Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 488: 153483, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870411

RESUMO

Occupational exposure to aromatic amines is one of the most important risk factors for urinary bladder cancer. When considering the carcinogenesis of aromatic amines, metabolism of aromatic amines in the liver is an important factor. In the present study, we administered ortho-toluidine (OTD) in the diet to mice for 4 weeks. We used NOG-TKm30 mice (control) and humanized-liver mice, established via human hepatocyte transplantation, to compare differences in OTD-induced expression of metabolic enzymes in human and mouse liver cells. We also investigated OTD-urinary metabolites and proliferative effects on the urinary bladder epithelium. RNA and immunohistochemical analyses revealed that expression of N-acetyltransferases mRNA in the liver tended to be lower than that of the P450 enzymes, and that OTD administration had little effect on N-acetyltransferase mRNA expression levels. However, expression of CYP3A4 was increased in the livers of humanized-liver mice, and expression of Cyp2c29 (human CYP2C9/19) was increased in the livers of NOG-TKm30 mice. OTD metabolites in the urine and cell proliferation activities in the bladder urothelium of NOG-TKm30 and humanized-liver mice were similar. However, the concentration of OTD in the urine of NOG-TKm30 mice was markedly higher than in the urine of humanized-liver mice. These data demonstrate differences in hepatic metabolic enzyme expression induced by OTD in human and mouse liver cells, and consequent differences in the metabolism of OTD by human and mouse liver cells. This type of difference could have a profound impact on the carcinogenicity of compounds that are metabolized by the liver, and consequently, would be important in the extrapolation of data from animals to humans.


Assuntos
Neoplasias da Bexiga Urinária , Bexiga Urinária , Camundongos , Humanos , Animais , Toluidinas/toxicidade , Fígado , Neoplasias da Bexiga Urinária/induzido quimicamente
2.
Sangyo Eiseigaku Zasshi ; 65(3): 125-133, 2023 May 25.
Artigo em Japonês | MEDLINE | ID: mdl-35831134

RESUMO

OBJECTIVES: Crystalline silica, which is a causative agent of silicosis (an occupational disease), is manufactured in a variety of products (particles) with different particle characteristics, such as size and surface properties. In Japan, the products are currently uniformly controlled as crystalline silica, which is a substance subject to labeling and notification requirements. However, since the toxicity of silica particles reportedly varies depending on its characteristics, businesses are encouraged to conduct appropriate risk assessments for each product to prevent silicosis. Recently, silica particles have been reported to induce lysosomal membrane damage, leading to the activation of proinflammatory factors. An indirect method to evaluate lysosomal membrane damage known as the erythrocyte hemolysis assay, in which the erythrocyte membrane is assumed to be the lysosomal membrane, was performed. This study aimed to examine the possibility of constructing a screening system for proinflammatory potential prediction of silica particles based on their erythrocyte hemolytic activity. METHODS: Hemolysis assays were performed on the silica particles with different sizes, crystallinity, and surface functional groups using the erythrocytes from a healthy volunteer. Additionally, the hemolytic activity of other element particles was compared with that of the silica particles, and 27 types of commercially available crystalline silica particle products underwent screening trials. RESULTS: The hemolytic activity of silica particles was higher in crystalline than that in amorphous and increased with the decreasing size. The hemolytic reaction was particular to silica particles and rarely occurred in particles of other elements. Moreover, the hemolytic activity was significantly suppressed if the silica particles surface was modified with metal ions (Fe3+, Al3+). The hemolytic activities of the crystalline silica products used industrially significantly differed. CONCLUSIONS: This study revealed that particle properties, such as size, crystallinity, and surface functional groups, affect the hemolytic activity of silica particles. Particularly, the surface functional groups (silanol groups) that are unique to silica particles were considered to be strongly involved in hemolytic activities. Since grading the commercially available crystalline silica particle products based on the hemolytic rate was possible, hemolytic activity was suggested to be an evaluation index for predicting the proinflammatory potential of silica particles.


Assuntos
Dióxido de Silício , Silicose , Humanos , Dióxido de Silício/toxicidade , Dióxido de Silício/química , Hemólise , Membrana Eritrocítica , Eritrócitos , Tamanho da Partícula
3.
Arch Toxicol ; 96(10): 2785-2797, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35763063

RESUMO

Occupational exposure to trichloroethylene (TCE) causes a systemic skin disorder with hepatitis known as TCE hypersensitivity syndrome (TCE-HS). Human Leukocyte Antigen (HLA)-B*13:01 is its susceptibility factor; however, the immunological pathogenesis of TCE-HS remains unknown. We herein examined the hypothesis that autoantibodies to CYP2E1 are primarily involved in TCE-HS. A case-control study of 80 TCE-HS patients, 186 TCE-tolerant controls (TCE-TC), and 71 TCE-nonexposed controls (TCE-nonEC) was conducted to measure their serum anti-CYP2E1 antibody (IgG) levels. The effects of TCE exposure indices, such as 8-h time-weighted-average (TWA) airborne concentrations, urinary metabolite concentrations, and TCE usage duration; sex; smoking and drinking habits; and alanine aminotransferase (ALT) levels on the antibody levels were also analyzed in the two control groups. There were significant differences in anti-CYP2E1 antibody levels among the three groups: TCE-TC > TCE-HS patients > TCE-nonEC. Antibody levels were not different between HLA-B*13:01 carriers and noncarriers in TCE-HS patients and TCE-TC. The serum CYP2E1 measurement suggested increased immunocomplex levels only in patients with TCE-HS. Multiple regression analysis for the two control groups showed that the antibody levels were significantly higher by the TCE exposure. Women had higher antibody levels than men; however, smoking, drinking, and ALT levels did not affect the anti-CYP2E1 antibody levels. Anti-CYP2E1 antibodies were elevated at concentrations lower than the TWA concentration of 2.5 ppm for TCE exposure. Since HLA-B*13:01 polymorphism was not involved in the autoantibody levels, the possible mechanism underlying the pathogenesis of TCE-HS is that TCE exposure induces anti-CYP2E1 autoantibody production, and HLA-B*13:01 is involved in the development of TCE-HS.


Assuntos
Citocromo P-450 CYP2E1 , Síndrome de Hipersensibilidade a Medicamentos , Exposição Ocupacional , Tricloroetileno , Autoanticorpos/sangue , Autoanticorpos/genética , Autoanticorpos/imunologia , Estudos de Casos e Controles , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Citocromo P-450 CYP2E1/sangue , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/imunologia , Síndrome de Hipersensibilidade a Medicamentos/sangue , Síndrome de Hipersensibilidade a Medicamentos/etiologia , Síndrome de Hipersensibilidade a Medicamentos/imunologia , Feminino , Antígenos HLA-B/sangue , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Hepatite Autoimune/sangue , Hepatite Autoimune/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Masculino , Exposição Ocupacional/efeitos adversos , Polimorfismo Genético , Tricloroetileno/imunologia , Tricloroetileno/toxicidade
4.
Environ Res ; 191: 109972, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32758551

RESUMO

Occupational trichloroethylene (TCE) exposure can cause hypersensitivity syndrome (TCE-HS). The human leukocyte antigen (HLA)-B*13:01 is reportedly an important allele involved in TCE-HS onset. However, the threshold exposure level causing TCE-HS in relation to HLA-B*13:01 remains unknown. We conducted a case-control study comprising 37 TCE-HS patients and 97 age- and sex-matched TCE-tolerant controls from the Han Chinese population. Urine and blood of patients were collected on the first day of hospitalization, and those of controls were collected at the end of their shifts. Urinary trichloroacetic acid (TCA) was measured as an exposure marker, and end-of-shift levels in the patients were estimated using the biological half-life of 83.7 h. HLA-B genotype was identified using DNA from blood. Crude odds ratios (ORs) for TCE-HS in the groups with urinary TCA concentration >15 mg/L to ≤50 mg/L and of >50 mg/L were 21.9 [95% confidence interval (CI) 4.2-114.1] and 27.6 (6.1-125.8), respectively, when the group with urinary TCA ≤15 mg/L was used as a reference. The frequency of HLA-B*13:01, the most common allele in the patients, was 62.2% (23/37), which was significantly higher than 17.5% (17/97) in the TCE-tolerant controls, with a crude OR of 8.4 (3.1-22.6). The mutually-adjusted ORs for urinary TCA >15 to ≤50 mg/L, >50 mg/L, and for HLA-B*13:01 were 33.4 (4.1-270.8), 34.0 (5.3-217.1), and 11.0 (2.4-50.7), respectively. In conclusion, reduction of TCE exposure to ≤15 mg/L is required for TCE-HS prevention because urinary TCA concentration >15 mg/L showed increased risk of TCE-HS, regardless of whether the patients had the HLA-B*13:01 allele.


Assuntos
Exposição Ocupacional , Tricloroetileno , Alelos , Estudos de Casos e Controles , Antígenos HLA-B/genética , Humanos , Exposição Ocupacional/efeitos adversos , Ácido Tricloroacético , Tricloroetileno/análise , Tricloroetileno/toxicidade
6.
Genes Environ ; 42: 7, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32071618

RESUMO

BACKGOUND: A variety of in vivo and in vitro studies to assess the genotoxicity of titanium dioxide nanoparticles (TiO2 NPs) have been reported, but the results are inconsistent. Recently, we reported that TiO2 NPs exhibit no genotoxic effects in the liver and erythrocytes during a relatively brief period following intravenous injection into mice. However, there is no information about long-term genotoxicity due to TiO2 NP accumulation in tissues. In this study, we investigated the long-term mutagenic effects of TiO2 NPs and the localization of residual TiO2 NPs in mouse liver after multiple intravenous injections. RESULTS: Male gpt delta C57BL/6 J mice were administered with various doses of TiO2 NPs weekly for 4 consecutive weeks. The long-term mutagenic effects on the liver were analyzed using gpt and Spi- mutation assays 90 days after the final injection. We also quantified the amount of titanium in the liver using inductively coupled plasma mass spectrometry and observed the localization of TiO2 NPs in the liver using transmission electron microscopy. Although TiO2 NPs were found in the liver cells, the gpt and Spi- mutation frequencies in the liver were not significantly increased by the TiO2 NP administration. CONCLUSIONS: These results clearly show that TiO2 NPs have no mutagenic effects on the liver, even though the particles remain in the liver long-term.

7.
J Appl Toxicol ; 40(7): 979-990, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32059264

RESUMO

Owing to the use of ethyl tert-butyl ether (ETBE) as a fuel additive, the possible adverse effects of ETBE exposure have become a public concern. Our previous study showed that ETBE-induced toxicity in aldehyde dehydrogenase 2 (Aldh2) gene knockout (KO) mice was caused by its primary metabolite acetaldehyde, which was toxic. However, it is unclear whether tert-butyl alcohol (TBA), another main metabolite of ETBE, plays a role in ETBE-induced toxicity. To investigate this relationship, we analyzed the changes of TBA concentrations in tissues after ETBE exposure, and then evaluated the toxicity after direct TBA treatment in both KO and wild-type (WT) mice. An exposure to 500 ppm ETBE via inhalation resulted in the formation of its three metabolites, TBA, 2-methyl-1,2-propanediol and ethanol, whose concentrations in the liver, brain, fat and testis of male KO mice were significantly higher than the corresponding concentrations observed in male WT mice. Direct treatment to TBA (20 mg/mL of drinking water) caused significant changes in relative organ weights and histopathology, and increased levels of genetic damages in both types of mice. These toxic effects were also seen in KO mice exposed to a lower concentration of TBA (5 mg/mL), which was associated with increased oxidative stress in serum (reduced glutathione and reduced glutathione/oxidized glutathione ratio decreased). Our findings indicate that ALDH2 is involved in the metabolism of ETBE and TBA, and ALDH2 deficiency could greatly increase the sensitivity to TBA-induced toxicity.


Assuntos
Aldeído-Desidrogenase Mitocondrial/deficiência , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Deficiências Nutricionais/fisiopatologia , Camundongos Knockout/genética , terc-Butil Álcool/toxicidade , Animais , Variação Genética , Genótipo , Exposição por Inalação , Masculino , Camundongos , Modelos Animais , Testes de Toxicidade
8.
Arch Toxicol ; 93(12): 3617-3631, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31673724

RESUMO

Recent epidemiological studies have indicated that occupational exposure to the aromatic amine acetoaceto-o-toluidide (AAOT) was associated with a marked increase in urinary bladder cancers in Japan. However, little is known about the carcinogenicity of AAOT. To evaluate the urinary bladder carcinogenicity of AAOT, male and female F344 rats were treated with N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) for 4 weeks followed by dietary administration of 0, 0.167, 0.5, or 1.5% AAOT for 31 weeks. The incidences and multiplicities of bladder tumors were significantly increased in the 0.5 and 1.5% groups of male and female rats in a dose-response manner. AAOT and seven downstream metabolites were detected in the urine of the male and female rats administered AAOT with levels increasing in a dose-dependent manner. The most abundant urinary metabolite of AAOT was the human bladder carcinogen o-toluidine (OTD), which was at least one order of magnitude higher than AAOT and the other AAOT metabolites. In a second experiment, male F344 rats were administered 0, 0.167, or 1.5% AAOT for 4 weeks. Gene expression analyses revealed that the expression of JUN and its downstream target genes was increased in the urothelium of male rats treated with 1.5% AAOT. These results demonstrate that AAOT promotes BBN-induced urinary bladder carcinogenesis in rats and suggest that overexpressed of JUN and its downstream target genes may be involved the bladder carcinogenicity of AAOT. In conclusion, AAOT, like other carcinogenic aromatic amines, is likely to be a carcinogen to the urinary bladder, and OTD metabolized from AAOT is the ultimate carcinogen.


Assuntos
Butilidroxibutilnitrosamina/toxicidade , Carcinógenos/toxicidade , Toluidinas/toxicidade , Neoplasias da Bexiga Urinária/induzido quimicamente , Animais , Testes de Carcinogenicidade , Carcinógenos/administração & dosagem , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia
9.
J Appl Toxicol ; 39(2): 260-270, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30240022

RESUMO

1,2-Dichloropropane (1,2-DCP) is used as an industrial solvent, insecticide fumigant and household dry cleaning product. Carcinogenicity caused by long-term exposure to 1,2-DCP is well established. However, the possible liver damage and related toxic mechanisms associated with acute inhalation exposure to 1,2-DCP are rarely reported. In this study, we investigated the effects of individual and combined exposure to 1,2-DCP and dichloromethane (DCM) on mice liver. The results showed that 1,2-DCP significantly caused liver necrosis, possibly due to 1,2-DCP-induced inhibition of the mitochondrial respiratory chain complex I-IV activities, resulting in mitochondrial dysfunction and extreme ATP consumption. Moreover, 1,2-DCP also decreased mitochondrial defense ability by inhibiting the mitochondrial glutathione S-transferase 1 (MGST1) activity, further aggravating liver damage. Additionally, we found that DCM co-exposure potentially enhanced 1,2-DCP toxicity. Our findings suggest that inhibition of mitochondrial function and MGST1 activity play critical roles in modulating 1,2-DCP-induced liver damage. Furthermore, our results contribute to study the new mechanism of mitochondria-dominated signaling pathways underlying liver injury induced by 1,2-DCP and DCM.


Assuntos
Exposição por Inalação/efeitos adversos , Fígado/efeitos dos fármacos , Cloreto de Metileno/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Propano/análogos & derivados , Animais , Sinergismo Farmacológico , Glutationa Transferase/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Mitocôndrias Hepáticas/enzimologia , Propano/toxicidade , Testes de Toxicidade Aguda
10.
Environ Mol Mutagen ; 60(2): 145-153, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30474146

RESUMO

Previous experiments showed that high concentrations of ethyl tertiary butyl ether (ETBE) exposure (500-5,000 ppm) significantly resulted in DNA damages in aldehyde dehydrogenase 2 (Aldh2) knockout (KO) mice. This study was aimed to verify the genotoxic effects in three genetic types, Aldh2 KO, heterogeneous (HT), and wild type (WT), of mice exposed to lower concentrations of ETBE (50-500 ppm) by inhalation. Histopathology assessments in the livers, measurements of genotoxic biomarkers in blood and livers, and urinary 8-hydroxydeoxyguanosion (8-OH-dG) for the oxidative DNA damage of whole body were performed. Significant histopathological changes and DNA strand breaks both in hepatocytes and leukocytes were found in HT and KO male mice exposed to ≥200 ppm ETBE, but not in 50 ppm ETBE. 8-OH-dG levels either in liver or urine were higher in the HT and KO male mice exposed to ≥200 ppm ETBE. The pathological and genetic effects of ETBE were almost at the same extents for HT and KO mice. Thus, 50 ppm could be the no observed adverse effect level for ETBE in HT and KO male mice, which was far lower than the 500 ppm in WT mice. These results suggested that decrease and deficiency of ALDH2 activity would significantly increase the sensitivity to ETBE-induced genotoxicity as well as hepatotoxic effects after exposure even to low concentrations of ETBE. Environ. Mol. Mutagen. 60: 145-153, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Aldeído-Desidrogenase Mitocondrial/genética , Dano ao DNA/efeitos dos fármacos , Etil-Éteres/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Animais , Dano ao DNA/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/sangue , Desoxiguanosina/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Exposição por Inalação , Fígado/efeitos dos fármacos , Camundongos , Camundongos Knockout
11.
Arch Toxicol ; 92(10): 3093-3101, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30132044

RESUMO

The Japanese Ministry of Health, Labour, and Welfare recently reported an outbreak of bladder cancer among workers who handled aromatic amines in Japan. 2,4-dimethylaniline (2,4-DMA) is one of the chemicals that workers are considered to have the most opportunities to be exposed. Genotoxic events are known to be crucial steps in the initiation of cancer. However, studies on the genotoxicity of 2,4-DMA are limited, particularly studies investigating the mechanism behind the genotoxicity by 2,4-DMA are completely lacking. We examined genotoxic properties of 2,4-DMA using phosphorylated histone H2AX (γ-H2AX), a sensitive and reliable marker of DNA damage, in cultured human urothelial and hepatic cells. Our results clearly showed that 2,4-DMA at a concentration range of 1-10 mM generates γ-H2AX in both cell lines, indicating that 2,4-DMA is genotoxic. During mechanistic investigation, we found that 2,4-DMA boosts intracellular reactive oxygen species, an effect clearly attenuated by disulfiram, a strong inhibitor of cytochrome P450 2E1 (CYP2E1). In addition, CYP2E1 inhibitors and the antioxidant, N-acetylcysteine, also attenuated γ-H2AX generation following exposure to 2,4-DMA. Collectively, these results suggest that γ-H2AX is formed following exposure to 2,4-DMA via reactive oxygen species produced by CYP2E1-mediated metabolism. Continuous exposure to genotoxic aromatic amines such as 2,4-DMA over a long period of time may have contributed to the development of bladder cancer. Our results provide important insights into the carcinogenicity risk of 2,4-DMA in occupational bladder cancer outbreaks at chemical plants in Japan.


Assuntos
Compostos de Anilina/toxicidade , Família 2 do Citocromo P450/metabolismo , Hepatócitos/efeitos dos fármacos , Histonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Inibidores do Citocromo P-450 CYP2E1/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Ureter/citologia
12.
J Appl Toxicol ; 38(9): 1224-1232, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29722447

RESUMO

Trichloroethylene (TCE), a chlorinated hydrocarbon, was recently reclassified as a human carcinogen by the International Agency for Research on Cancer. Genotoxic events are known to be crucial steps in the initiation of cancer. The genotoxic properties of TCE have been examined in many studies using a standard battery of genotoxicity tests both in vitro and in vivo. However, consistent results have not been obtained, and studies investigating the mechanism behind the genotoxicity of this compound are lacking. In the present study, we examined the genotoxicity of TCE by assessing phosphorylated histone H2AX (γ-H2AX), a new sensitive and reliable marker of DNA damage, in WRL-68 cells, cultured human hepatocytes and mouse livers. Our results showed that TCE exposure results in the generation of γ-H2AX, both in vitro and in vivo. By investigating the in vitro mechanism, we found that TCE increases the levels of intracellular reactive oxygen species (ROS) and that this increase in ROS levels is attenuated in the presence of disulfiram, a specific cytochrome P450 2E1 (CYP2E1) inhibitor. Furthermore, γ-H2AX induced by TCE was also attenuated by CYP2E1 inhibitors and the antioxidant N-acetylcysteine. These results suggested that ROS, produced via cytochrome P450 2E1-mediated metabolic processing, is a major causal factor for γ-H2AX generation upon exposure to TCE.


Assuntos
Carcinógenos/toxicidade , Citocromo P-450 CYP2E1/metabolismo , Quebras de DNA de Cadeia Dupla , Hepatócitos/efeitos dos fármacos , Histonas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tricloroetileno/toxicidade , Animais , Antioxidantes/farmacologia , Linhagem Celular , Inibidores do Citocromo P-450 CYP2E1/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/patologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco
13.
Toxicol Lett ; 272: 60-67, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28300663

RESUMO

1,2-Dichloropropane (1,2-DCP), a synthetic chlorinated solvent, was recently classified as carcinogenic. Genotoxic events are known as a crucial step in the initiation of cancer. However, studies on the genotoxicity of 1,2-DCP are very limited, particularly studies investigating the mechanism behind DNA damage by 1,2-DCP. In this study, we examined the genotoxicity of 1,2-DCP using phosphorylated histone H2AX (γ-H2AX), a sensitive DNA damage marker. 1,2-DCP showed dose- (1-10mM: 4h) and time-dependent (1-24h: 5mM) γ-H2AX generation in cultured human hepatocytes (WRL-68) and cholangiocytes (MMNK-1). Additionally, γ-H2AX generation was observed in the livers of mice inhalationally exposed to 1,2-DCP at concentrations of 100, 200, and 400 ppm. During an in vitro mechanistic investigation, we found that γ-H2AX generation by 1,2-DCP was clearly attenuated in the presence of disulfiram and 4-methylpyrazole, a specific cytochrome P450 2E1 (CYP2E1) inhibitor. Furthermore, we showed that 1,2-DCP increased the levels of intracellular reactive oxygen species (ROS), with the increase significantly inhibited by CYP2E1 inhibitors. These results suggested that ROS produced via the cytochrome P450 2E1 metabolic process of 1,2-DCP was a major causal factor for γ-H2AX generation by treatment with 1,2-DCP.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Histonas/biossíntese , Mutagênicos/toxicidade , Propano/análogos & derivados , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Inibidores do Citocromo P-450 CYP2E1/farmacologia , Dano ao DNA , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Exposição por Inalação , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosforilação , Propano/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
14.
Artigo em Inglês | MEDLINE | ID: mdl-27169374

RESUMO

Titanium dioxide (TiO2) nanoparticles are increasingly manufactured in large amounts for use in industrial applications such as cosmetics, pigments, foods, and as photo-catalysts. Many in vitro studies have examined the genotoxicity of TiO2 nanomaterials; some of these studies suggest that TiO2 nanoparticles (NPs) are genotoxic. Several in vivo studies have also been reported recently, but the results are inconsistent. In this study, we investigated, using several genotoxicity endpoints, the effects of dispersed TiO2 suspensions following multiple intravenous injections in mice. Male gpt Delta C57BL/6J mice were administered TiO2 NPs at doses of 2, 10 or 50mg/kg body weight per week for 4 consecutive weeks. Genotoxic effects were then analyzed by the Pig-a gene mutation assay and the micronucleus assay on peripheral blood, and by the alkaline comet, gpt mutation, and Spi(-) mutation assays on the liver. We also assessed the localization of TiO2 NPs in the liver, by transmission electron microscopy. Administration of TiO2 NPs did not significantly increase any of the following endpoints: frequency of Pig-a mutants (erythrocytes); frequency of micronuclei (reticulocytes); level of DNA damage (liver); frequencies of gpt and Spi(-) mutants (liver). Most TiO2 NPs in the liver were found in the sinuses and inside Kupffer cells, although some were occasionally observed in liver parenchymal cells. These results indicate that TiO2 NPs do not have genotoxic effects on mouse liver or bone marrow.


Assuntos
Dano ao DNA/genética , DNA/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Testes para Micronúcleos , Titânio/toxicidade , Animais , Dano ao DNA/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
15.
Environ Health Prev Med ; 21(5): 368-381, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27209494

RESUMO

OBJECTIVES: High-fat and -cholesterol diet (HFC) induced fibrotic steatohepatitis in stroke-prone spontaneously hypertensive rat (SHRSP) 5/Dmcr, the fifth substrain from SHRSP, by dysregulating bile acid (BA) kinetics. This study aimed to clarify the histopathological and BA kinetic differences in HFC-induced fibrosis between SHRSP5/Dmcr and SHRSP. METHODS: Ten-week-old male SHRSP5/Dmcr and SHRSP were randomly allocated to groups and fed with either control diet or HFC for 2 and 8 weeks. The liver histopathology, biochemical features, and molecular signaling involved in BA kinetics were measured. RESULTS: HFC caused more severe hepatocyte ballooning, macrovesicular steatosis and fibrosis in SHRSP5/Dmcr than in SHRSP. It was noted that fibrosis was disproportionately formed in retroperitoneal side of both strains. As for BA kinetics, HFC greatly increased the level of Cyp7a1 and Cyp7b1 to the same degree in both strains at 8 weeks, while multidrug resistance-associated protein 3 was greater in SHRSP5/Dmcr than SHRSP. The diet decreased the level of bile salt export pump by the same degree in both strains, while constitutive androstane receptor, pregnane X receptor, and UDP-glucuronosyltransferase activity more prominent in SHRSP5/Dmcr than SHRSP at 8 weeks. In the fibrosis-related genes, only expression of collagen, type I, alpha 1 mRNA was greater in SHRSP5/Dmcr than SHRSP. CONCLUSIONS: The greater progression of fibrosis in SHRSP5/Dmcr induced by HFC may be due to greater suppression of UDP-glucuronosyltransferase activity detoxifying toxicants, such as hydrophobic BAs.


Assuntos
Colesterol na Dieta/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Animais , Progressão da Doença , Fígado Gorduroso/enzimologia , Fibrose , Inativação Metabólica , Fígado/metabolismo , Fígado/patologia , Masculino , Distribuição Aleatória , Ratos , Ratos Endogâmicos SHR
16.
J Occup Health ; 58(3): 314-9, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27108646

RESUMO

OBJECTIVES: We aimed to assess the exposure of offset printing workers to hazardous substances in the rinsing processes of small-sized companies using a control banding method. METHODS: We obtained half-year amounts of hazardous substances purchased through a questionnaire survey and the hazardous information from the safety data sheets (SDSs) and related literature. RESULTS: The amount of petroleum kerosine and carbon hydride markedly increased in 2013 compared with that in 2010. In contrast, the amount of dichloromethane (DCM) decreased in 2013, and 1,2-dichloropropane (DCP) was not used in either 2010 or 2013. Mineral oil and xylene were allocated to Hazard Group D and judged to require Control Approach 3. In addition to DCM with Global Harmonization System's carcinogenic category 1, mildly treated mineral oil and solvent naphtha, allocated into Hazard Group E, are carcinogenic to humans and were judged to require Control Approach 4. There are two limitations of the control banding assessment: first, only limited and scarce hazard information could be obtained from SDSs, and second, safe-sided judgment for control technology for industrial hygiene. CONCLUSION: Small-sized enterprises are encouraged to implement control banding assessment for hazardous substances and to access expert advice available from Regional Industrial Health Centers. Easy access to appropriate expert advice is important to compensate for the limited and scarce hazard information and safe-sided judgment for control technology for Control Approaches 3 and 4.


Assuntos
Exposição Ocupacional/análise , Impressão , Medição de Risco/métodos , Gestão da Segurança/métodos , Solventes/análise , Humanos
18.
Environ Toxicol ; 31(12): 1985-1995, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26419227

RESUMO

Diesel exhaust emission contains a high amount of nano-sized particles and is considered to be systemically distributed in the body. However, few studies about the effects of nanoparticle rich-diesel exhaust (NR-DE) on liver have been reported. The present investigation focuses on the effects of NR-DE on livers in rats, especially concerning inflammation and lipid metabolism. Male F344 rats were exposed to fresh air or low (24 ± 7 µg/m3 ), medium (39 ± 4 µg/m3 ) and high (138 ± 20 µg/m3 ) concentrations of NR-DE for 1, 2, or 3 months (5 hours/day, 5 days/week). Exposure to both medium and high concentrations of NR-DE for one month increased plasma asparate aminotransferase and alanine aminotransferase activities, while only high concentrations increased plasma interleukin-6 and hepatic nuclear factor kappa B (NFκB), suggesting that activation of hepatic inflammatory signaling took place. Although these exposures elevated peroxisome proliferator-activated receptor (PPAR) α levels or its binding activity to the response element, neither activated PPARα-target genes such as ß-oxidative enzymes nor inhibited NFκB elevation. Thus, NR-DE may contain some materials that inhibit PPARα activation in relation to lipid metabolism and inflammation. Taken together, NR-DE exposure at one month may cause inflammation; however, this finding may not be observed after a longer exposure period. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1985-1995, 2016.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Nanopartículas/toxicidade , PPAR alfa/metabolismo , Emissões de Veículos/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Interleucina-6/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Tamanho da Partícula , Ratos Endogâmicos F344 , Fatores de Tempo , Ativação Transcricional
19.
Toxicol Ind Health ; 32(9): 1589-97, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25681370

RESUMO

1,2-Dichloropropane (1,2-DCP), a solvent, which is the main component of the cleaner used in the offset printing companies in Japan, is suspected to be the causative agent of bile duct cancer, which has been recently reported at high incidence in those offset printing workplaces. While there are some reports about the acute toxicity of 1,2-DCP, no information about its metabolism related to toxicity in animals is available. As part of our efforts toward clarifying the role of 1,2-DCP in the development of cancer, we studied the metabolic pathways and the hepatotoxic effect of 1,2-DCP in mice with or without cytochrome P450 2E1 (CYP2E1) activity. In an in vitro reaction system containing liver homogenate, 1,2-DCP was only metabolized by liver tissue of wild-type mice but not by that of cyp2e1-null mice. Furthermore, the kinetics of the solvent in mice revealed a great difference between the two genotypes; 1,2-DCP administration resulted in dose-dependent hepatic damage, as shown biochemically and pathologically, but this effect was only observed in wild-type mice. The nuclear factor κB p52 pathway was involved in the liver response to 1,2-DCP. Our results clearly indicate that the oxidative metabolism of 1,2-DCP in mice is exclusively catalyzed by CYP2E1, and this step is indispensable for the manifestation of the hepatotoxic effect of the solvent.


Assuntos
Carcinógenos Ambientais/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Citocromo P-450 CYP2E1/metabolismo , Fígado/metabolismo , Propano/análogos & derivados , Solventes/metabolismo , Ativação Metabólica , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Animais não Endogâmicos , Carcinógenos Ambientais/administração & dosagem , Carcinógenos Ambientais/análise , Carcinógenos Ambientais/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP2E1/genética , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Inseticidas/administração & dosagem , Inseticidas/sangue , Inseticidas/metabolismo , Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Subunidade p52 de NF-kappa B/metabolismo , Oxirredução , Propano/administração & dosagem , Propano/sangue , Propano/metabolismo , Propano/toxicidade , Solventes/administração & dosagem , Solventes/análise , Solventes/toxicidade , Toxicocinética
20.
J Occup Health ; 56(3): 205-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24739373

RESUMO

OBJECTIVE: Occurrence of cholangiocarcinoma was recently reported at a high incidence rate among the employees working for an offset printing company in Osaka, Japan. 1,2-Dichloropropane (1,2-DCP) and dichloromethane (DCM) are suspected to be the causes of the cancer, as they had been used as ink cleaners in large amounts. However, it is not clear whether these chlorinated organic solvents played a role in the occurrence of cholangiocarcinoma or why the incidence rate is so high among the workers in this industry. To provide possible evidence for this severe occupational problem, we investigated the genotoxic effects of 1,2-DCP and DCM. METHODS: Male B6C3F1 and gpt Delta C57BL/6J mice were exposed by inhalation to the individual solvents or both solvents at multiple concentrations including the levels that were possibly present in the workplaces. The genotoxicity was analyzed by Pig-a gene mutation and micronuclei assays in peripheral blood and gpt mutation and comet assays in the livers of mice after repeated inhalation of 1,2-DCP or/and DCM. RESULTS: The Pig-a mutant frequencies and micronuclei incidences were not significantly increased by exposure of either 1,2-DCP or/and DCM at any concentration, suggesting there was no genotoxic potential in bone marrow for both solvents. In the liver, DNA damage, as measured by the comet assay, was dose dependently increased by 1,2-DCP but not by DCM. The gpt mutant frequency was 2.6-fold that of the controls in the co-exposure group. CONCLUSIONS: These results indicate that 1,2-DCP showed stronger genotoxicity in the liver and that the genotoxic effects were greatly enhanced by simultaneous exposure to DCM.


Assuntos
Cloreto de Metileno/toxicidade , Mutagênicos/toxicidade , Propano/análogos & derivados , Solventes/toxicidade , Animais , Medula Óssea/efeitos dos fármacos , Dano ao DNA , Exposição por Inalação , Fígado/efeitos dos fármacos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Propano/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...