Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(9): 11396-11402, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33480686

RESUMO

Facile strategies in flexible transparent conductive electrode materials that can sustain their electrical conductivities under 1 mm-scale radius of curvature are required for wider applications such as foldable devices. We propose a rational design as well as a fabrication process for a silver nanowire-based transparent conductive electrode with low sheet resistance and high transmittance even after prolonged cyclic bending. The electrode is fabricated on a poly(ethylene terephthalate) film through the hybridization of silver nanowires with silver nanoparticles-anchored RuO2 nanosheets. This hybridization significantly improves the performance of the silver nanowire network under severe bending strain and creates an electrically percolative structure between silver nanowires and RuO2 nanosheets in the presence of anchored silver nanoparticles on the surface of RuO2 nanosheets. The resistance change of this hybrid transparent conductive electrode is 8.8% after 200,000 bending cycles at a curvature radius of 1 mm, making it feasible for use in foldable devices.

2.
Materials (Basel) ; 13(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952283

RESUMO

We investigated the flash light sintering process to effectively reduce electrical resistance in silver nanowire networks. The optimum condition of the flash light sintering process reduces the electrical resistance by ~20%, while the effect of the conventional thermal annealing processes is rather limited for silver nanowire networks. After flash light sintering, the morphology of the junction between the silver nanowires changes to a mixed-phase structure of the two individual nanowires. This facile and fast process for silver nanowire welding could be highly advantageous to the mass production of silver nanowire networks.

3.
Sci Rep ; 5: 16371, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26575970

RESUMO

Silver nanowires have attracted much attention for use in flexible transparent conductive films (TCFs) due to their low sheet resistance and flexibility. However, the haze was too high for replacing indium-tin-oxide in high-quality display devices. Herein, we report flexible TCFs, which were prepared using a scalable bar-coating method, with a low sheet resistance (24.1 Ω/sq at 96.4% transmittance) and a haze (1.04%) that is comparable to that of indium-tin-oxide TCFs. To decrease the haze and maintain a low sheet resistance, small diameter silver nanowires (~20 nm) were functionalized with low-temperature surface-sintering silver nanoparticles (~5 nm) using bifunctional cysteamine. The silver nanowire-nanoparticle ink stability was excellent. The sheet resistance of the TCFs was decreased by 29.5% (from 34.2 to 24.1 Ω/sq) due to the functionalization at a low curing temperature of 85 °C. The TCFs were highly flexible and maintained their stability for more than 2 months and 10,000 bending cycles after coating with a protective layer.

4.
Nano Lett ; 10(2): 597-602, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20039695

RESUMO

Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

5.
Chem Commun (Camb) ; (27): 4019-21, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19568619

RESUMO

Close packed arrays of hollow SnO2 hemispheres were prepared using PMMA microspheres as sacrificial templates for subsequent sputter-deposition of SnO2 films, leading to a threefold enhancement in gas sensitivity compared to non-templated (flat) films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...