Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
BMC Gastroenterol ; 24(1): 341, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354355

RESUMO

BACKGROUND: Colonoscopic enteral tube placement using current methods has some shortcomings, such as the complexity of the procedure and tube dislodgement. The magnetic navigation technique (MNT) has been proven effective for nasoenteral feeding tube placement, and is associated with reduced cost and time to initiation of nutrition. This study attempted to develop a novel method for enteral tube placement using MNT. METHODS: The MNT device consisted of an external magnet and a 12 Fr tube with a magnet at the end. Ten swine were used, and bowel cleansing was routinely performed before colonoscopy. Intravenous anesthesia with propofol and ketamine was administered. A colonoscopic enteral tube was placed using the MNT. The position of the end of the enteral tube was determined by radiography, and angiography was performed to check for colonic perforations. Colonoscopy was used to detect intestinal mucosal damage after tube removal. RESULTS: MNT-assisted colonoscopic enteral tube placement was successfully completed in all pigs. The median operating time was 30 (26-47) min. No colon perforation was detected on colonography after enteral tube placement, and no colonic mucosal bleeding or injury was detected after the removal of the enteral tube. CONCLUSIONS: MNT-assisted colonoscopic enteral tube placement is feasible and safe in swine and may represent a valuable method for microbial therapy, colonic drainage, and host-microbiota interaction research in the future.


Assuntos
Colonoscopia , Intubação Gastrointestinal , Animais , Colonoscopia/métodos , Suínos , Intubação Gastrointestinal/métodos , Nutrição Enteral/métodos , Nutrição Enteral/instrumentação , Imãs , Colo/diagnóstico por imagem , Estudos de Viabilidade , Feminino , Duração da Cirurgia
2.
iScience ; 27(10): 110934, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39391738

RESUMO

We hypothesized that increased cardiorespiratory fitness (CRF) slows down a person's aging, particularly in individuals with chronic airflow limitation (CAL). Participants aged ≥40 years (n = 78) had baseline blood DNA methylation profiled and underwent cardiopulmonary cycle exercise testing at baseline and at three years. Epigenetic clocks were calculated and tested for their association with CRF using linear regression. Differentially methylated genes associated with CRF were identified using a robust linear model. Higher CRF at baseline was associated with lower age acceleration in the epigenetic clocks DNAmAgeSkinBlood (p = 0.016), DNAmGrimAge (p = 0.012), and DNAmGrimAge2 (p = 0.011). These effects were consistent in individuals with CAL (DNAmGrimAge p = 0.009 and DNAmGrimAge2 p = 0.007). CRF at three years was associated with baseline DNAmGrimAge (p = 0.015) and DNAmGrimAge2 (p = 0.011). Differentially methylated genes associated with CRF enriched multiple aging-related pathways, including cellular senescence. Enhancing CRF may be one intervention that can slow biological aging and improve health outcomes in chronic respiratory diseases.

3.
Eur Respir J ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39326914

RESUMO

To elucidate the important cellular and molecular drivers of pulmonary long COVID, we generated a single-cell transcriptomic map of the airway mucosa using bronchial brushings from patients with long COVID who reported persistent pulmonary symptoms.Adults with and without long COVID were recruited from the general community in Greater Vancouver, Canada. The cohort was divided into those with pulmonary long COVID (PLC), which was defined as persons with new or worsening respiratory symptoms following at least one year from their initial acute SARS-CoV-2 infection (N=9); and control subjects defined as SARS-CoV-2 infected persons whose acute respiratory symptoms had fully resolved or individuals who had no history of acute COVID-19 (N=9). These participants underwent bronchoscopy from which a single cell suspension was created from bronchial brush samples and then sequenced.A total of 56 906 cells were recovered for the downstream analysis, with 34 840 cells belonging to the PLC group, which strikingly showed a unique cluster of neutrophils in the PLC group (p<0.05). Ingenuity Pathway Analysis revealed that the neutrophil degranulation pathway was enriched across epithelial cell clusters. Differential gene expression analysis between the PLC and control groups demonstrated upregulation of inflammatory chemokines and epithelial barrier dysfunction across epithelial cell clusters, as well as over-expression of mucin genes across secretory cell clusters.In conclusion, a single-cell transcriptomic landscape of the small airways suggest that neutrophils may play a significant role in mediating the chronic small airway inflammation driving pulmonary symptoms of long COVID.

4.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4460-4469, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307782

RESUMO

The main chemical constituents from Acori Tatarinowii Rhizoma were isolated and purified using the macroporous resin,microporous resin(MCI) and octadecylsilyl silica gel(ODS) column chromatography, as well as semi-preparative high performance liquid chromatography. Their chemical structures were elucidated by spectroscopic analyses including mass spectrometry(MS),nuclear magnetic resonance(NMR), ultraviolet(UV), infrared(IR) and circular dichoism(CD) combined with literature data.A total of 11 compounds were isolated and identified, including 4 lignan glycosides, 2 benzyl alcohol glycosides, 4 flavonoid glycosides, and 1 α-tetralone glycoside:(7S,8R)-dihydrodehydrodiconiferyl alcohol 9-O-ß-D-glucopyranosyl-9'-O-ß-D-glucopyranosyl-(1 → 6)-ß-D-glucopyranoside(1),(7S, 8R)-dihydrodehydrodiconiferyl alcohol 9-O-ß-D-glucopyranoside(2),(7S, 8R)-dihydrodehydrodiconiferyl alcohol di-9, 9'-O-ß-D-glucopyranoside(3),(+)-lyoniresinol 3α-O-ß-D-glucopyranoside(4), benzyl alcohol O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranoside(5), benzyl alcohol O-ß-D-xylopyranosyl-(1→6)-ß-D-glucopyranoside(6), 3'-O-methylepicatechin 7-O-ß-D-glucopyranoside(7), 3'-O-methylcatechin 7-O-ß-D-glucopyranoside(8), apigenin 6-C-ß-D-glucopyranosyl-7-O-ß-D-glucopyranoside(9), isoscoparin 7-O-ß-D-glucopyranoside(10), and(4R)-8-hydroxy-α-tetralone-4-O-ß-D-glucopyranoside(11). Compound 1 is a new neolignan glycoside, and compounds 2-5 and 7-11 are isolated from genus Acorus for the first time.


Assuntos
Medicamentos de Ervas Chinesas , Glicosídeos , Lignanas , Rizoma , Glicosídeos/química , Glicosídeos/isolamento & purificação , Rizoma/química , Medicamentos de Ervas Chinesas/química , Lignanas/química , Lignanas/isolamento & purificação , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Cromatografia Líquida de Alta Pressão
5.
Biomedicines ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38927468

RESUMO

BACKGROUND: DNA methylation may be a link between HIV, aging, and the increased risk of lung comorbidities. We investigated whether bronchoalveolar lavage (BAL) cells of people living with HIV (PLWH) demonstrate epigenetic disruptions and advanced epigenetic aging. METHODS: BAL cell DNA methylation from 25 PLWH and 16 HIV-uninfected individuals were tested for differential methylation of Alu and LINE-1 sites, markers of aging. We used a weighted gene correlation network analysis to identify HIV- and age-associated co-methylation networks. We tested the effect of HIV on DNA methylation using a robust linear model (false discovery rate < 0.10). RESULTS: The BAL cells of PLWH were marked by global hypomethylation in both Alu and LINE-1 elements. Six co-methylated CpG networks were identified that were significantly associated with age; of these, the red module was significantly differentially methylated in PLWH and enriched pathways (e.g., Ras signaling and T-cell receptors). We identified 6428 CpG sites associated with HIV. CONCLUSIONS: We have shown here for the first time that alterations in the DNA methylation of BAL cells in the lung with HIV show a pattern of advanced aging. This study strongly supports that HIV may contribute to an increased the risk of lung comorbidities through the epigenetics of aging.

6.
Am J Transl Res ; 16(5): 2034-2048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883374

RESUMO

OBJECTIVE: Aggregating evidence highlights the strong genetic basis underpinning congenital heart disease (CHD). Here BMP4 was chosen as a prime candidate gene causative of human CHD predominantly because BMP4 was amply expressed in the embryonic hearts and knockout of Bmp4 in mice led to embryonic demise mainly from multiple cardiovascular developmental malformations. The aim of this retrospective investigation was to discover a novel BMP4 mutation underlying human CHD and explore its functional impact. METHODS: A sequencing examination of BMP4 was implemented in 212 index patients suffering from CHD and 236 unrelated non-CHD individuals as well as the family members available from the proband carrying a discovered BMP4 mutation. The impacts of the discovered CHD-causing mutation on the expression of NKX2-5 and TBX20 induced by BMP4 were measured by employing a dual-luciferase analysis system. RESULTS: A new heterozygous BMP4 mutation, NM_001202.6:c.318T>G;p.(Tyr106*), was found in a female proband affected with familial CHD. Genetic research of the mutation carrier's relatives unveiled that the truncating mutation was in co-segregation with CHD in the pedigree. The nonsense mutation was absent from 236 unrelated non-CHD control persons. Quantitative biologic measurement revealed that Tyr106*-mutant BMP4 failed to induce the expression of NKX2-5 and TBX20, two genes whose expression is lost in CHD. CONCLUSION: The current findings indicate BMP4 as a new gene predisposing to human CHD, allowing for improved prenatal genetic counseling along with personalized treatment of CHD patients.

8.
Am J Transl Res ; 16(1): 109-125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322548

RESUMO

OBJECTIVE: Aggregating evidence convincingly establishes the predominant genetic basis underlying congenital heart defects (CHD), though the heritable determinants contributing to CHD in the majority of cases remain elusive. In the current investigation, BMP10 was selected as a prime candidate gene for human CHD mainly due to cardiovascular developmental abnormalities in Bmp10-knockout animals. The objective of this retrospective study was to identify a new BMP10 mutation responsible for CHD and characterize the functional effect of the identified CHD-causing BMP10 mutation. METHODS: Sequencing assay of BMP10 was fulfilled in a cohort of 276 probands with various CHD and a total of 288 non-CHD volunteers. The available family members from the proband harboring an identified BMP10 mutation were also BMP10-genotyped. The effect of the identified CHD-causative BMP10 mutation on the transactivation of TBX20 and NKX2.5 by BMP10 was quantitatively analyzed in maintained HeLa cells utilizing a dual-luciferase reporter assay system. RESULTS: A novel heterozygous BMP10 mutation, NM_014482.3:c.247G>T;p.(Glu83*), was identified in one proband with patent ductus arteriosus (PDA), which was confirmed to co-segregate with the PDA phenotype in the mutation carrier's family. The nonsense mutation was not observed in 288 non-CHD volunteers. Functional analysis unveiled that Glu83*-mutant BMP10 had no transactivation on its two representative target genes TBX20 and NKX2.5, which were both reported to cause CHD. CONCLUSION: These findings provide strong evidence indicating that genetically compromised BMP10 predisposes human beings to CHD, which sheds light on the new molecular mechanism that underlies CHD and allows for antenatal genetic counseling and individualized precise management of CHD.

9.
Exp Ther Med ; 27(2): 91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38274337

RESUMO

Tetralogy of Fallot (TOF) is the most prevalent cyanotic congenital heart pathology and causes infant morbidity and mortality worldwide. GATA-binding protein 4 (GATA4) serves as a pivotal transcriptional factor for embryonic cardiogenesis and germline GATA4 mutations are causally linked to TOF. However, the effects of somatic GATA4 mutations on the pathogenesis of TOF remain to be ascertained. In the present study, sequencing assay of GATA4 was performed utilizing genomic DNA derived from resected heart tissue specimens as well as matched peripheral blood specimens of 62 patients with non-familial TOF who underwent surgical treatment for TOF. Sequencing of GATA4 was also performed using the heart tissue specimens as well as matched peripheral venous blood samples of 68 sporadic cases who underwent heart valve displacement because of rheumatic heart disorder and the peripheral venous whole blood samples of 216 healthy subjects. The function of the mutant was explored by dual-luciferase activity analysis. Consequently, a new GATA4 mutation, NM_002052.5:c.708T>G;p.(Tyr236*), was found in the heart tissue of one patient with TOF. No mutation was detected in the heart tissue of the 68 cases suffering from rheumatic heart disorder or in the venous blood samples of all 346 individuals. GATA4 mutant failed to transactivate its target gene, myosin heavy chain 6. Additionally, this mutation nullified the synergistic transactivation between GATA4 and T-box transcription factor 5 or NK2 homeobox 5, two genes causative for TOF. Somatic GATA4 mutation predisposes TOF, highlighting the significant contribution of somatic variations to the molecular pathogenesis underpinning TOF.

10.
Am J Respir Crit Care Med ; 209(1): 48-58, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37934672

RESUMO

Rationale: Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component. Objectives: To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and patients with COPD with varying degrees of emphysema. Methods: Lung sections from 40 patients with COPD and ever-smokers were used for LF proteomic and transcriptomic spatial profiling. Formalin- and O.C.T.-fixed lung samples obtained from biopsies or lung explants were assessed for LF presence. Emphysema measurements were obtained from clinical chest computed tomographic scans. High-confidence transcriptional target intersection analyses were conducted to resolve emphysema-induced transcriptional networks. Measurements and Main Results: Overall, 115 LFs from ever-smokers and Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 and GOLD 3-4 patients were analyzed. No LFs were found in never-smokers. Differential gene expression analysis revealed significantly increased expression of LF assembly and B cell marker genes in subjects with severe emphysema. High-confidence transcriptional analysis revealed activation of an abnormal B cell activity signature in LFs (q-value = 2.56E-111). LFs from patients with GOLD 1-2 COPD with emphysema showed significantly increased expression of genes associated with antigen presentation, inflammation, and B cell activation and proliferation. LFs from patients with GOLD 1-2 COPD without emphysema showed an antiinflammatory profile. The extent of centrilobular emphysema was significantly associated with genes involved in B cell maturation and antibody production. Protein-RNA network analysis showed that LFs in emphysema have a unique signature skewed toward chronic B cell activation. Conclusions: An off-targeted B cell activation within LFs is associated with autoimmune-mediated emphysema pathogenesis.


Assuntos
Enfisema , Linfadenopatia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/genética , Proteômica , Perfilação da Expressão Gênica
11.
Artigo em Inglês | MEDLINE | ID: mdl-38064378

RESUMO

RATIONALE: Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component. OBJECTIVE: To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and COPD patients with varying degrees of emphysema. METHODS: Lung sections from 40 COPD patients and ever-smokers were used for LF proteomic and transcriptomic spatial profiling. Formalin and OCT-fixed lung samples obtained from biopsies or lung explants, were assessed for LF presence. Emphysema measurements were obtained from clinical chest CT scans. High confidence transcriptional (HCT) target intersection analyses were conducted to resolve emphysema-induced transcriptional networks. MEASUREMENTS AND MAIN RESULTS: Overall, 115 LFs from ever-smokers and GOLD 1-2 and GOLD 3-4 patients were analyzed. No LFs were found in never-smokers. Differential gene expression analysis revealed significantly increased expression of LF assembly and B cell markers genes in subjects with severe emphysema. HCT analysis revealed activation of abnormal B cell activity signature in LFs (q-value: 2.56E-111). LFs from GOLD 1-2 COPD patients with emphysema showed significantly increased expression of genes associated with antigen presentation, inflammation, and B cell activation and proliferation. LFs from GOLD 1-2 COPD patients without emphysema showed an anti-inflammatory profile. The extent of centrilobular emphysema was significantly associated with genes involved in B cell maturation and antibody production. Protein-RNA network analysis showed that LFs in emphysema have a unique signature skewed towards chronic B cell activation. CONCLUSIONS: An off-targeted B cell activation within LFs is associated with autoimmune-mediated emphysema pathogenesis.

12.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5727-5749, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114169

RESUMO

Guaiane-type sesquiterpenoids are a class of terpenoids with [5,7] ring-fused system as the basic skeletal structure composed of three isoprene units, which are substituted by 4,10-dimethyl-7-isopropyl. According to the difference in functional groups and degree of polymerization, they can be divided into simple guaiane-type sesquiterpenoids, sesquiterpene lactones, sesquiterpene dimers, and sesquiterpene trimers. Natural guaiane-type sesquiterpenoids are widely distributed in plants, fungi, and marine organisms, especially in families such as Compositae, Zingiberaceae, Thymelaeaceae, Lamiaceae, and Alismataceae. Guaiane-type sesquiterpenoids have good antibacterial, anti-inflammatory, anticancer, and neuroprotective effects. In this paper, the novel guaiane-type sesquiterpenoids isolated and identified in recent 10 years(2013-2022) and their biological activities were reviewed in order to provide refe-rences for the research and development of guaiane-type sesquiterpenoids.


Assuntos
Asteraceae , Sesquiterpenos , Humanos , Estrutura Molecular , Sesquiterpenos de Guaiano , Asteraceae/química
13.
Biotechniques ; 75(4): 157-167, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815826

RESUMO

Single-cell RNA sequencing (scRNA-seq) is an important tool for understanding disease pathophysiology, including airway diseases. Currently, the majority of scRNA-seq studies in airway diseases have used invasive methods (airway biopsy, surgical resection), which carry inherent risks and thus present a major limitation to scRNA-seq investigation of airway pathobiology. Bronchial brushing, where the airway mucosa is sampled using a cytological brush, is a viable, less invasive method of obtaining airway cells for scRNA-seq. Here we describe the development of a rapid and minimal handling protocol for preparing single-cell suspensions from bronchial brush specimens for scRNA-seq. Our optimized protocol maximizes cell recovery and cell quality and facilitates large-scale profiling of the airway transcriptome at single-cell resolution.


Assuntos
Perfilação da Expressão Gênica , Software , Perfilação da Expressão Gênica/métodos , Broncoscopia , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos
14.
Front Med (Lausanne) ; 10: 1214130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771980

RESUMO

Rationale: In the healthy lung, the pseudostratified conducting airway epithelium is anchored to the reticular basement membrane (RBM) via hemidesmosome junction complexes formed between basal cells and the extracellular matrix (ECM). The RBM within the healthy lung is composed of the ECM proteins laminin and collagen-IV. In patients with asthma, the RBM is remodeled with collagen-I, -III and fibronectin deposition. The goal of this study was to assess the effect of RBM ECM proteins on basal airway epithelial cell attachment, spreading and barrier formation using real-time electrical cell-substrate impedance sensing (ECIS). Methods: ECIS 8-well arrays were coated with 50 µg/mL of fibronectin, collagen-I, collagen-III, collagen-IV, or laminin and compared to bovine serum albumin (BSA) or uncoated controls. The airway epithelial cell line (1HAEo-) was seeded 40, 50, 60, and 70 k cells/well and continuously monitored over 70 h to assess cell attachment, spreading and barrier formation using high (64 k Hz) and low (500 Hz) frequency resistance and capacitance. Data were analyzed using a one-phase decay model from which half-life (time cells cover half of the electrode area) and rate-constant (cell-spreading rate/h) were determined and a generalized additive mixed effect model (GAMM) was used to assess ECM proteins over the entire experiment. Results: High-frequency (64 kHz) capacitance measures demonstrated the half-life for 1HAEo-cells to attach was fastest when grown on fibronectin (6.5 h), followed by collagen-I (7.2 h) and collagen-III (8.1 h), compared to collagen-IV (11.3 h), then laminin (13.2 h) compared to BSA (12.4 h) and uncoated (13.9 h) controls. High-frequency (64 kHz) resistance measures demonstrated that the rate of 1HAEo- cell spreading was significantly faster on fibronectin and collagen-I compared to collagen-III, collagen-IV, laminin, BSA and the uncoated control. Low-frequency (500 Hz) resistance measures demonstrated that 1HAEo-cells formed a functional barrier fastest when grown on fibronectin and collagen-I, compared to the other ECM conditions. Lastly, the distance of 1HAEo-cells from the ECM substrates was the smallest when grown on fibronectin reflecting high cell-matrix adhesion. Conclusion: Airway epithelial cells attach, spread and form a barrier fastest on fibronectin, and collagen-I and these reticular basement membrane ECM proteins may play a protective role in preserving the epithelial barrier during airway remodeling in asthma.

15.
Am J Respir Crit Care Med ; 208(4): 472-486, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406359

RESUMO

Rationale: Emerging data demonstrate that the smallest conducting airways, terminal bronchioles, are the early site of tissue destruction in chronic obstructive pulmonary disease (COPD) and are reduced by as much as 41% by the time someone is diagnosed with mild (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 1) COPD. Objectives: To develop a single-cell atlas that describes the structural, cellular, and extracellular matrix alterations underlying terminal bronchiole loss in COPD. Methods: This cross-sectional study of 262 lung samples derived from 34 ex-smokers with normal lung function (n = 10) or GOLD stage 1 (n = 10), stage 2 (n = 8), or stage 4 (n = 6) COPD was performed to assess the morphology, extracellular matrix, single-cell atlas, and genes associated with terminal bronchiole reduction using stereology, micro-computed tomography, nonlinear optical microscopy, imaging mass spectrometry, and transcriptomics. Measurements and Main Results: The lumen area of terminal bronchioles progressively narrows with COPD severity as a result of the loss of elastin fibers within alveolar attachments, which was observed before microscopic emphysematous tissue destruction in GOLD stage 1 and 2 COPD. The single-cell atlas of terminal bronchioles in COPD demonstrated M1-like macrophages and neutrophils located within alveolar attachments and associated with the pathobiology of elastin fiber loss, whereas adaptive immune cells (naive, CD4, and CD8 T cells, and B cells) are associated with terminal bronchiole wall remodeling. Terminal bronchiole pathology was associated with the upregulation of genes involved in innate and adaptive immune responses, the interferon response, and the degranulation of neutrophils. Conclusions: This comprehensive single-cell atlas highlights terminal bronchiole alveolar attachments as the initial site of tissue destruction in centrilobular emphysema and an attractive target for disease modification.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudos Transversais , Microtomografia por Raio-X , Elastina , Pulmão , Asma/complicações
16.
Respir Res ; 24(1): 124, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143066

RESUMO

BACKGROUND: People living with HIV (PLWH) are at increased risk of developing Chronic Obstructive Pulmonary Disease (COPD) independent of cigarette smoking. We hypothesized that dysbiosis in PLWH is associated with epigenetic and transcriptomic disruptions in the airway epithelium. METHODS: Airway epithelial brushings were collected from 18 COPD + HIV + , 16 COPD - HIV + , 22 COPD + HIV - and 20 COPD - HIV - subjects. The microbiome, methylome, and transcriptome were profiled using 16S sequencing, Illumina Infinium Methylation EPIC chip, and RNA sequencing, respectively. Multi 'omic integration was performed using Data Integration Analysis for Biomarker discovery using Latent cOmponents. A correlation > 0.7 was used to identify key interactions between the 'omes. RESULTS: The COPD + HIV -, COPD -HIV + , and COPD + HIV + groups had reduced Shannon Diversity (p = 0.004, p = 0.023, and p = 5.5e-06, respectively) compared to individuals with neither COPD nor HIV, with the COPD + HIV + group demonstrating the most reduced diversity. Microbial communities were significantly different between the four groups (p = 0.001). Multi 'omic integration identified correlations between Bacteroidetes Prevotella, genes FUZ, FASTKD3, and ACVR1B, and epigenetic features CpG-FUZ and CpG-PHLDB3. CONCLUSION: PLWH with COPD manifest decreased diversity and altered microbial communities in their airway epithelial microbiome. The reduction in Prevotella in this group was linked with epigenetic and transcriptomic disruptions in host genes including FUZ, FASTKD3, and ACVR1B.


Assuntos
Infecções por HIV , Doença Pulmonar Obstrutiva Crônica , Humanos , Disbiose/genética , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Perfilação da Expressão Gênica , Epitélio , Infecções por HIV/epidemiologia , Infecções por HIV/genética
17.
Cell Rep Med ; 4(3): 100984, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948150

RESUMO

Identification of the causes for congenital heart disease (CHD) is a prerequisite for precise prevention and personalized treatment of CHD. Zhao et al.1 show increased that gestational serum palmitic acid (PA) predisposes offspring to CHD by perturbating the MARS/K-Hcy/GATA4 signaling pathway.


Assuntos
Cardiopatias Congênitas , Ácido Palmítico , Humanos , Cardiopatias Congênitas/etiologia , Estudos de Casos e Controles
18.
Biomedicines ; 11(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672643

RESUMO

Epigenetic modifications are common in chronic obstructive pulmonary disease (COPD); however, their clinical relevance is largely unknown. We hypothesized that epigenetic disruptions are associated with symptoms and health status in COPD. We profiled the blood (n = 57) and airways (n = 62) of COPD patients for DNA methylation (n = 55 paired). The patients' health status was assessed using the St. George's Respiratory Questionnaire (SGRQ). We conducted differential methylation analyses and identified pathways characterized by epigenetic disruptions associated with SGRQ scores and its individual domains. 29,211 and 5044 differentially methylated positions (DMPs) were associated with total SGRQ scores in blood and airway samples, respectively. The activity, impact, and symptom domains were associated with 9161, 25,689 and 17,293 DMPs in blood, respectively; and 4674, 3730 and 5063 DMPs in airways, respectively. There was a substantial overlap of DMPs between airway and blood. DMPs were enriched for pathways related to common co-morbidities of COPD (e.g., ageing, cancer and neurological) in both tissues. Health status in COPD is associated with airway and systemic epigenetic changes especially in pathways related to co-morbidities of COPD. There are more blood DMPs than in the airways suggesting that blood epigenome is a promising source to discover biomarkers for clinical outcomes in COPD.

19.
Diagnostics (Basel) ; 13(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36673052

RESUMO

Dilated cardiomyopathy (DCM), characterized by left ventricular or biventricular enlargement with systolic dysfunction, is the most common type of cardiac muscle disease. It is a major cause of congestive heart failure and the most frequent indication for heart transplantation. Aggregating evidence has convincingly demonstrated that DCM has an underlying genetic basis, though the genetic defects responsible for DCM in a larger proportion of cases remain elusive, motivating the ongoing research for new DCM-causative genes. In the current investigation, a multigenerational family affected with autosomal-dominant DCM was recruited from the Chinese Han population. By whole-exome sequencing and Sanger sequencing analyses of the DNAs from the family members, a new BMP10 variation, NM_014482.3:c.166C > T;p.(Gln56*), was discovered and verified to be in co-segregation with the DCM phenotype in the entire family. The heterozygous BMP10 variant was not detected in 268 healthy volunteers enrolled as control subjects. The functional measurement via dual-luciferase reporter assay revealed that Gln56*-mutant BMP10 lost the ability to transactivate its target genes NKX2.5 and TBX20, two genes that had been causally linked to DCM. The findings strongly indicate BMP10 as a new gene contributing to DCM in humans and support BMP10 haploinsufficiency as an alternative pathogenic mechanism underpinning DCM, implying potential implications for the early genetic diagnosis and precision prophylaxis of DCM.

20.
Eur J Med Genet ; 66(3): 104705, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657711

RESUMO

Dilated cardiomyopathy (DCM), characteristic of left ventricular or biventricular dilation with systolic dysfunction, is the most common form of cardiomyopathy, and a leading cause of heart failure and sudden cardiac death. Aggregating evidence highlights the underlying genetic basis of DCM, and mutations in over 100 genes have been causally linked to DCM. Nevertheless, due to pronounced genetic heterogeneity, the genetic defects underpinning DCM in most cases remain obscure. Hence, this study was sought to identify novel genetic determinants of DCM. In this investigation, whole-exome sequencing and bioinformatics analyses were conducted in a family suffering from DCM, and a novel heterozygous mutation in the VEZF1 gene (coding for a zinc finger-containing transcription factor critical for cardiovascular development and structural remodeling), NM_007146.3: c.490A > T; p.(Lys164*), was identified. The nonsense mutation was validated by Sanger sequencing and segregated with autosome-dominant DCM in the family with complete penetrance. The mutation was neither detected in another cohort of 200 unrelated DCM patients nor observed in 400 unrelated healthy individuals nor retrieved in the Single Nucleotide Polymorphism database, the Human Gene Mutation Database and the Genome Aggregation Database. Biological analyses by utilizing a dual-luciferase reporter assay system revealed that the mutant VEZF1 protein failed to transactivate the promoters of MYH7 and ET1, two genes that have been associated with DCM. The findings indicate VEZF1 as a new gene responsible for DCM, which provides novel insight into the molecular pathogenesis of DCM, implying potential implications for personalized precisive medical management of the patients affected with DCM.


Assuntos
Cardiomiopatia Dilatada , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Proteínas de Ligação a DNA/genética , Heterozigoto , Mutação , Linhagem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...