Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
J Phys Chem Lett ; : 7214-7220, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973732

RESUMO

The oxidation of Sn2+ can occur even after the completion of the perovskite crystallization in a low oxygen environment. Concerning this, the natural antioxidant vitamin C (VC) is introduced to the surface of Sn-Pb mixed perovskite using a postprocessing method to achieve the purpose of inhibiting Sn2+ oxidation and enhancing perovskite solar cells performance. The results indicate that the VC could effectively inhibit Sn2+ oxidation and heal the vacancy defects of the annealed perovskite film. Meanwhile, the introduction of VC significantly improves the morphology and crystalline quality of the perovskite films. After optimization, the highest power conversion efficiency of the VC-treated Sn-Pb mixed device increased to 20.44%. Moreover, the VC-treated unencapsulated device shows excellent long-term stability, retaining 75.3% of its initial efficiency after 800 h of aging in a N2 atmosphere, which is much higher than the 20.1% of the control device.

2.
ACS Appl Mater Interfaces ; 16(25): 32027-32044, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38867426

RESUMO

Atherosclerotic plaques exhibit high cholesterol deposition and oxidative stress resulting from high reactive oxygen species (ROS). These are the major components in plaques and the main pro-inflammatory factor. Therefore, it is crucial to develop an effective therapeutic strategy that can simultaneously address the multiple pro-inflammatory factors via removing cholesterol and inhibiting the overaccumulated ROS. In this study, we constructed macrophage membrane-encapsulated biomimetic nanoparticles (MM@DA-pCD@MTX), which not only alleviate cholesterol deposition at the plaque lesion via reverse cholesterol transport but also scavenge the overaccumulated ROS. ß-Cyclodextrin (ß-CD) and the loaded methotrexate (MTX) act synergistically to induce cholesterol efflux for inhibiting the formation of foam cells. Among them, MTX up-regulated the expression of ABCA1, CYP27A1, and SR-B1. ß-CD increased the solubility of cholesterol crystals. In addition, the ROS scavenging property of dopamine (DA) was perfectly preserved in MM@DA-pCD@MTX, which could scavenge the overaccumulated ROS to alleviate the oxidative stress at the plaque lesion. Last but not least, MM-functionalized "homing" targeting of atherosclerotic plaques not only enables the targeted drug delivery but also prolongs in vivo circulation time and drug half-life. In summary, MM@DA-pCD@MTX emerges as a potent, multifunctional therapeutic platform for AS treatment, offering a high degree of biosafety and efficacy in addressing the complex pathophysiology of atherosclerosis.


Assuntos
Aterosclerose , Materiais Biomiméticos , Colesterol , Dopamina , Macrófagos , Metotrexato , Nanopartículas , Dopamina/química , Dopamina/farmacologia , Nanopartículas/química , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Camundongos , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Metotrexato/química , Metotrexato/farmacologia , Colesterol/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Células RAW 264.7 , Estresse Oxidativo/efeitos dos fármacos , Portadores de Fármacos/química , beta-Ciclodextrinas
3.
Int J Biol Macromol ; 273(Pt 1): 133062, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862051

RESUMO

Chronic bacterial infections, excessive inflammation, and oxidative stress significantly hinder diabetic wound healing by prolonging the inflammatory phase and complicating the healing process. In this study, phenylboronic acid functionalized dextran (PODP) was developed to encapsulate curcumin, referred to as PODP@Cur. Experimental results indicate that PODP significantly improves the water solubility of curcumin and exhibits synergistic biological activity both in vitro and in vivo. PODP@Cur is capable of accelerating drug release under the pathological microenvironment with ROS accumulation. Furthermore, phenylboronic acid (PBA) has demonstrated potential for targeted bacterial drug delivery, enhancing antibacterial efficacy and trapping free LPS/PGN from dead bacteria to reduce undesirable inflammation. In a diabetic mouse model, PODP@Cur exhibits an excellent antibacterial, anti-inflammatory and antioxidant activities to ultimately promote the efficient and safe wound healing. Due to the specific interaction between PBA and LPS, PODP@Cur could enhance antibacterial activity against bacteria, reduce toxic side effects on normal cells, and alleviate the LPS-mediated pro-inflammatory pathological microenvironment. Therefore, PODP@Cur is capable of being exploited as an efficient and safe candidate for promoting the bacteria-infected diabetic wound healing.


Assuntos
Antibacterianos , Ácidos Borônicos , Curcumina , Dextranos , Diabetes Mellitus Experimental , Cicatrização , Curcumina/farmacologia , Curcumina/química , Animais , Cicatrização/efeitos dos fármacos , Dextranos/química , Camundongos , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Diabetes Mellitus Experimental/tratamento farmacológico , Nanopartículas/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Células RAW 264.7 , Masculino , Antioxidantes/farmacologia , Antioxidantes/química , Infecções Bacterianas/tratamento farmacológico
5.
Heliyon ; 10(11): e31625, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828325

RESUMO

One of the significant topics in the field of the Internet of Things (IoT) pertains to the interaction and information sharing among people. The utilization of the Border Gateway Protocol (BGP) stack enhances the integration of web protocols and sensor networks, leading to greater accessibility. However, the BGP protocol stack introduces substantial overhead to messages transmitted at each layer, resulting in increased data overhead and energy consumption in networks by several orders of magnitude. This paper proposes a method to reduce the overhead on small and medium-sized packets. In multi-temporal networks utilizing BGP, scheduling and aggregating BGP packets at sensor nodes help achieve specific objectives. Various research methodologies and measures are employed to facilitate this, including request classification, BGP response prioritization within the network, determination of maximum acceptable delay, and overall network management. Synchronization and temporal integration of received messages at sensor nodes are performed, considering the maximum allowable delay for each message and the availability of the destination to process the accumulated messages. The evaluation results of the proposed method demonstrate a significant reduction in energy consumption and network traffic, particularly in monitoring applications within multi-stage networks. The protocol stack used is derived from the BGP standard.

6.
Small ; : e2311507, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856024

RESUMO

The immunosuppressive characteristics and acquired immune resistance can restrain the therapy-initiated anti-tumor immunity. In this work, an antibody free programmed death receptor ligand 1 (PD-L1) downregulator (designated as CeSe) is fabricated to boost photodynamic activated immunotherapy through cyclin-dependent kinase 5 (CDK5) inhibition. Among which, FDA approved photosensitizer of chlorin e6 (Ce6) and preclinical available CDK5 inhibitor of seliciclib (Se) are utilized to prepare the nanomedicine of CeSe through self-assembly technique without drug excipient. Nanoscale CeSe exhibits an increased stability and drug delivery efficiency, contributing to intracellular production of reactive oxygen species (ROS) for robust photodynamic therapy (PDT). The PDT of CeSe can not only suppress the primary tumor growth, but also induce the immunogenic cell death (ICD) to release tumor associated antigens. More importantly, the CDK5 inhibition by CeSe can downregulate PD-L1 to re-activate the systemic anti-tumor immunity by decreasing the tumor immune escape and therapy-induced acquired immune resistance. This work provides an antibody free strategy to activate systemic immune response for metastatic tumor treatment, which may accelerate the development of translational nanomedicine with sophisticated mechanism.

7.
AMB Express ; 14(1): 65, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842638

RESUMO

Microbial degradation of fluorinated compounds raised significant attention because of their widespread distribution and potential environmental impacts. Here, we report a bacterial isolate, Rhodococcus sp. NJF-7 capable of defluorinating monofluorinated medium-chain length alkanes. This isolate consumed 2.29 ± 0.13 mmol L- 1 of 1-fluorodecane (FD) during a 52 h incubation period, resulting in a significant release of inorganic fluoride amounting to 2.16 ± 0.03 mmol L- 1. The defluorination process was strongly affected by the initial FD concentration and pH conditions, with lower pH increasing fluoride toxicity to bacterial cells and inhibiting enzymatic defluorination activity. Stoichiometric conversion of FD to fluoride was observed at neutral pH with resting cells, while defluorination was significantly lower at reduced pH (6.5). The discovery of the metabolites decanoic acid and methyl decanoate suggests that the initial attack by monooxygenases may be responsible for the biological defluorination of FD. The findings here provide new insights into microbial defluorination processes, specifically aiding in understanding the environmental fate of organic semi-fluorinated alkane chemicals.

8.
Mar Pollut Bull ; 205: 116635, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38936000

RESUMO

This study provided a systematic investigation of microplastics in Hong Kong's surface marine waters during the pandemic from 2019 to 2021. Microplastics (2.07 ± 4.00 particles/m3) exhibited significant temporal variations with higher abundance in the wet season, without a consistent trend after the mandatory mask-wearing requirement was announced. The impact of pandemic restrictions on microplastic distribution was found to be relatively minor. However, significant correlations between microplastic abundances and rainfall highlighted the substantial contribution of local emissions through surface runoff. Notably, sites in closer proximity to the Pearl River Delta exhibited higher microplastic abundances, indicating their association with emission sources. The influence of rainfall and adverse weather on marine microplastic loads demonstrated different sensitivities among various locations but can generally last for one month. These results revealed the impact of seasonal rainfall on coastal microplastics and emphasized the need for efforts to reduce microplastic discharge from land-based sources.

9.
Chem Biodivers ; : e202400494, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744674

RESUMO

BACKGROUND: Genus Buxus plants, commonly known as "boxwood", are widely distributed in China. The stems, branches, and leaves of the plant are traditionally used for rheumatism, toothache, chest pain, abdominal gas, and other diseases. However, an overview of the genus Buxus remains to be provided. PURPOSE: To provide a scientific basis for the appropriate use and further research the recent advancements in the traditional usage, phytochemistry, and, pharmacology of Buxus. STUDY DESIGN: Chemical composition and pharmacological correlation studies through a literature review. METHODS: Between 1970 and 2023, the available data concerning Buxus was compiled from online scientific sources, such as Sci-Finder, PubMed, CNKI, Google Scholar, and the Chinese Pharmacopoeia. Plant names were verified from "The Plant List" (http://www.theplantlist.org/). RESULTS: To date, 266 structurally diverse chemicals have been extracted and identified from the genus Buxus. Alkaloids constitute one of its primary bioactive phytochemicals. A summary of the channels of action of Cyclovirobuxine D on the cytotoxicity of a variety of cancers has been provided. CONCLUSION: Numerous findings from contemporary phytochemical and pharmacological studies support the traditional use, facilitating its application. Further research is necessary to address various shortcomings, including the identification of the active ingredients and quality control of the genus Buxus.

10.
Chem Commun (Camb) ; 60(47): 6063-6066, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38780308

RESUMO

In this study, a benzoselenadiazole- and pyridine-bifunctionalized hydrogen-bonded arylamide foldamer was synthesized. A co-crystallization experiment with 1,4-diiodotetrafluorobenzene showed that a new type of supramolecular double helices, which were induced by three orthogonal interactions, namely, three-center hydrogen bonding (O⋯H⋯O), I⋯N halogen bonding and Se⋯N chalcogen bonding, have been constructed in the solid state. This work presents a novel instance of multiple non-covalent interactions that work together to construct supramolecular architectures.

11.
Sci Rep ; 14(1): 11990, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796503

RESUMO

The present study explored the risk factors associated with radiotherapy in seniors diagnosed with limited-stage small cell lung cancer (LS-SCLC) to construct and validate a prognostic nomogram. The study retrospectively included 137 elderly patients with LS-SCLC who previously received radiotherapy. Univariate and multivariate COX analyses were conducted to identify independent risk factors and determine optimal cut-off values. Kaplan-Meier survival curves and nomograms were constructed to predict survival. Calibration and receiver operating characteristic (ROC) curves were used to evaluate the accuracy and consistency of the nomogram. Illness rating scale-geriatric (CIRS-G) score, treatment strategy, lymphocyte-to-monocyte ratio (LMR), white blood cell-to-monocyte ratio (WMR), and prognostic nutritional index (PNI) were discovered to be independent prognostic factors. Based on the findings of our multivariate analysis, a risk nomogram was developed to assess patient prognosis. Internal bootstrap resampling was utilized to validate the model, and while the accuracy of the AUC curve at 1 year was modest at 0.657 (95% CI 0.458-0.856), good results were achieved in predicting 3- and 5 year survival with AUCs of 0.757 (95% CI 0.670-0.843) and 0.768 (95% CI 0.643-0.893), respectively. Calibration curves for 1-, 3-, and 5 year overall survival probabilities demonstrated good cocsistency between expected and actual outcomes. Patients with concurrent chemoradiotherapy, CIRS-G score > 5 points and low PNI, WMR and LMR correlated with poor prognosis. The nomogram model developed based on these factors demonstrated good predictive performance and provides a simple, accessible, and practical tool for clinicians to guide clinical decision-making and study design.


Assuntos
Neoplasias Pulmonares , Nomogramas , Carcinoma de Pequenas Células do Pulmão , Humanos , Masculino , Feminino , Idoso , Carcinoma de Pequenas Células do Pulmão/radioterapia , Carcinoma de Pequenas Células do Pulmão/mortalidade , Carcinoma de Pequenas Células do Pulmão/patologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Prognóstico , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Fatores de Risco , Curva ROC , Estadiamento de Neoplasias , Estimativa de Kaplan-Meier , Avaliação Nutricional
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167221, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718845

RESUMO

BACKGROUND: Short bowel syndrome (SBS) features nutrients malabsorption and impaired intestinal barrier. Patients with SBS are prone to sepsis, intestinal flora dysbiosis and intestinal failure associated liver disease. Protecting intestinal barrier and preventing complications are potential strategies for SBS treatment. This study aims to investigate the effects of farnesoid X receptor (FXR) agonist, obeticholic acid (OCA), have on intestinal barrier and ecological environment in SBS. METHODS AND RESULTS: Through testing the small intestine and serum samples of patients with SBS, impaired intestinal barrier was verified, as evidenced by reduced expressions of intestinal tight junction proteins (TJPs), increased levels of apoptosis and epithelial cell damage. The intestinal expressions of FXR and related downstream molecules were decreased in SBS patients. Then, global FXR activator OCA was used to further dissect the potential role of the FXR in a rat model of SBS. Low expressions of FXR-related molecules were observed on the small intestine of SBS rats, along with increased proinflammatory factors and damaged barrier function. Furthermore, SBS rats possessed significantly decreased body weight and elevated death rate. Supplementation with OCA mitigated the damaged intestinal barrier and increased proinflammatory factors in SBS rats, accompanied by activated FXR-related molecules. Using 16S rDNA sequencing, the regulatory role of OCA on gut microbiota in SBS rats was witnessed. LPS stimulation to Caco-2 cells induced apoptosis and overexpression of proinflammatory factors in vitro. OCA incubation of LPS-pretreated Caco-2 cells activated FXR-related molecules, increased the expressions of TJPs, ameliorated apoptosis and inhibited overexpression of proinflammatory factors. CONCLUSIONS: OCA supplementation could effectively ameliorate the intestinal barrier disruption and inhibit overexpression of proinflammatory factors in a rat model of SBS and LPS-pretreated Caco-2 cells. As a selective activator of FXR, OCA might realize its protective function through FXR activation.


Assuntos
Ácido Quenodesoxicólico , Modelos Animais de Doenças , Mucosa Intestinal , Receptores Citoplasmáticos e Nucleares , Síndrome do Intestino Curto , Animais , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacologia , Síndrome do Intestino Curto/metabolismo , Síndrome do Intestino Curto/tratamento farmacológico , Síndrome do Intestino Curto/patologia , Ratos , Humanos , Masculino , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Ratos Sprague-Dawley , Apoptose/efeitos dos fármacos , Pessoa de Meia-Idade , Intestino Delgado/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Adulto , Proteínas de Junções Íntimas/metabolismo
13.
Bioinformatics ; 40(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38759114

RESUMO

MOTIVATION: The quality scores data (QSD) account for 70% in compressed FastQ files obtained from the short and long reads sequencing technologies. Designing effective compressors for QSD that counterbalance compression ratio, time cost, and memory consumption is essential in scenarios such as large-scale genomics data sharing and long-term data backup. This study presents a novel parallel lossless QSD-dedicated compression algorithm named PQSDC, which fulfills the above requirements well. PQSDC is based on two core components: a parallel sequences-partition model designed to reduce peak memory consumption and time cost during compression and decompression processes, as well as a parallel four-level run-length prediction mapping model to enhance compression ratio. Besides, the PQSDC algorithm is also designed to be highly concurrent using multicore CPU clusters. RESULTS: We evaluate PQSDC and four state-of-the-art compression algorithms on 27 real-world datasets, including 61.857 billion QSD characters and 632.908 million QSD sequences. (1) For short reads, compared to baselines, the maximum improvement of PQSDC reaches 7.06% in average compression ratio, and 8.01% in weighted average compression ratio. During compression and decompression, the maximum total time savings of PQSDC are 79.96% and 84.56%, respectively; the maximum average memory savings are 68.34% and 77.63%, respectively. (2) For long reads, the maximum improvement of PQSDC reaches 12.51% and 13.42% in average and weighted average compression ratio, respectively. The maximum total time savings during compression and decompression are 53.51% and 72.53%, respectively; the maximum average memory savings are 19.44% and 17.42%, respectively. (3) Furthermore, PQSDC ranks second in compression robustness among the tested algorithms, indicating that it is less affected by the probability distribution of the QSD collections. Overall, our work provides a promising solution for QSD parallel compression, which balances storage cost, time consumption, and memory occupation primely. AVAILABILITY AND IMPLEMENTATION: The proposed PQSDC compressor can be downloaded from https://github.com/fahaihi/PQSDC.


Assuntos
Algoritmos , Compressão de Dados , Compressão de Dados/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software , Humanos
14.
Phytochemistry ; 222: 114072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561105

RESUMO

Phytochemical investigations of the leaves of Astragalus membranaceus (Fisch.) Bge. have led to the isolation of 12 undescribed triterpenoid saponins named huangqiyenins M-X. The structures of the undescribed compounds were determined using NMR and HRESIMS data. The cytotoxicity of these compounds against the RKO and HT-29 colon cancer cell lines was evaluated. Among these compounds, huangqiyenin W exhibited the highest cytotoxic activity against RKO colon cancer cells, whereas huangqiyenin Q and W showed moderate cytotoxic activity against HT-29 colon cancer cells. The network pharmacology results indicated that STAT3, IL-2 and CXCR1 are the correlated targets of huangqiyenin W against colon cancer, with AGE-RAGE and Th17 cell differentiation as the key signaling pathways.


Assuntos
Antineoplásicos Fitogênicos , Astragalus propinquus , Saponinas , Triterpenos , Saponinas/química , Saponinas/farmacologia , Saponinas/isolamento & purificação , Humanos , Astragalus propinquus/química , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Folhas de Planta/química , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Relação Dose-Resposta a Droga , Interleucina-2/metabolismo , Células HT29
15.
Adv Healthc Mater ; : e2401113, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686849

RESUMO

Atherosclerosis (AS) management typically relies on therapeutic drug interventions, but these strategies typically have drawbacks, including poor site specificity, high systemic intake, and undesired side effects. The field of cell membrane camouflaged biomimetic nanomedicine offers the potential to address these challenges thanks to its ability to mimic the natural properties of cell membranes that enable enhanced biocompatibility, prolonged blood circulation, targeted drug delivery, and evasion of immune recognition, ultimately leading to improved therapeutic outcomes and reduced side effects. In this study, a novel biomimetic approach is developed to construct the M1 macrophage membrane-coated nanoprodrug (MM@CD-PBA-RVT) for AS management. The advanced MM@CD-PBA-RVT nanotherapeutics are proved to be effective in inhibiting macrophage phagocytosis and facilitating the cargo delivery to the activated endothelial cells of AS lesion both in vitro and in vivo. Over the 30-day period of nanotherapy, MM@CD-PBA-RVT is capable of significantly inhibiting the progression of AS, while also maintaining a favorable safety profile. In conclusion, the biomimetic MM@CD-PBA-RVT shows promise as feasible drug delivery systems for safe and effective anti-AS applications.

16.
Talanta ; 274: 125997, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569369

RESUMO

Cyanidin-3-O-glucoside (C3G), a natural antioxidant, plays multiple physiological or pathological roles in maintaining human health; thereby, designing advanced sensors to achieve specific recognition and high-sensitivity detection of C3G is significant. Herein, an imprinted-type electrochemiluminescence (ECL) sensing platform was developed using core-shell Ru@SiO2-CMIPs, which were prepared by covalent organic framework (COF)-based molecularly imprinted polymers (CMIPs) embedded in luminescent Ru@SiO2 cores. The C3G-imprinted COF shell not only helps generate a steady-enhanced ECL signal, but also enables specific recognition of C3G. When C3G is bound to Ru@SiO2-CMIPs with abundant imprinted cavities, resonance energy transfer (RET) behavior is triggered, resulting in a quenched ECL response. The constructed Ru@SiO2-CMIPs nanoprobes exhibit ultra-high sensitivity, absolute specificity, and an ultra-low detection limit (0.15 pg mL-1) for analyzing C3G in food matrices. This study provides a means to construct an efficient and reliable molecular imprinting-based ECL sensor for food analysis.


Assuntos
Antocianinas , Técnicas Eletroquímicas , Glucosídeos , Medições Luminescentes , Estruturas Metalorgânicas , Impressão Molecular , Rutênio , Dióxido de Silício , Antocianinas/química , Antocianinas/análise , Dióxido de Silício/química , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Rutênio/química , Glucosídeos/química , Glucosídeos/análise , Estruturas Metalorgânicas/química , Limite de Detecção , Polímeros Molecularmente Impressos/química
17.
Huan Jing Ke Xue ; 45(5): 2926-2938, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629554

RESUMO

With the rapid urbanization and industrialization, heavy metal contamination in urban soil and surface dust has received particular attention due to its negative effects on the eco-environment and human health. Contamination and spatio-temporal characteristics, contamination sources, and source apportionment methods, as well as the ecological and health risks of heavy metals in urban soil and surface dust were reviewed. The knowledge gaps in current research and prospects of future works were proposed. Four key points were presented, including improving the research on the interaction mechanism of heavy metals in urban soil and surface dust under complex conditions, enriching verification methods to improve the source apportionment reliability of anthropogenic metals by receptor models, strengthening the research on chemical forms of heavy metals from different sources and their short-term accumulation processes in surface dust, and raising the credibility of ecological and health risk forecast of heavy metals by integrating the improved exposure parameters and chemical forms.

18.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 33-38, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38433628

RESUMO

Objective To visualize the research status and hotspots of women's common disease screening based on CiteSpace 6.1.R6,and to provide a reference for the in-depth research in this field thereafter. Methods The relevant articles were retrieved from the China National Knowledge Infrastructure with the time interval from January 1,1992 to December 13,2022.The analysis was conducted on the number of annual publications,countries(regions),institutions,author collaboration networks,keyword co-occurrence,clustering,and bursts. Results A total of 900 papers that met the criteria were included,and the number of annual publications showed a trend of first increasing and then decreasing.The cross-institutional collaboration network was mature.The research hotspots mainly covered women's health,the prevalence of women's diseases,reproductive health,and breast diseases.The hotspots have evolved from an initial focus on reproductive health care to gynecological disease management,and eventually to reproductive health and holistic health care in women. Conclusions The attention should be kept on the screening of women's common diseases.It is advisable to synchronize the screening of women's common diseases with the screening of cervical and breast cancers to expand the screening coverage,promote early disease detection and treatment,and comprehensively safeguard women's health.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Masculino , China/epidemiologia , Pescoço
19.
Ecotoxicol Environ Saf ; 273: 116175, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458070

RESUMO

Nanoplastics are recognized as emerging contaminants that can cause severe toxicity to marine fishes. However, limited researches were focusing on the toxic effects of nanoplastics on marine fish, especially the post-exposure resilience. In this study, red drum (Sciaenops ocellatus) were exposed to 5 mg/L polystyrene nanoplastics (100 nm, PS-NPs) for a 7-day exposure experiment, and a 14-day recovery experiment that followed. The aim was to evaluate the dynamic alterations in hepatic and branchial tissue damage, hepatic antioxidant capacity, as well as hepatic transcriptional and metabolic regulation in the red drum during exposure and post-exposure to PS-NPs. Histopathological observation found that PS-NPs primarily triggered hepatic lipid droplets and branchial epithelial liftings, a phenomenon persistently discernible up to the 14 days of recovery. Although antioxidant capacity partially recovered during recovery periods, PS-NPs resulted in a sustained reduction in hepatic antioxidant activity, causing oxidative damage throughout the entire exposure and recovery phases, as evidenced by decreased total superoxide dismutase activities and increased malondialdehyde content. At the transcriptional and metabolic level, PS-NPs primarily induced lipid metabolism disorders, DNA damage, biofilm disruption, and mitochondrial dysfunction. In the gene-metabolite correlation interaction network, numerous CcO (cytochrome c oxidase) family genes and lipid metabolites were identified as key regulatory genes and metabolites in detoxification processes. Among them, the red drum possesses one additional CcO6B in comparison to human and zebrafish, which potentially contributes to its enhanced capacity for maintaining a stable and positive regulatory function in detoxification. This study revealed that nanoplastics cause severe biotoxicity to red drum, which may be detrimental to the survival of wild populations and affect the economics of farmed populations.


Assuntos
Perciformes , Poluentes Químicos da Água , Animais , Humanos , Antioxidantes/metabolismo , Microplásticos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Perciformes/genética , Perciformes/metabolismo , Estresse Oxidativo , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
20.
Adv Sci (Weinh) ; 11(20): e2306767, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552153

RESUMO

Plant movements for survival are nontrivial. Antheridia in the moss Physcomitrium patens (P. patens) use motion to eject sperm in the presence of water. However, the biological and mechanical mechanisms that actuate the process are unknown. Here, the burst of the antheridium of P. patens, triggered by water, results from elastic instability and is determined by an asymmetric change in cell geometry. The tension generated in jacket cell walls of antheridium arises from turgor pressure, and is further promoted when the inner walls of apex burst in hydration, causing water and cellular contents of apex quickly influx into sperm chamber. The outer walls of the jacket cells are strengthened by NAC transcription factor VNS4 and serve as key morphomechanical innovations to store hydrostatic energy in a confined space in P. patens. However, the antheridium in liverwort Marchantia polymorpha (M. polymorpha) adopts a different strategy for sperm release; like jacket cell outer walls of P. patens, the cells surrounding the antheridium of M. polymorpha appear to play a similar role in the storage of energy. Collectively, the work shows that plants have evolved different ingenious devices for sperm discharge and that morphological innovations can differ.


Assuntos
Bryopsida , Bryopsida/fisiologia , Bryopsida/citologia , Bryopsida/metabolismo , Marchantia/genética , Marchantia/metabolismo , Marchantia/citologia , Marchantia/fisiologia , Briófitas/fisiologia , Briófitas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...