Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.719
Filtrar
1.
Chin Med J (Engl) ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710539

RESUMO

BACKGROUND: Limited information exists regarding the impact of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection on psoriasis patients. The objective of this study was to identify clinical factors associated with the prognosis of psoriasis following SARS-CoV-2 infection. METHODS: A retrospective, multicenter study was conducted between March and May 2023. Univariable and multivariable logistic regression analyses were employed to identify factors associated with COVID-19-related psoriasis outcomes. The study included 2371 psoriasis patients from 12 clinical centers, with 2049 of them having been infected with SARS-CoV-2. RESULTS: Among the infected group, lower exacerbation rates were observed in individuals treated with biologics compared to those receiving traditional systemic or nonsystemic treatments (22.3% [236/1058] vs. 39.8% [92/231] vs. 37.5% [140/373], P <0.001). Psoriasis progression with lesions (adjusted odds ratio [OR] = 8.197, 95% confidence interval [95% CI] = 5.685-11.820, compared to no lesions), hypertension (adjusted OR = 1.582, 95% CI = 1.068-2.343), traditional systemic (adjusted OR = 1.887, 95% CI = 1.263-2.818), and nonsystemic treatment (adjusted OR = 1.602, 95% CI = 1.117-2.297) were found to be associated with exacerbation of psoriasis after SARS-CoV-2 infection, but not biologics (adjusted OR = 0.931, 95% CI = 0.680-1.274, compared to no treatment), according to multivariable logistic regression analysis. CONCLUSIONS: A reduced risk of psoriasis exacerbation after SARS-CoV-2 infection was observed with biologics compared to traditional systemic and nonsystemic treatments. Significant risk factors for exacerbation after infection were identified as existing psoriatic lesions and hypertension. TRIAL REGISTRATION: ClinicalTrials.gov (No. NCT05961605).

2.
Emerg Microbes Infect ; : 2353298, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721691

RESUMO

With the atypical rise of Mycoplasma pneumoniae infection (MPI) in 2023, prompt studies are needed to determine the current epidemic features and risk factors with emerging trends of MPI to furnish a framework for subsequent investigations. This multicentre, retrospective study was designed to analyse the epidemic patterns of MPI before and after the COVID-19 pandemic, as well as genotypes and the macrolide resistance-associated mutations in MP sampled from pediatric patients in Southern China. Clinical data was collected from 133674 patients admitted into investigational hospitals from June 1, 2017, to November 30, 2023. Metagenomic next-generation sequencing (mNGS) data were retrieved based on MP sequence positive samples from 299 pediatric patients for macrolide resistance-associated mutations analysis. Pearson's chi-squared test was used to compare categorical variables between different time frames. The monthly average cases of pediatric common respiratory infection diseases were increased without enhanced public health measures after the pandemic, especially for influenza, respiratory syncytial virus infection, and MPI. The contribution of MPI to pneumoniae was similar to that in the outbreak in 2019. Compared mNGS data between 2019-2022 and 2023, the severity of MP did not grow stronger despite higher rates of macrolide-resistance hypervariable sites, including loci 2063 and 2064, were detected in childhood MP samples of 2023. Our findings indicated ongoing surveillance is necessary to understand the impact of post pandemic on MP transmission disruption on epidemic season and severity of clinical outcomes in different scenarios.

3.
Natl Sci Rev ; 11(5): nwae150, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38803565

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a poor-prognostic cancer type with extensive intra- and inter-patient heterogeneity in both genomic variations and tumor microenvironment (TME). However, the patterns and drivers of spatial genomic and microenvironmental heterogeneity of ESCC remain largely unknown. Here, we generated a spatial multi-omic atlas by whole-exome, transcriptome, and methylome sequencing of 507 tumor samples from 103 patients. We identified a novel tumor suppressor PREX2, accounting for 22% of ESCCs with frequent somatic mutations or hyper-methylation, which promoted migration and invasion of ESCC cells in vitro. Analysis of the TME and quantification of subclonal expansion indicated that ESCCs undergo spatially directed evolution, where subclones mostly originated from the tumor center but had a biased clonal expansion to the upper direction of the esophagus. Interestingly, we found upper regions of ESCCs often underwent stronger immunoediting with increased selective fitness, suggesting more stringent immune selection. In addition, distinct TMEs were associated with variable genomic and clinical outcomes. Among them, hot TME was associated with high immune evasion and subclonal heterogeneity. We also found that immunoediting, instead of CD8+ T cell abundance, acts as an independent prognostic factor of ESCCs. Importantly, we found significant heterogeneity in previously considered potential therapeutic targets, as well as BRCAness characteristics in a subset of patients, emphasizing the importance of focusing on heterogeneity in ESCC targeted therapy. Collectively, these findings provide novel insights into the mechanisms of the spatial evolution of ESCC and inform precision therapeutic strategies.

4.
Ecotoxicol Environ Saf ; 279: 116497, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38805827

RESUMO

Methamphetamine (METH) is a highly abused substance on a global scale and has the capacity to elicit toxicity within the central nervous system. The neurotoxicity induced by METH encompasses neuronal degeneration and cellular demise within the substantia nigra-striatum and hippocampus. Caffeic acid phenethyl ester (CAPE), a constituent of propolis, is a diminutive compound that demonstrates antioxidative and anti-inflammatory characteristics. Numerous investigations have demonstrated the safeguarding effects of CAPE in various neurodegenerative ailments. Our hypothesis posits that CAPE may exert a neuroprotective influence on METH-induced neurotoxicity via specific mechanisms. In order to validate the hypothesis, a series of experimental techniques including behavioral tests, immunofluorescence labeling, RNA sequencing, and western blotting were employed to investigate the neurotoxic effects of METH and the potential protective effects of CAPE. The results of our study demonstrate that CAPE effectively ameliorates cognitive memory deficits and anxiety symptoms induced by METH in mice. Furthermore, CAPE has been observed to attenuate the upregulation of neurotoxicity-associated proteins that are induced by METH exposure and also reduced the loss of hippocampal neurons in mice. Moreover, transcriptomics analysis was conducted to determine alterations in gene expression within the hippocampus of mice. Subsequently, bioinformatics analysis was employed to investigate the divergent outcomes and identify potential key genes. Interferon-stimulated gene 15 (ISG15) was successfully identified and confirmed through RT-qPCR, western blotting, and immunofluorescence techniques. Our research findings unequivocally demonstrated the neuroprotective effect of CAPE against METH-induced neurotoxicity, with ISG15 may have an important role in the underlying protective mechanism. These results offer novel perspectives on the treatment of METH-induced neurotoxicity.

5.
Biomacromolecules ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775327

RESUMO

The preparation of polysaccharide-peptide hydrogels usually involves multiple synthetic steps, thus reducing the effectiveness and practicality of these approaches. Inspired by recent discoveries in aqueous N-carboxyanhydride (NCA) ring-opening polymerization (ROP) and ring-opening polymerization-induced nanogelation, we present an aqueous one-pot strategy to prepare polysaccharide-polypeptide hydrogels. In this study, water-soluble polysaccharide carboxymethyl chitosan is used as the macromolecular initiator to prepare polysaccharide-polypeptide copolymers through the aqueous ROP of NCA. The catalyst-free approach afforded hydrogels with properties that could be controlled by adjusting the type and amount of NCA used, with the elastic modulus ranging from 50 Pa to 18000 Pa. The hydrogen bond-cross-linked hydrogel exhibited self-healing and injectable properties. Morphology characterization revealed that micelles were formed in the early stage of reaction, suggesting that the polymerization follows an aqueous ring-opening polymerization-induced self-assembly (ROPISA) mechanism and that aggregation of micelles during the reaction caused the gelation. Moreover, the hydrogels displayed high swelling ratios (>95% water content), and hemolysis and cytotoxicity experiments demonstrated that the hydrogels had excellent biocompatibility, indicating their potential in medical applications.

6.
Int J Pharm ; : 124261, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782155

RESUMO

The progression of renal fibrosis to end-stage renal disease (ESRD) is significantly influenced by transforming growth factor-beta (TGF-beta) signal pathway. This study aimed to develop nanoparticles (PMVs@PLGA complexes) with platelet membrane camouflage, which can transport interfering RNA to target and regulate the TGF-ß1 pathway in damaged renal tissues. The aim is to reduce the severity of acute kidney injury and to reduce fibrosis in chronic kidney disease. Hence, we formulated PMVs@TGF-ß1-siRNA NP complexes and employed them for both in vitro and in vivo therapy. From the experimental findings we know that the PMVs@siRNA NPs could effectively target the kidneys in unilateral ureteral obstruction (UUO) mice and ischemia/reperfusion injury (I/R) mice. In animal models of treatment, PMVs@siRNA NP complexes effectively decreased the expression of TGF-ß1 and mitigated inflammation and fibrosis in the kidneys by blocking the TGF-ß1/Smad3 pathway. Therefore, these PMVs@siRNA NP complexes can serve as a promising biological delivery system for treating kidney diseases.

7.
Microbiol Spectr ; : e0428723, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785444

RESUMO

Chronic obstructive pulmonary disease (COPD) is one of the primary causes of mortality and morbidity worldwide. The gut microbiome, particularly the bacteriome, has been demonstrated to contribute to the progression of COPD. However, the influence of gut virome on the pathogenesis of COPD is rarely studied. Recent advances in viral metagenomics have enabled the rapid discovery of its remarkable role in COPD. In this study, deep metagenomics sequencing of fecal virus-like particles and bacterial 16S rRNA sequencing was performed on 92 subjects from China to characterize alterations of the gut virome in COPD. Lower richness and diversity of the gut virome were observed in the COPD subjects compared with the healthy individuals. Sixty-four viral species, including Clostridium phage, Myoviridae sp., and Synechococcus phage, showed positive relationships with pulmonary ventilation functions and had markedly declined population in COPD subjects. Multiple viral functions, mainly involved in bacterial susceptibility and the interaction between bacteriophages and bacterial hosts, were significantly declined in COPD. In addition, COPD was characterized by weakened viral-bacterial interactions compared with those in the healthy cohort. The gut virome showed diagnostic performance with an area under the curve (AUC) of 88.7%, which indicates the potential diagnostic value of the gut virome for COPD. These results suggest that gut virome may play an important role in the development of COPD. The information can provide a reference for the future investigation of diagnosis, treatment, and in-depth mechanism research of COPD. IMPORTANCE: Previous studies showed that the bacteriome plays an important role in the progression of chronic obstructive pulmonary disease (COPD). However, little is known about the involvement of the gut virome in COPD. Our study explored the disease-specific virome signatures of patients with COPD. We found the diversity and compositions altered of the gut virome in COPD subjects compared with healthy individuals, especially those viral species positively correlated with pulmonary ventilation functions. Additionally, the declined bacterial susceptibility, the interaction between bacteriophages and bacterial hosts, and the weakened viral-bacterial interactions in COPD were observed. The findings also suggested the potential diagnostic value of the gut virome for COPD. The results highlight the significance of gut virome in COPD. The novel strategies for gut virome rectifications may help to restore the balance of gut microecology and represent promising therapeutics for COPD.

8.
Heliyon ; 10(10): e31122, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38778990

RESUMO

Background: There is a lack of comprehensive profile assessment on complete blood count (CBC)-derived systemic-inflammatory indices, and their correlations with clinical outcome in patients with anterior circulation acute ischemic stroke (AIS) who achieved successful recanalization by endovascular thrombectomy (EVT). Methods: Patients with anterior circulation AIS caused by large vessel occlusion (AIS-LVO) were retrospectively screened from December 2018 to December 2022. Systemic-inflammatory indices including ratios of neutrophil-to-lymphocyte (NLR), monocyte-to-lymphocyte (MLR), platelet-to-lymphocyte (PLR), and platelet-to-neutrophil (PNR), systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), and aggregate inflammation systemic index (AISI) on admission and the first day post-EVT were calculated. Their correlations with symptomatic intracranial hemorrhage (sICH) and unfavorable 90-day functional outcome (modified Rankin Scale score of 3-6) were analyzed. Results: A total of 482 patients [65 (IQR, 56-72) years; 33 % female] were enrolled, of which 231 (47.9 %) had unfavorable 90-day outcome and 50 (10.4 %) developed sICH. Day 1 neutrophil and monocyte counts, NLR, MLR, PLR, SII, SIRI, and AISI were increased, while lymphocyte and PNR were decreased compared to their admission levels. In multivariate analyses, neutrophil count, NLR, SII, and AISI on day 1 were independently associated with 90-day functional outcome. Moreover, day 1 neutrophil count, NLR, MLR, PLR, PNR, SII, and SIRI were independently linked to the occurrence of sICH. No admission variables were identified as independent risk factors for patient outcomes. Conclusion: CBC-derived systemic-inflammatory indices measured on the first day after successful EVT are predictive of 90-day functional outcome and the sICH occurrence in patients with anterior circulation AIS-LVO.

9.
World J Urol ; 42(1): 302, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720010

RESUMO

PURPOSE: To evaluate the diagnostic performance of contrast-enhanced (CE) ultrasound using Sonazoid (SNZ-CEUS) by comparing with contrast-enhanced computed tomography (CE-CT) and contrast-enhanced magnetic resonance imaging (CE-MRI) for differentiating benign and malignant renal masses. MATERIALS AND METHODS: 306 consecutive patients (from 7 centers) with renal masses (40 benign tumors, 266 malignant tumors) diagnosed by both SNZ-CEUS, CE-CT or CE-MRI were enrolled between September 2020 and February 2021. The examinations were performed within 7 days, but the sequence was not fixed. Histologic results were available for 301 of 306 (98.37%) lesions and 5 lesions were considered benign after at least 2 year follow-up without change in size and image characteristics. The diagnostic performances were evaluated by sensitivity, specificity, positive predictive value, negative predictive value, and compared by McNemar's test. RESULTS: In the head-to-head comparison, SNZ-CEUS and CE-MRI had comparable sensitivity (95.60 vs. 94.51%, P = 0.997), specificity (65.22 vs. 73.91%, P = 0.752), positive predictive value (91.58 vs. 93.48%) and negative predictive value (78.95 vs. 77.27%); SNZ-CEUS and CE-CT showed similar sensitivity (97.31 vs. 96.24%, P = 0.724); however, SNZ-CEUS had relatively lower than specificity than CE-CT (59.09 vs. 68.18%, P = 0.683). For nodules > 4 cm, CE-MRI demonstrated higher specificity than SNZ-CEUS (90.91 vs. 72.73%, P = 0.617) without compromise the sensitivity. CONCLUSIONS: SNZ-CEUS, CE-CT, and CE-MRI demonstrate desirable and comparable sensitivity for the differentiation of renal mass. However, the specificity of all three imaging modalities is not satisfactory. SNZ-CEUS may be a suitable alternative modality for patients with renal dysfunction and those allergic to gadolinium or iodine-based agents.


Assuntos
Meios de Contraste , Compostos Férricos , Ferro , Neoplasias Renais , Imageamento por Ressonância Magnética , Óxidos , Tomografia Computadorizada por Raios X , Ultrassonografia , Humanos , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Ultrassonografia/métodos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos , Idoso , Diagnóstico Diferencial , Adulto , Idoso de 80 Anos ou mais
10.
Sci Rep ; 14(1): 11664, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778143

RESUMO

The growth of plants is threatened by numerous diseases. Accurate and timely identification of these diseases is crucial to prevent disease spreading. Many deep learning-based methods have been proposed for identifying leaf diseases. However, these methods often combine plant, leaf disease, and severity into one category or treat them separately, resulting in a large number of categories or complex network structures. Given this, this paper proposes a novel leaf disease identification network (LDI-NET) using a multi-label method. It is quite special because it can identify plant type, leaf disease and severity simultaneously using a single straightforward branch model without increasing the number of categories and avoiding extra branches. It consists of three modules, i.e., a feature tokenizer module, a token encoder module and a multi-label decoder module. The LDI-NET works as follows: Firstly, the feature tokenizer module is designed to enhance the capability of extracting local and long-range global contextual features by leveraging the strengths of convolutional neural networks and transformers. Secondly, the token encoder module is utilized to obtain context-rich tokens that can establish relationships among the plant, leaf disease and severity. Thirdly, the multi-label decoder module combined with a residual structure is utilized to fuse shallow and deep contextual features for better utilization of different-level features. This allows the identification of plant type, leaf disease, and severity simultaneously. Experiments show that the proposed LDI-NET outperforms the prevalent methods using the publicly available AI challenger 2018 dataset.


Assuntos
Redes Neurais de Computação , Doenças das Plantas , Folhas de Planta , Doenças das Plantas/prevenção & controle , Aprendizado Profundo , Algoritmos
11.
Commun Biol ; 7(1): 563, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740899

RESUMO

Targeting the estrogen receptor alpha (ERα) pathway is validated in the clinic as an effective means to treat ER+ breast cancers. Here we present the development of a VHL-targeting and orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of ERα. In vitro studies with this PROTAC demonstrate excellent ERα degradation and ER antagonism in ER+ breast cancer cell lines. However, upon dosing the compound in vivo we observe an in vitro-in vivo disconnect. ERα degradation is lower in vivo than expected based on the in vitro data. Investigation into potential causes for the reduced maximal degradation reveals that metabolic instability of the PROTAC linker generates metabolites that compete for binding to ERα with the full PROTAC, limiting degradation. This observation highlights the requirement for metabolically stable PROTACs to ensure maximal efficacy and thus optimisation of the linker should be a key consideration when designing PROTACs.


Assuntos
Receptor alfa de Estrogênio , Proteólise , Proteína Supressora de Tumor Von Hippel-Lindau , Humanos , Receptor alfa de Estrogênio/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Feminino , Proteólise/efeitos dos fármacos , Animais , Administração Oral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem
12.
Stat Med ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700103

RESUMO

Electroencephalogram (EEG) provides noninvasive measures of brain activity and is found to be valuable for the diagnosis of some chronic disorders. Specifically, pre-treatment EEG signals in the alpha and theta frequency bands have demonstrated some association with antidepressant response, which is well-known to have a low response rate. We aim to design an integrated pipeline that improves the response rate of patients with major depressive disorder by developing a treatment policy guided by the resting state pre-treatment EEG recordings and other treatment effects modifiers. First, we design an innovative automatic site-specific EEG preprocessing pipeline to extract features with stronger signals than raw data. We then estimate the conditional average treatment effect (CATE) using causal forests and use a doubly robust technique to improve efficiency in the estimation of the average treatment effect. We present evidence of heterogeneity in the treatment effect and the modifying power of the EEG features, as well as a significant average treatment effect, a result that cannot be obtained with conventional methods. Finally, we employ an efficient policy learning algorithm to learn an optimal depth-2 treatment assignment decision tree and compare its performance with Q-Learning and outcome-weighted learning via simulation studies and an application to a large multi-site, double-blind, randomized controlled clinical trial, EMBARC.

13.
Sci Total Environ ; 932: 172892, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719053

RESUMO

Organophosphate esters (OPEs) have been demonstrated to induce various forms of toxicity in aquatic organisms. However, a scarcity of evidence impedes the conclusive determination of whether OPEs manifest sex-dependent toxic effects. Here, we investigated the effects of tris (1-chloro-2-propyl) phosphate (TCPP) and resorcinol bis (diphenyl phosphate) (RDP) on the intestines of both female and male zebrafish. The results indicated that, in comparison to TCPP, RDP induced more pronounced intestinal microstructural damage and oxidative stress, particularly in male zebrafish. 16S rRNA sequencing and metabolomics revealed significant alterations in the species richness and oxidative stress-related metabolites in the intestinal microbiota of zebrafish under exposure to both TCPP and RDP, manifesting gender-specific effects. Based on differential species analysis, we defined invasive species and applied invasion theory to analyze the reasons for changes in the male fish intestinal community. Correlation analysis demonstrated that alien species may have potential effects on metabolism. Overall, this study reveals a pronounced gender-dependent impact on both the intestinal microbiota and metabolic disruptions of zebrafish due to OPEs exposure and offers a novel perspective on the influence of pollutants on intestinal microbial communities and metabolism.


Assuntos
Microbioma Gastrointestinal , Resorcinóis , Poluentes Químicos da Água , Peixe-Zebra , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Resorcinóis/toxicidade , Feminino , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , RNA Ribossômico 16S
14.
Sci Total Environ ; 932: 173094, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729378

RESUMO

The SDG 15.3.1 target of Land Degradation Neutrality (LDN) only has 15 years from conception (in 2015) to realization (in 2030). Therefore, investigating the effectiveness and challenges of LDN has become a priority, especially in drylands, where fragile ecosystems intersect with multiple disturbances. In this study, solutions are proposed and validated based on the challenges of LDN. We chose the Northern Slope of the Tianshan Mountains as a case study and set baselines in 2005 and 2010. The region and degree of land change (including degraded, stable, and improved) were depicted at the pixel scale (100 × 100 m), and LDN realization was assessed at the regional scale (including administrative districts and 5000 × 5000 m grids). The results showed a significant disparity between the two baselines. The number of areas that realized the LDN target was rare, regardless of the scale of the administrative districts or grids. Chord plots, Spearman's correlation, and curve estimation were employed to reveal the relationship between LDN and seven natural or socioeconomic factors. We found that substantial degradation was closely related to the expansion of unused, urban, and mining land and reduction in water, glaciers, and forests. Further evidence suggests that agricultural development both positively and negatively affects LDN, whereas urbanization and mining activities are undesirable for LDN. Notably, the adverse effects of glacier melting require additional attention. Therefore, we consider the easy-to-achieve and hard-to-achieve baselines as the mandatory and desirable targets of LDN, respectively, and focus further efforts in three aspects: preventing agricultural exploitation from occupying ecological resources, defining reasonable zones for urbanization and mining, and reducing greenhouse gas emissions to mitigate warming. Overall, this study is expected to be a beneficial addition to existing LDN theoretical systems and serve as a case validation of the challenges of LDN in drylands.

15.
Medicine (Baltimore) ; 103(18): e38036, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701251

RESUMO

ß-Thalassemia is the world's number 1 single-gene genetic disorder and is characterized by suppressed or impaired production of ß-pearl protein chains. This results in intramedullary destruction and premature lysis of red blood cells in peripheral blood. Among them, patients with transfusion-dependent ß-thalassemia face the problem of long-term transfusion and iron chelation therapy, which leads to clinical complications and great economic stress. As gene editing technology improves, we are seeing the dawn of a cure for the disease, with its reduction of ineffective erythropoiesis and effective prolongation of survival in critically ill patients. Here, we provide an overview of ß-thalassemia distribution and pathophysiology. In addition, we focus on gene therapy and gene editing advances. Nucleic acid endonuclease tools currently available for gene editing fall into 3 categories: zinc finger nucleases, transcription activator-like effector nucleases, and regularly interspaced short palindromic repeats (CRISPR-Cas9) nucleases. This paper reviews the exploratory applications and exploration of emerging therapeutic tools based on 3 classes of nucleic acid endonucleases in the treatment of ß-thalassemia diseases.


Assuntos
Edição de Genes , Terapia Genética , Talassemia beta , Talassemia beta/terapia , Talassemia beta/genética , Humanos , Edição de Genes/métodos , Terapia Genética/métodos , Sistemas CRISPR-Cas , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases de Dedos de Zinco/genética
16.
J Neural Eng ; 21(3)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38718788

RESUMO

Objective.The objective of this study is to investigate the application of various channel attention mechanisms within the domain of brain-computer interface (BCI) for motor imagery decoding. Channel attention mechanisms can be seen as a powerful evolution of spatial filters traditionally used for motor imagery decoding. This study systematically compares such mechanisms by integrating them into a lightweight architecture framework to evaluate their impact.Approach.We carefully construct a straightforward and lightweight baseline architecture designed to seamlessly integrate different channel attention mechanisms. This approach is contrary to previous works which only investigate one attention mechanism and usually build a very complex, sometimes nested architecture. Our framework allows us to evaluate and compare the impact of different attention mechanisms under the same circumstances. The easy integration of different channel attention mechanisms as well as the low computational complexity enables us to conduct a wide range of experiments on four datasets to thoroughly assess the effectiveness of the baseline model and the attention mechanisms.Results.Our experiments demonstrate the strength and generalizability of our architecture framework as well as how channel attention mechanisms can improve the performance while maintaining the small memory footprint and low computational complexity of our baseline architecture.Significance.Our architecture emphasizes simplicity, offering easy integration of channel attention mechanisms, while maintaining a high degree of generalizability across datasets, making it a versatile and efficient solution for electroencephalogram motor imagery decoding within BCIs.


Assuntos
Atenção , Interfaces Cérebro-Computador , Eletroencefalografia , Imaginação , Eletroencefalografia/métodos , Humanos , Imaginação/fisiologia , Atenção/fisiologia , Movimento/fisiologia
17.
Diagnostics (Basel) ; 14(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38786304

RESUMO

BACKGROUND: The aim of this study was to exploit integrated PET/MRI to simultaneously evaluate the morphological, component, and metabolic features of advanced atherosclerotic plaques and explore their incremental value. METHODS: In this observational prospective cohort study, patients with advanced plaque in the carotid artery underwent 18F-FDG PET/MRI. Plaque morphological features were measured, and plaque component features were determined via MRI according to AHA lesion-types. Maximum standardized uptake values (SUVmax) and tissue to background ratio (TBR) on PET were calculated. Area under the receiver-operating characteristic curve (AUC) and net reclassification improvement (NRI) were used to compare the incremental contribution of FDG uptake when added to AHA lesion-types for symptomatic plaque classification. RESULTS: A total of 280 patients with advanced plaque in the carotid artery were recruited. A total of 402 plaques were confirmed, and 87 of 402 (21.6%) were symptomatic plaques. 18F-FDG PET/MRI was performed a mean of 38 days (range 1-90) after the symptom. Increased stenosis degree (61.5% vs. 50.0%, p < 0.001) and TBR (2.96 vs. 2.32, p < 0.001) were observed in symptomatic plaques compared with asymptomatic plaques. The performance of the combined model (AHA lesion type VI + stenosis degree + TBR) for predicting symptomatic plaques was the best among all models (AUC = 0.789). The improvement of the combined model (AHA lesion type VII + stenosis degree + TBR) over AHA lesion type VII model for predicting symptomatic plaques was the highest (AUC = 0.757/0.454, combined model/AHA lesion type VII model), and the NRI was 50.7%. CONCLUSIONS: Integrated PET/MRI could simultaneously evaluate the morphological component and inflammation features of advanced atherosclerotic plaques and provide supplementary optimization information over AHA lesion-types for identifying vulnerable plaques in atherosclerosis subjects to achieve further stratification of stroke risk.

18.
Mar Drugs ; 22(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786609

RESUMO

Two new cytochalasin derivatives, peniotrinins A (1) and B (2), three new citrinin derivatives, peniotrinins C-E (4, 5, 7), and one new tetramic acid derivative, peniotrinin F (12), along with nine structurally related known compounds, were isolated from the solid culture of Peniophora sp. SCSIO41203. Their structures, including the absolute configurations of their stereogenic carbons, were fully elucidated based on spectroscopic analysis, quantum chemical calculations, and the calculated ECD. Interestingly, 1 is the first example of a rare 6/5/5/5/6/13 hexacyclic cytochalasin. We screened the above compounds for their anti-prostate cancer activity and found that compound 3 had a significant anti-prostate cancer cell proliferation effect, while compounds 1 and 2 showed weak activity at 10 µM. We then confirmed that compound 3 exerts its anti-prostate cancer effect by inducing methuosis through transmission electron microscopy and cellular immunostaining, which suggested that compound 3 might be first reported as a potential anti-prostate methuosis inducer.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Masculino , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proliferação de Células/efeitos dos fármacos , Citocalasinas/farmacologia , Citocalasinas/química , Citocalasinas/isolamento & purificação , Organismos Aquáticos , Linhagem Celular Tumoral , Estrutura Molecular
19.
Exp Neurol ; 377: 114809, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714285

RESUMO

Neurogenesis as a potential strategy to improve the consequences of intracerebral hemorrhage (ICH). The current study investigates the effects of withaferin A (WFA) in combination with leptin (LEP) on ICH and neurogenesis mechanisms. LEP levels were dramatically reduced on days 7 and 14 following ICH insults in mice, but continuous WFA therapy significantly improved the potency of intrinsic LEP on day 14 after ICH. Furthermore, WFA combined with LEP enhances intrinsic neurogenesis and lessen motor deficits and long-term cognitive outcomes after ICH. In parallel, leptin deficiency in ob/ob mice limits enhancement of neurogenesis following ICH in response to WFA combined with LEP treatment. Importantly, the functional recovery conferred by WFA combined with LEP after ICH was inhibited by neurogenesis suppression. Mechanistically, this study unveiled that the signal transducer and activator of transcription-3 (STAT3) / suppressor of cytokine signaling-3 (SOCS3) pathway is a critical signaling pathway through which WFA combined with LEP treatment promotes intrinsic neurogenesis after ICH. Collectively, the results of this study elucidate the neuroprotective effects of WFA and LEP in ICH, and highlight a potential approach for ICH cell therapy.


Assuntos
Hemorragia Cerebral , Leptina , Camundongos Endogâmicos C57BL , Neurogênese , Fator de Transcrição STAT3 , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Vitanolídeos , Animais , Vitanolídeos/farmacologia , Neurogênese/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Camundongos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Leptina/farmacologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Quimioterapia Combinada
20.
Org Lett ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805214

RESUMO

Here we report an efficient route for synthesizing strigolactones (SLs) and their derivatives. Our method relies on a palladium-catalyzed oxidative carbonylation/carbocyclization/carbonylation/alkoxylation cascade reaction, which involves the formation of three new C-C bonds and a new C-O bond while cleaving one C(sp3)-H bond in a single step. With our versatile synthetic strategy, both naturally occurring and artificial SLs were prepared.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA