Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Small ; : e2407690, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39344210

RESUMO

The strategic enhancement of manganese-oxygen (Mn─O) covalency is a promising approach to improve the intercalation kinetics of sodium ions (Na⁺) in manganese dioxide (MnO2). In this study, an augmenting Mn─O covalency in MnO2 by strategically incorporating cobalt at oxygen edge-sharing Co octahedral sites is focused on. Both experimental results and density functional theory (DFT) calculations reveal an increased electron polarization from oxygen to manganese, surpassing that directed toward cobalt, thereby facilitating enhanced electron transfer and strengthening covalency. The synthesized Co-MnO2 material exhibits outstanding electrochemical performance, demonstrating a superior specific capacitance of 388 F g-1 at 1 A g-1 and maintaining 97.21% capacity retention after 12000 cycles. Additionally, an asymmetric supercapacitor constructed using Co-MnO2 achieved a high energy density of 35 Wh kg-1 at a power density of 1000 W kg-1, underscoring the efficacy of this material in practical applications. This work highlights the critical role of transition metal-oxygen interactions in optimizing electrode materials and introduces a robust approach to enhance the functional properties of manganese oxides, thereby advancing high-performance energy storage technologies.

2.
Mater Horiz ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39224063

RESUMO

In the quest for efficient supercapacitor materials, manganese-based layered oxide cathodes stand out for their cost-effectiveness and high theoretical capacity. However, their progress is hindered by the Jahn-Teller (J-T) distortion due to the unavoidable Mn4+ to Mn3+ reduction during ion storage processes. Our study addresses this challenge by stabilizing the K0.5MnO2 cathode through strategic Mg2+ substitution. This substitution leads to an altered Mn3+ electronic configuration, effectively mitigating the strong J-T distortion during ion storage processes. We provide a comprehensive analysis combining experimental evidence and theoretical insights, highlighting the emergence of the weak and negative J-T effects with reduced structural deformation during electrochemical cycling. Our findings reveal that the K0.5Mn0.85Mg0.15O2 cathode exhibits remarkable durability, retaining 96.0% of initial capacitance after 8000 cycles. This improvement is attributed to the specific electronic configurations of Mn3+ ions, which play a crucial role in minimizing volumetric changes and counteracting structural deformation typically induced by the strong J-T distortion. Our study not only advances the understanding of managing J-T distortion in manganese-based cathodes but also opens new avenues for designing high-stability supercapacitors and other energy storage devices by tailoring electrode materials based on their electronic configurations.

3.
Sci Rep ; 14(1): 20423, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227728

RESUMO

Understanding the heterogeneity of reservoirs is crucial for enhancing the efficiency of hydrocarbon exploration and development. The primary porosity of samples from modern braided river sands and outcrops of braided river sandstone was calculated using a model previously proposed by the authors. The characteristic parameters (Vx) for calculating primary porosity are closely related to the architectural-elemental configurations (AEC), and the AEC of braided river sand bodies (BRSD) has apparent effects on the distribution of the primary porosity heterogeneities. Analysis of our results has established a simple primary porosity heterogeneity model of BRSD. The center of braided river channel and mid-channel bars have excellent strong primary petrophysical properties with high primary porosity exceeding 38%. The contact areas between the braided river channel and channel bars exhibit relatively low primary porosities of less than 33%. The area between the center and edge of the braided bars and channels displays medium primary porosities. The nonlinear correlation in the Q-Q plot of the primary porosity and present porosity of samples from BRSD in the Ahe Formation is mainly caused by chemical diagenesis. The present porosity heterogeneity of BRSD in the Ahe Formation is less influenced by compaction and cementation, it predominantly arises from the differential of dissolution. Q-Q plots attempt to correlate the geological information from an individual sample with the heterogeneity of present porosity in BRSD. In addition, by utilizing Q-Q plots of the primary and current petrophysical properties of the sand body, the relative extent of heterogeneity modification caused by different diagenetic processes can be assessed. This assessment is crucial for modeling macroscopic models of physical properties during geological history periods.

4.
Environ Res ; 262(Pt 2): 119973, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260723

RESUMO

Enzymatic hydrolysis has been considered as an eco-friendly pretreatment method for enhancing bioconversion process of food waste (FW). However, existing commercial enzymes and microbial monomer-based compound enzymes (MME) have the issues of uneven distribution of enzymatic activity and low matching degree with the components of FW, leading to low efficiency with enzymatic hydrolysis and removal of antibiotic resistance genes (ARGs). This study used FW as the substrate, under the co-culture system, produced a microbial consortium-based compound enzymes (MCE) with oriented and well-matching degree for FW hydrolysis and ARGs removal, of which the performance, metabolic pathways and microbial communities were also investigated in depth. Results showed that the best performance for ARGs was achieved by the MCE prepared by mixing 1:5 of Aspergillus oryzae and Aspergillus niger after 12 days fermentation. The highest soluble chemical oxygen demand (SCOD) concentration and ARGs removal could respectively reach 83.90 ± 1.67 g/L and 45.95% after MCE pretreatment. The analysis of metabolic pathways revealed that 1:5 MCE pretreatment strengthened the catalytic activity of carbohydrate-active enzymes, increased the abundances of genes involved in cellulose and starch degradation, polysaccharide synthesis, ATP binding cassette (ABC) transporters and global regulation, while decreased the abundances of genes involved in mating pair formation system, two-component regulatory systems and quorum sensing, thereby enhanced FW hydrolysis and restrained ARGs dissemination. Microbial community analysis further indicated that the 1:5 MCE pretreatment promoted growth, metabolism and richness of functional microbes, while inhibited the host microbes of ARGs. It is expected that this study can provide useful insights into understanding the fate of ARGs in food waste during MCE pretreatment process.

5.
Adv Sci (Weinh) ; : e2405750, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246128

RESUMO

Optical metasurfaces with pronounced spectral characteristics are promising for sensor applications. Currently, deep learning (DL) offers a rapid manner to design various metasurfaces. However, conventional DL models are usually assumed as black boxes, which is difficult to explain how a DL model learns physical features, and they usually predict optical responses of metasurfaces in a fuzzy way. This makes them incapable of capturing critical spectral features precisely, such as high quality (Q) resonances, and hinders their use in designing metasurface sensors. Here, a transformer-based explainable DL model named Metaformer for the high-intelligence design, which adopts a spectrum-splitting scheme to elevate 99% prediction accuracy through reducing 99% training parameters, is established. Based on the Metaformer, all-dielectric metasurfaces based on quasi-bound states in the continuum (Q-BIC) for high-performance metasensing are designed, and fabrication experiments are guided potently. The explainable learning relies on spectral position encoding and multi-head attention of meta-optics features, which overwhelms traditional black-box models dramatically. The meta-attention mechanism provides deep physics insights on metasurface sensors, and will inspire more powerful DL design applications on other optical devices.

6.
Angew Chem Int Ed Engl ; : e202415997, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305188

RESUMO

The pressing demand for large-scale energy storage solutions has propelled the development of advanced battery technologies, among which zinc-ion batteries (ZIBs) are prominent due to their resource abundance, high capacity, and safety in aqueous environments. However, the use of manganese oxide cathodes in ZIBs is challenged by their poor electrical conductivity and structural stability, stemming from the intrinsic properties of MnO2 and the destabilizing effects of ion intercalation. To overcome these limitations, our research delves into atomic-level engineering, emphasizing quantum spin exchange interactions (QSEI). These essential for modifying electronic characteristics, can significantly influence material efficiency and functionality. We demonstrate through density functional theory (DFT) calculations that enhanced QSEI in manganese oxides broadens the O p band, narrows the bandgap, and improves both proton adsorption and electron transport. Empirical evidence is provided through the synthesis of Ru-MnO2 nanosheets, which display a marked increase in energy storage capacity, achieving 314.4 mAh g-1 at 0.2 A g-1 and maintaining high capacity after 2000 cycles. Our findings underscore the potential of QSEI to enhance the performance of TMO cathodes in ZIBs, pointing to new avenues for advancing battery technology.

7.
J Environ Manage ; 365: 121623, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943743

RESUMO

Microplastics (MPs) have been found in remote high-altitude areas, but the main source and migration process remained unclear. This work explored the characteristics and potential sources of MPs in the Yarlung Tsangpo River Basin. The average abundances of MPs in water, sediment, and soil samples were 728.26 ± 100.53 items/m3, 43.16 ± 5.82 items/kg, and 61.92 ± 4.29 items/kg, respectively, with polypropylene and polyethylene as the main polymers. The conditional fragmentation model revealed that the major source of MPs lower than 4000 m was human activities, while that of higher than 4500 m was atmospheric deposition. Community analysis was further conducted to explore the migration process and key points of MPs among different compartments in the basin. It was found that Lhasa (3600 m) and Shigatse (4100 m) were vital sources of MPs inputs in the midstream and downstream, respectively. This work would provide new insights into the fate of MPs in high-altitude areas.


Assuntos
Altitude , Monitoramento Ambiental , Microplásticos , Rios , Rios/química , Microplásticos/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/análise
8.
J Environ Manage ; 365: 121614, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943750

RESUMO

Low methane production and long retention time are the main dilemmas in current anaerobic digestion (AD) of waste activated sludge (WAS). This work used WAS as only substrate to prepare oriented multi-enzyme (ME) that directly used for WAS pretreatment. Under the optimal parameters, the highest activities of protease and amylase in ME could respectively reach 16.5 U/g and 580 U/g, and the corresponding methane production attained 197 mLCH4/g VS, which was increased by 70.4% compared to blank group. It was found that ME pretreatment could strengthen WAS disintegration and organic matters dissolution, lead to the soluble chemical oxygen demand (SCOD) was increased from the initial 486 mg/L to 2583 mg/L, and the corresponding volatile suspended solid (VSS) and extracellular polymeric substances (EPS) were reduced by 27% and 73.8%, respectively. The results of three-dimensional excitation-emission matrix (3D-EEM) and Fourier transform infrared spectroscopy (FTIR) indicated that protein disintegration may be the critical step during the process of WAS hydrolysis with ME, of which the release of tyrosine-like proteins achieved the better biodegradability of WAS, while the results of X-ray photoelectron spectroscopy (XPS) showed that the formation of protein derivatives was the main harmful factor that could extend the lag phase of AD process. Microbial communities analysis further suggested that ME pretreatment facilitated the enrichment of acetogenic bacteria and acetotrophic methanogens, which caused the transition of the methanogenesis pathway from hydrogenotrophic to acetotrophic. This study is expected to furnish valuable insight for ME pretreatment on enhancing WAS disintegration and methane production.


Assuntos
Biodegradação Ambiental , Metano , Esgotos , Anaerobiose , Metano/metabolismo , Análise da Demanda Biológica de Oxigênio , Eliminação de Resíduos Líquidos/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Reatores Biológicos
9.
ACS Appl Mater Interfaces ; 16(27): 35074-35083, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38919051

RESUMO

The electrocatalytic conversion of formate in alkaline solutions is of paramount significance in the realm of fuel cell applications. Nonetheless, the adsorptive affinity of adsorbed hydrogen (Had) on the catalyst surface has traditionally impeded the catalytic efficiency of formate in such alkaline environments. To circumvent this challenge, our approach introduces an interfacial push-pull effect on the catalyst surface. This mechanism involves two primary actions: First, the anchoring of palladium (Pd) nanoparticles on a phosphorus-doped TiO2 substrate (Pd/TiO2-P) promotes the formation of electron-rich Pd with a downshifted d band center, thereby "pushing" the desorption of Had from the Pd active sites. Second, the TiO2-P support diminishes the energy barrier for Had transfer from the Pd sites to the support itself, "pulling" Had to effectively relocate from the Pd active sites to the support. The resultant Pd/TiO2-P catalyst showcases a remarkable mass activity of 4.38 A mgPd-1 and outperforms the Pd/TiO2 catalyst (2.39 A mgPd-1) by a factor of 1.83. This advancement not only surmounts a critical barrier in catalysis but also delineates a scalable pathway to bolster the efficacy of Pd-based catalysts in alkaline media.

10.
ESC Heart Fail ; 11(5): 3264-3278, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38937863

RESUMO

AIMS: This study aimed to analyse the global prevalence and disability trends of heart failure (HF) from 1990 to 2019, considering both sexes and country-specific economic strata. METHODS: This study conducted a secondary analysis employing data from the Global Burden of Disease (GBD) study. The analysis is stratified by sex and Socio-demographic Index (SDI) levels. Through age-period-cohort and Joinpoint regression analyses, we investigated the temporal trends in HF prevalence and years lived with disability (YLDs) during this period. RESULTS: Between 1990 and 2019, the global prevalence of HF surged by 106.3% (95% uncertainty interval: 99.3% to 114.3%), reaching 56.2 million cases in 2019. While all-age prevalence and YLDs increased over the 30 year span, age-standardized rates decreased by 2019. Countries with higher SDI experienced a more pronounced percentage decrease compared with those with lower SDI. Longitudinal analysis revealed an overall improvement in both prevalence and YLDs for HF, albeit with notable disparities between SDI quintiles and sexes. Ischaemic heart disease and hypertensive heart disease emerged as the most rapidly increasing and primarily contributing causes of HF, albeit with variations observed across different countries. The average annual percentage change for prevalence and YLDs over the period was -0.26% and -0.25%, respectively. CONCLUSIONS: This study offers valuable insights into the global burden of HF, considering factors such as population aging, regional disparities, sex differences and aetiological variations. The findings hold significant implications for healthcare planning and resource allocation. Continued assessment of these trends and innovative strategies for HF prevention and management are crucial for addressing this pressing global health concern.


Assuntos
Carga Global da Doença , Saúde Global , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/epidemiologia , Feminino , Masculino , Carga Global da Doença/tendências , Prevalência , Idoso , Pessoa de Meia-Idade , Adulto , Idoso de 80 Anos ou mais , Seguimentos , Estudos Retrospectivos , Distribuição por Idade
11.
Angew Chem Int Ed Engl ; 63(35): e202408414, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-38850273

RESUMO

Transition metal oxides (TMOs) are promising cathode materials for aqueous zinc ion batteries (ZIBs), however, their performance is hindered by a substantial Hubbard gap, which limits electron transfer and battery cyclability. Addressing this, we introduce a heteroatom coordination approach, using triethanolamine to induce axial N coordination on Mn centers in MnO2, yielding N-coordinated MnO2 (TEAMO). This approach leverages the change of electronegativity disparity between Mn and ligands (O and N) to disrupt spin symmetry and augment spin polarization. This enhancement leads to the closure of the Hubbard gap, primarily driven by the intensified occupancy of the Mn eg orbitals. The resultant TEAMO exhibit a significant increase in storage capacity, reaching 351 mAh g-1 at 0.1 A g-1. Our findings suggest a viable strategy for optimizing the electronic structure of TMO cathodes, enhancing the potential of ZIBs in energy storage technology.

12.
Inorg Chem ; 63(17): 7886-7895, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38621298

RESUMO

In the quest for proficient electrocatalysts for ammonia's electrocatalytic nitrogen reduction, cobalt oxides, endowed with a rich d-electron reservoir, have emerged as frontrunners. Despite the previously evidenced prowess of CoO in this realm, its ammonia yield witnesses a pronounced decline as the reaction unfolds, a phenomenon linked to the electron attrition from its Co2+ active sites during electrocatalytic nitrogen reduction reaction (ENRR). To counteract this vulnerability, we harnessed electron-laden phosphorus (P) elements as dopants, aiming to recalibrate the electronic equilibrium of the pivotal Co active site, thereby bolstering both its catalytic performance and stability. Our empirical endeavors showcased the doped P-CoO's superior credentials: it delivered an impressive ammonia yield of 49.6 and, notably, a Faradaic efficiency (FE) of 9.6% at -0.2 V versus RHE, markedly eclipsing its undoped counterpart. Probing deeper, a suite of ex-situ techniques, complemented by rigorous theoretical evaluations, was deployed. This dual-pronged analysis unequivocally revealed CoO's propensity for an electron-driven valence metamorphosis to Co3+ post-ENRR. In stark contrast, P-CoO, fortified by P doping, exhibits a discernibly augmented ammonia yield. Crucially, P's intrinsic ability to staunch electron leakage from the active locus during ENRR ensures the preservation of the valence state, culminating in enhanced catalytic dynamism and fortitude. This investigation not only illuminates the intricacies of active site electronic modulation in ENRR but also charts a navigational beacon for further enhancements in this domain.

13.
Nano Lett ; 24(17): 5197-5205, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634879

RESUMO

Highly active nonprecious-metal single-atom catalysts (SACs) toward catalytic transfer hydrogenation (CTH) of α,ß-unsaturated aldehydes are of great significance but still are deficient. Herein, we report that Zn-N-C SACs containing Zn-N3 moieties can catalyze the conversion of cinnamaldehyde to cinnamyl alcohol with a conversion of 95.5% and selectivity of 95.4% under a mild temperature and atmospheric pressure, which is the first case of Zn-species-based heterogeneous catalysts for the CTH reaction. Isotopic labeling, in situ FT-IR spectroscopy, and DFT calculations indicate that reactants, coabsorbed at the Zn sites, proceed CTH via a "Meerwein-Ponndorf-Verley" mechanism. DFT calculations also reveal that the high activity over Zn-N3 moieties stems from the suitable adsorption energy and favorable reaction energy of the rate-determining step at the Zn active sites. Our findings demonstrate that Zn-N-C SACs hold extraordinary activity toward CTH reactions and thus provide a promising approach to explore the advanced SACs for high-value-added chemicals.

14.
Angew Chem Int Ed Engl ; 63(23): e202404834, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38588076

RESUMO

Transition metal oxides (TMOs) are key in electrochemical energy storage, offering cost-effectiveness and a broad potential window. However, their full potential is limited by poor understanding of their slow reaction kinetics and stability issues. This study diverges from conventional complex nano-structuring, concentrating instead on spin-related charge transfer and orbital interactions to enhance the reaction dynamics and stability of TMOs during energy storage processes. We successfully reconfigured the orbital degeneracy and spin-dependent electronic occupancy by disrupting the symmetry of magnetic cobalt (Co) sites through straightforward strain stimuli. The key to this approach lies in the unfilled Co 3d shell, which serves as a spin-dependent regulator for carrier transfer and orbital interactions within the reaction. We observed that the opening of these 'spin gates' occurs during a transition from a symmetric low-spin state to an asymmetric high-spin state, resulting in enhanced reaction kinetics and maintained structural stability. Specifically, the spin-rearranged Al-Co3O4 exhibited a specific capacitance of 1371 F g-1, which is 38 % higher than that of unaltered Co3O4. These results not only shed light on the spin effects in magnetic TMOs but also establish a new paradigm for designing electrochemical energy storage materials with improved efficiency.

15.
Cell ; 187(11): 2746-2766.e25, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38631355

RESUMO

Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.


Assuntos
Fatores de Transcrição , Animais , Humanos , Camundongos , Regulação da Expressão Gênica , Mutação , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular
16.
Exp Clin Endocrinol Diabetes ; 132(8): 420-430, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38569512

RESUMO

INTRODUCTION: Cognitive dysfunction is an important comorbidity of diabetes. Insulin resistance may play a critical role in diabetes-related cognitive impairment. Echinacoside (ECH), a natural phenylethanoid glycoside, is the active component of anti-diabetes prescriptions in traditional Chinese medicine. Its effect on modulating insulin resistance has been confirmed but modulating neurodegenerative disease remains unclear. METHODS: Db/db mice, a spontaneous type 2 diabetes mode, were intragastrically administered ECH by 300 mg/kg or an equivalent volume of saline. Weight, blood glucose, and insulin resistance index were measured. Morris water maze test was performed to observe the compound effects on cognition. Hippocampal lesions were observed by histochemical analysis. RESULTS: In db/db mice, ECH alleviated diabetes symptoms, memory loss, and hippocampal neuronal damage. Next, the expression of CD44 and phosphorylated tau was upregulated in diabetic mice. In addition, the insulin receptor substrate-1/phosphatidylinositol 3-kinase /protein kinase B signaling pathway was dysregulated in diabetic mice. All these dysregulations could be reversed by ECH. DISCUSSION: This study provides theoretical support and experimental evidence for the future application of ECH in diabetic cognition dysfunction treatment, promoting the development of traditional medicines.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Glicosídeos , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Glicosídeos/farmacologia , Glicosídeos/administração & dosagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/tratamento farmacológico , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Resistência à Insulina
17.
J Phys Chem Lett ; 15(12): 3354-3362, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38498427

RESUMO

This study addresses the critical challenge in alkaline direct formate fuel cells (DFFCs) of slow formate oxidation reaction (FOR) kinetics as a result of strong hydrogen intermediate (Had) adsorption on Pd catalysts. We developed WO3-supported Pd nanoparticles (EG-Pd/WO3) via an organic reduction method using ethylene glycol (EG), aiming to modulate the d-band center of Pd and alter Had adsorption dynamics. Cyclic voltammetry demonstrated significantly improved Had desorption kinetics in EG-Pd/WO3 catalysts. Density functional theory (DFT) calculations revealed that the presence of EG reduces the d-band center of Pd, leading to weaker Pd-H bonds and enhanced Had desorption during the FOR. This research provides a new approach to optimize catalyst efficiency in DFFCs, highlighting the potential for more effective and sustainable energy solutions through advanced material engineering.

18.
Small ; 20(30): e2307482, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38412428

RESUMO

Manganese-based oxides (MnOx) suffer from sluggish charge diffusion kinetics and poor cycling stability in sodium ion storage. Herein, an interfacial electric field (IEF) in CeO2/MnOx is constructed to obtain high electronic/ionic conductivity and structural stability of MnOx. The as-designed CeO2/MnOx exhibits a remarkable capacity of 397 F g-1 and favorable cyclic stability with 92.13% capacity retention after 10,000 cycles. Soft X-ray absorption spectroscopy and partial density of states results reveal that the electrons are substantially injected into the Mn t2g orbitals driven by the formed IEF. Correspondingly, the MnO6 units in MnOx are effectively activated, endowing the CeO2/MnOx with fast charge transfer kinetics and high sodium ion storage capacity. Moreover, In situRaman verifies a remarkably increased structural stability of CeO2/MnOx, which is attributed to the enhanced Mn─O bond strength and efficiently stabilized MnO6 units. Mechanism studies show that the downshift of Mn 3d-band center dramatically increases the Mn 3d-O 2p orbitals overlap, thus inhibiting the Jahn-Teller (J-T) distortion of MnOx during sodium ion insertion/extraction. This work develops an advanced strategy to achieve both fast and sustainable sodium ion storage in metal oxides-based energy materials.

19.
ACS Appl Mater Interfaces ; 16(7): 8742-8750, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340053

RESUMO

Direct formate fuel cells have gained traction due to their eco-friendly credentials and inherent safety. However, their potential is hampered by the kinetic challenges of the formate oxidation reaction (FOR) on Pd-based catalysts, chiefly due to the unfavorable adsorption of hydrogen species (Had). These species clog the active sites, hindering efficient catalysis. Here, we introduce a straightforward strategy to remedy this bottleneck by incorporating Pd with Cu to expedite the removal of Pd-Had in alkaline media. Notably, Cu plays a pivotal role in bolstering the concentration of hydroxyl adsorbates (OHad) on the surface of catalyst. These OHad species can react with Had, effectively unblocking the active sites for FOR. The as-synthesized catalyst of PdCu/C exhibits a superior FOR performance, boasting a remarkable mass activity of 3.62 A mg-1. Through CO-stripping voltammetry, we discern that the presence of Cu in Pd markedly speeds up the formation of adsorbed hydroxyl species (OHad) at diminished potentials. This, in turn, aids the oxidative removal of Pd-Had, leveraging a synergistic mechanism during FOR. Density functional theory computations further reveal intensified interactions between adsorbed oxygen species and intermediates, underscoring that the Cu-Pd interface exhibits greater oxyphilicity compared to pristine Pd. In this study, we present both experimental and theoretical corroborations, unequivocally highlighting that the integrated copper species markedly amplify the generation of OHad, ensuring efficient removal of Had. This work paves the way, shedding light on the strategic design of high-performing FOR catalysts.

20.
Small ; 20(27): e2311124, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38258393

RESUMO

The electrochemical nitrogen oxidation reaction (NOR) holds significant potential to revolutionize the traditional nitrate synthesis processes. However, the progression in NOR has been notably stymied due to the sluggish kinetics of initial N2 adsorption and activation processes. Herein, the research embarks on the development of a CeO2-Co3O4 heterostructure, strategically engineered to facilitate the electron transfer from CeO2 to Co3O4. This orchestrated transfer operates to amplify the d-band center of the Co active sites, thereby enhancing N2 adsorption and activation dynamics by strengthening the Co─N bond and diminishing the resilience of the N≡N bond. The synthesized CeO2-Co3O4 manifests promising prospects, showcasing a significant HNO3 yield of 37.96 µg h-1 mgcat -1 and an elevated Faradaic efficiency (FE) of 29.30% in a 0.1 m Na2SO4 solution at 1.81 V versus RHE. Further substantiating these findings, an array of in situ methodologies coupled with DFT calculations vividly illustrate the augmented adsorption and activation of N2 on the surface of CeO2-Co3O4 heterostructure, resulting in a substantial reduction in the energy barrier pertinent to the rate-determining step within the NOR pathway. This research carves a promising pathway to amplify N2 adsorption throughout the electrochemical NOR operations and delineates a blueprint for crafting highly efficient NOR electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...