes. METHODS: This is a retrospective cohort study of premature infants with severe intraventricular hemorrhage (IVH) who developed PHVD requiring neurosurgical intervention and were treated in a level IV NICU between 2012 and 2019. Receiver operating characteristic (ROC) curve and area under the curve (AUC) analyses were performed to evaluate the accuracy of pre-operative FTHR for predicting developmental delay. In-hospital outcomes and developmental assessments were analyzed. RESULTS: We reviewed 121 charts of infants with IVH and identified 43 infants with PHVD who required neurosurgical intervention. We found FTHR measurements were an excellent predictor of cognitive and motor delay with an AUC of 0.89 and 0.88, respectively. An average pre-operative FTHR of ≥ 0.67 was also associated with worse lung and feeding outcomes. There was excellent inter-observer reliability of individual components of FTHR measurements. CONCLUSIONS: Early intervention for PHVD is ideal but not always practical. Identification of ventricular size thresholds associated with better outcomes is needed to direct timing of neurosurgical intervention.

17.
Biochem Genet ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38368567

RESUMO

Vascular smooth muscle cells (VSMCs) affect the phenotypic changes in intracranial aneurysm (IA). They exhibit enhanced dissociation and migration and play a key role in IA pathogenesis. KLF transcription factor 11 (KLF11), a member of the KLF family, significantly affects the cancer cell proliferation, differentiation, and apoptosis. However, its expression, biological functions, and latent action mechanisms in IA remain unclear. This study aimed to analyze the effects of KLF11 on H2O2-induced human brain VSMCs (HBVSMCs) in IA. We determined the mRNA levels of KLF11 in 15 paired arterial wall tissues of patients with IA and healthy volunteers. HBVSMCs were stimulated with H2O2 for 6 h to establish an IA model in vitro. Cell viability, apoptosis, and inflammatory cytokine (interleukin [IL-1ß, tumor necrosis factor-α, and IL-6) levels were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assays, respectively. KLF11 expression was determined via quantitative reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence analyses. Furthermore, p-p38, p38, cleaved-caspase 3, and caspase 3 levels were determined via western blotting. KLF11 levels were downregulated in the arterial wall tissues of patients with IA than in those of the control group. KLF11 upregulation by KLF11-plasmid promoted the cell viability, reduced apoptosis, decreased cleaved-caspase 3 expression, and inhibited the secretion of inflammatory factors in H2O2-induced HBVSMCs. KLF11-plasmid remarkably reduced p-p38 expression and p-p38/p-38 ratio; however, these effects were reversed by P79350 treatment. Overall, KLF11 upregulation improved the HBVSMC functions and exerted protective effects against IA, suggesting its potential for IA treatment.

18.
Circulation ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357802

RESUMO

BACKGROUND: S-Nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in cardiovascular disease. Aortic aneurysm and dissection are high-risk cardiovascular diseases without an effective cure. The aim of this study was to determine the role of SNO of Septin2 in macrophages in aortic aneurysm and dissection. METHODS: Biotin-switch assay combined with liquid chromatography-tandem mass spectrometry was performed to identify the S-nitrosylated proteins in aortic tissue from both patients undergoing surgery for aortic dissection and Apoe-/- mice infused with angiotensin II. Angiotensin II-induced aortic aneurysm model and ß-aminopropionitrile-induced aortic aneurysm and dissection model were used to determine the role of SNO of Septin2 (SNO-Septin2) in aortic aneurysm and dissection development. RNA-sequencing analysis was performed to recapitulate possible changes in the transcriptome profile of SNO-Septin2 in macrophages in aortic aneurysm and dissection. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation were used to uncover the TIAM1-RAC1 (Ras-related C3 botulinum toxin substrate 1) axis as the downstream target of SNO-Septin2. Both R-Ketorolac and NSC23766 treatments were used to inhibit the TIAM1-RAC1 axis. RESULTS: Septin2 was identified S-nitrosylated at cysteine 111 (Cys111) in both aortic tissue from patients undergoing surgery for aortic dissection and Apoe-/- mice infused with Angiotensin II. SNO-Septin2 was demonstrated driving the development of aortic aneurysm and dissection. By RNA-sequencing, SNO-Septin2 in macrophages was demonstrated to exacerbate vascular inflammation and extracellular matrix degradation in aortic aneurysm. Next, TIAM1 (T lymphoma invasion and metastasis-inducing protein 1) was identified as a SNO-Septin2 target protein. Mechanistically, compared with unmodified Septin2, SNO-Septin2 reduced its interaction with TIAM1 and activated the TIAM1-RAC1 axis and consequent nuclear factor-κB signaling pathway, resulting in stronger inflammation and extracellular matrix degradation mediated by macrophages. Consistently, both R-Ketorolac and NSC23766 treatments protected against aortic aneurysm and dissection by inhibiting the TIAM1-RAC1 axis. CONCLUSIONS: SNO-Septin2 drives aortic aneurysm and dissection through coupling the TIAM1-RAC1 axis in macrophages and activating the nuclear factor-κB signaling pathway-dependent inflammation and extracellular matrix degradation. Pharmacological blockade of RAC1 by R-Ketorolac or NSC23766 may therefore represent a potential treatment against aortic aneurysm and dissection.

19.
Neuroreport ; 35(3): 160-169, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38305109

RESUMO

To investigate the distribution and characteristics of lymphatic vessels within the central nervous system, we focus on the meninges of the spinal cord and brain parenchyma in mice. Additionally, we aim to provide experimental methods for obtaining optimal imaging and clear structures of lymphatic vessels, while optimizing the perfusion parameters to improve histomorphological quality. Male C57BL/6J mice were randomly divided into four groups, with each group assigned a specific perfusion parameter based on perfusion volumes and temperatures. Immunofluorescence staining of lymphatics and blood vessels was performed on both meningeal and the brain tissue samples. Statistical analysis was performed using one-way analysis of variance to compare the groups, and a significant level of P < 0.05 was considered statistically significant. Our study reports the presence of lymphatic vessels in the meninges of the spinal cord and brain parenchyma in mice. We highlight the crucial role of high perfusion volume of paraformaldehyde with low temperature in fixation for achieving optimal results. We provide experimental methods for obtaining optimal imaging and clear structures of lymphatic vessels in the meninges of the spinal cord and brain parenchyma in mice, which contribute to our understanding of the distribution and characteristics of lymphatic vessels within the central nervous system. Further research is warranted to explore the functional implications of these lymphatic vessels and their potential therapeutic significance in neurodegenerative and neuroinflammatory diseases.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/fisiologia , Meninges/diagnóstico por imagem , Encéfalo , Perfusão
20.
Laryngoscope ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38401061

RESUMO

OBJECTIVES: 17ß-estradiol (E2) is a steroidal hormone with immunomodulatory functions that play a role in infectious and inflammatory diseases. E2 was recently identified as the leading upstream regulator of differentially expressed genes in a comparative RNA sequencing study of pediatric patients with otitis media (OM) versus OM-free counterparts and may therefore play a role in the inflammatory response to bacterial otopathogens during pediatric OM. This study examined the effect of E2 on bacterial-induced inflammatory cytokine expression in an in vitro pediatric OM model. METHODS: An immortalized middle ear (ME) epithelial cell line, ROM-SV40, was developed from a pediatric recurrent OM patient. The culture was exposed to E2 at physiological levels for 1-48 h prior to 6 h-stimulation with nontypeable Haemophilus influenzae (NTHi) whole cell lysate. TNFA, IL1B, IL6, and IL8 were assayed by qPCR and ELISA. RESULTS: E2 pretreatment (24 h) abrogated NTHi induction of IL6; a longer pretreatment (1-10 nM, 48 h) abrogated IL1B induction (p < 0.05). E2 pretreatment (5 nM, 48 h) abrogated NTHi-induced IL8 secretion (p = 0.017). CONCLUSION: E2 pretreatment partially rescued NTHi-induced cytokine production by ME epithelia. These data support a role for E2 in moderating the excessive inflammatory response to middle ear infection that contributes to OM pathophysiology. LEVELS OF EVIDENCE: NA Laryngoscope, 2024.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA