Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(13): 4251-4259, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36897577

RESUMO

The precise tuning of cluster composition helps us to understand the relationship between clusters and their properties. In this context, on the basis of [Au4Ag5(SAdm)6(Dppm)2](BPh4) (HSAdm is 1-adamantanethiol, C10H15SH; Dppm is bis(diphenylphosphino)methane, Ph2PCH2PPh2), the control of the internal metal, surface thiol, and surface phosphine ligand was accomplished, with the formations of [Au6.5Ag2.5(SAdm)6(Dppm)2](BPh4), [Au4Ag5(S-c-C6H11)6(Dppm)2](BPh4) and [Au4Ag5(SAdm)6(VDPP-2H)2](BPh4) (HS-c-C6H11 is cyclohexanethiol; VDPP is 1,1-bis(diphenylphosphino)ethylene, (Ph2P)2CCH2; and VDPP-2H is 1,1-bis(diphenylphosphine) ethane derived from the reduction of VDPP, (Ph2P)2CHCH3). The structures of [Au6.5Ag2.5(SAdm)6(Dppm)2](BPh4) and [Au4Ag5(S-c-C6H11)6(Dppm)2](BPh4) were determined by single-crystal X-ray crystallography (SC-XRD), while that of [Au4Ag5(SAdm)6(VDPP-2H)2](BPh4) was confirmed via ESI-MS measurements. The control of the metal, thiol and phosphine ligand affects the electronic structure and optical properties of the [Au4Ag5(SAdm)6(Dppm)2](BPh4) cluster. Overall, the nanoclusters [Au4Ag5(SAdm)6(Dppm)2](BPh4), [Au6.5Ag2.5(SAdm)6(Dppm)2](BPh4), [Au4Ag5(S-c-C6H11)6(Dppm)2](BPh4) and [Au4Ag5(SAdm)6(VDPP-2H)2](BPh4) provide a chance to explore the effect of regulation of metals and surface ligands on electronic and optical properties.

2.
Chemistry ; 27(70): 17554-17558, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34643967

RESUMO

The [Aux Ag16-x (SAdm)8 (Dppe)2 ] nanocluster with aggregation-induced emission (AIE) was synthesized from a non-fluorescent [Au9 Ag12 (SAdm)4 (Dppm)6 Cl6 ](SbF6 )3 nanocluster via a ligand-exchange engineering (Dppe=1,2-Bis(diphenylphosphino)ethane, Dppm=Bis(diphenylphosphino)methane, HSAdm=1-Adamantanethiol). The nanocluster has a Au-doped icosahedral Aux Ag13-x core, capped by two Ag(SR)3 , one Ag(SR)2 and two Dppe ligands. By changing the achiral Dppe ligand into a chiral dbpb ligand ((2S,3S)-(-)-Bis(diphenylphosphino)butane or (2R,3R)-(+)-2,3-Bis(diphenylphosphino)butane), chiral nanoclusters are obtained. ESI-MS and UV-vis spectroscopy were performed to track the reaction. This work provides guidance for the construction of new clusters by etching clusters with multidentate phosphine ligands.

3.
Front Chem ; 9: 793339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35141202

RESUMO

Tailoring of specific sites on the nanocluster surface can tailor the properties of nanoclusters at the atomic level, for the in-depth understanding of structure and property relationship. In this work, we explore the regulation of surface structure of [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 nanocluster via alloying. We successfully obtained the well-determined tri-metal [Au9Ag8@Cu4(SAdm)4(Dppm)6Cl6](SbF6)3 by the reaction of [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 with the CuI(SAdm) complex precursor. X-ray crystallography identifies that the Cu dopants prioritily replace the position of the silver capped by Dppm ligand in the motif. The Cu doping has affected the optical properties of Au9Ag12 alloy nanocluster. DPV spectra, CD spectra and stability tests suggest that the regulation of surface structure via Cu alloying changes the electronic structure, thereby affecting the electrochemical properties, which provides insight into the regulation of surface structure of [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 via alloying.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...